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Abstract: The epidemiology of patients with gastrointestinal colonization of carbapenem-resistant
Acinetobacter baumannii (CRAB) has not been systematically analyzed. We aimed to analyze the
incidence, risk factors, and clinical outcomes of patients with newly identified gastrointestinal
colonization of CRAB in a healthcare region in Hong Kong, where a multi-pronged screening
strategy for gastrointestinal colonization of CRAB, together with other multidrug-resistant organisms
(MDROs), was conducted by collecting fecal specimens (rectal swab or stool) upon admission
and during hospitalization. From 1 October 2015 to 31 December 2019, a total of 161,339 fecal
specimens from 63,588 patients, 61,856 (97.3%) of whom were hospitalized patients, and 54,525
(88.1%) were screened upon admission, with 1309 positive for CRAB (2.4% prevalence). Among
patients positive for CRAB in fecal specimens, 698 (53.3%) had newly detected gastrointestinal
colonization of CRAB, giving an incidence of 10.03 per 10,000 patient admissions and constituting
2646 CRAB colonization days in the general wards. Excluding the 164 patients with co-colonization
of other MDROs, 534 patients had gastrointestinal colonization with only CRAB, and 12.5% (67/534)
developed symptomatic CRAB infections at a median of 61 days (range: 2 to 671 days), during
prospective follow-up for 2 years. Compared with age- and sex-matched controls, patients being
referred from residential care homes for the elderly, the presence of indwelling devices, use of
beta-lactam/beta-lactamase inhibitors, carbapenems, and proton pump inhibitors in the preceding
6 months, and history of hospitalization in the past 6 months were significantly associated with
gastrointestinal colonization with CRAB, as shown by multivariable analysis. Log-rank test showed
that cases had significantly shorter survival duration than controls (p < 0.001). The adjusted hazard
ratio of gastrointestinal colonization of CRAB was 1.8 (95% CI: 1.5–2.2; p < 0.001), as shown by
Cox regression analysis. Whole-genome sequencing of eight patients with CRAB isolates in their
blood cultures and rectal swabs during the same episode of hospitalization revealed ST-195 as the
predominant type, as shown by multilocus sequencing type. Gastrointestinal colonization of CRAB
poses a considerable challenge for infection prevention and control.

Keywords: carbapenem-resistant Acinetobacter baumannii; multidrug-resistant Acinetobacter baumannii;
gastrointestinal colonization; infection control

1. Introduction

Acinetobacter baumannii is one of the ESKAPE (Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, A. baumannii, Pseudomonas aeruginosa, and Enterobacter species)
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pathogens which has excellent genome plasticity with high competence that enables it
to take any genes from the surroundings and incorporate them into its genome. This
results in acquisition of a wide repertoire of resistance genes, also called an antibacterial
resistance gene island [1]. Carbapenem-resistant A. baumannii (CRAB) is an emerging
Gram-negative organism primarily recognized in healthcare-associated infections. CRAB
has been included as a critical pathogen on the priority list of antibiotic-resistant bacteria by
the World Health Organization [2]. Carbapenem resistance rates among A. baumannii are
particularly high in the hospitals of South and Southeast Asia, with an estimated prevalence
of over 40% in most of the countries [3]. In China, CRAB strains were prevalent in 71%
of the 77 ICUs recruited for nationwide surveillance. Clonal spread of CRAB was found
in 38% of the ICUs surveyed, with a total of 22 different clones identified [4]. During
the COVID-19 pandemic, the risk of CRAB co-infection or secondary infection increased
among the patients hospitalized with COVID-19 [5]. The surge in CRAB infections could
have been temporally related to the increasing COVID-19-related hospitalizations, resulting
in changes to infection prevention and control practices. With the resumption of normal
operation and infection control measures as COVID-19 hospitalizations decreased, cases of
CRAB infections returned to the pre-COVID-19 level [6]. Control of CRAB infections in
endemic hospitals remains a challenge. In addition to hand hygiene as a core component of
infection prevention and control, active surveillance cultures, contact precautions, cohorting
patients, environmental disinfection, use of chlorhexidine baths, and closing or stopping
admissions to the ward have been adopted to eradicate CRAB infections from endemic
hospitals, as illustrated in a recent review [7].

Active surveillance cultures for asymptomatic colonization of CRAB are not routine
clinical practice, especially in resource-limited healthcare settings [8]. The use of active
surveillance cultures, followed by isolation and enhanced contact precautions, is inversely
associated with acquisition of CRAB and subsequent CRAB infection in the intensive care
unit [9]. However, A. baumannii is found in multiple body sites with various rates of
colonization [10]. There is no consensus on the choice of sampling sites for A. baumannii or
on the use of a horizontal or vertical approach for screening during hospitalization [11].
Some studies suggested the skin has the highest yield in the detection of CRAB [12,13],
whereas our previous study revealed fecal specimens to be positive in the highest number
of patients with asymptomatic colonization of CRAB if a single sample is collected [14].
Fecal specimens, either rectal swab or stool, can be simultaneously screened for other
multidrug-resistant organisms (MDROs), including carbapenem-resistant Enterobacterales
(CRE), vancomycin-resistant Enterococci (VRE), and methicillin-resistant S. aureus (MRSA),
in addition to CRAB and multidrug-resistant A. baumannii (MRAB), as proactive infection
control measures [15–19].

In this study, we aimed to analyze the epidemiological characteristics of patients with
newly identified gastrointestinal colonization of CRAB. The findings may have implications
for the recommendation of infection prevention and control.

2. Materials and Methods
2.1. Setting

This was a retrospective study on the epidemiology of gastrointestinal colonization
of CRAB in a healthcare network in Hong Kong West. It included an acute-care hospital
(Queen Mary Hospital, a 1700-bed, university-affiliated teaching hospital providing a
tertiary referral service) and five extended-care hospitals with another 1400 beds between
1 October 2015 and 31 December 2021.

2.2. Multi-Pronged Screening Strategy for Carbapenem-Resistant A. baumannii

A multi-pronged screening strategy for gastrointestinal colonization of CRAB, to-
gether with other MDROs, including MRAB, CRE, VRE, and MRSA, was conducted by
collecting fecal specimens (rectal swab or stool) upon admission and during hospitalization,
as previously described [15–19]. The analysis of gastrointestinal colonization of MRSA
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was reported previously [19]. The multi-pronged screening strategy comprised four major
categories, targeted screening upon admission, opportunistic screening, safety net screen-
ing, and contact tracing. Briefly, targeted screening was performed in patients fulfilling
the following criteria: (i) patients with a travel history of medical tourism or that had
received an operation outside of Hong Kong in the past 12 months (an acronym of whom
TO screen); (ii) patients with a history of hospitalization in Hong Kong in the past 3 months;
(iii) patients admitted into special units such as the adult intensive care unit, renal dialysis
center, hematology center, blood and marrow transplant center, liver transplant center, and
heart-lung transplant center; and (iv) patients admitted into all medical wards. Oppor-
tunistic screening was performed for fecal specimens, which were sent to the microbiology
laboratory for Clostridioides difficile culture or cytotoxin assay. Safety net screening was
performed for all hospitalized patients at day 14. Contact tracing was conducted to identify
the possible source or secondary cases if there was a patient with nosocomial acquisition
of MDROs [20]. Apart from the multi-pronged screening strategy, universal admission
screening was implemented in a specific clinical department for at least 3 months in case of
persistent MDROs transmission. We selected the data of targeted screening upon admission
for further analysis of gastrointestinal colonization of CRAB.

2.3. Analysis of Gastrointestinal Colonization of Carbapenem-Resistant A. baumannii

For the purpose of epidemiological analysis, a new case of CRAB was defined if a
patient had no preceding positive culture for CRAB in a clinical or screening specimen
in the past 12 months. A new case of gastrointestinal colonization of CRAB was defined
as a patient fulfilling the criteria of a new case of CRAB without isolation of CRAB in
body sites other than in fecal specimens during the current episode of hospitalization. The
epidemiology of patients with newly diagnosed gastrointestinal colonization of CRAB was
described. The incidence of CRAB colonization in the gastrointestinal tract upon admission
was compared with that of community-onset symptomatic CRAB infections as defined by
the National Healthcare Safety Network of Centers for Disease Control and Prevention of
the United States [21]. Each patient with newly identified gastrointestinal colonization of
CRAB was prospectively followed up for 2 years (until 31 December 2021). The clinical
outcome of developing symptomatic CRAB infections and the all-causes mortality were
monitored. Infection control nurses assessed all patients with newly diagnosed CRAB
at the bedside to determine if the case was classified as symptomatic CRAB infection or
asymptomatic CRAB colonization in body sites other than the gastrointestinal tract. A case-
control analysis was performed to identify the risk factors for gastrointestinal colonization
of CRAB. Age- and sex-matched controls in a 1-to-2 ratio were selected within the same
quarter as the diagnosis of a case. Controls were CRAB negative in the fecal specimens and
had no positive culture of CRAB in a clinical or screening specimen in the past 12 months.
Patients with co-colonization of MDROs in the gastrointestinal tract were excluded for the
case-control analysis.

2.4. Data Source

The episode-based records of our patients were retrieved from the Clinical Data
Analysis and Reporting System (CDARS), an electronic database of health records under
the governance of the Hospital Authority, as previously described [22,23]. The quarterly
number of patient days in our hospitals was also retrieved from CDARS. For all patients,
a unique hospital number was assigned to each episode of admission. The duration of
hospitalization for each admission was recorded. Episodes of each hospital admission
involving a positive culture for A. baumannii, together with the results of antimicrobial
susceptibility from the clinical and screening specimens were retrieved.

2.5. Laboratory Identification of Carbapenem-Resistant A. bamannii

Fecal specimens (rectal swab or stool) collected from patients upon admission or
during hospitalization were sent to the microbiology laboratory of Queen Mary Hospital.
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The rectal swab or around 1 g of stool was incubated in 2 mL of brain heart infusion
enrichment broth with 10 µg vancomycin (Sigma-Aldrich, St. Louis, MO, USA) and 0.5 µg
meropenem (Hospira, Melbourne, Australia) at 35 ◦C for 18 h. Ten microliters of the
enriched broth was further subcultured onto MacConkey agar with 2 µg meropenem and
incubated aerobically at 35 ◦C for 48 h, as previously described [17,24]. A. baumannii
isolates were identified by matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (Bruker Daltonics, Bremen, Germany). Antimicrobial susceptibility tests were
performed using the Kirby–Bauer disk diffusion method according to the Clinical and
Laboratory Standards Institute (CLSI) recommendations or manufacturer’s instructions.
Antimicrobial susceptibility was defined according to the CLSI recommendations [25].

2.6. Whole-Genome Sequencing

Patients with fecal specimens and blood culture samples positive for CRAB with resis-
tance to all antimicrobial agents during the same episode of hospitalization were subjected
to whole-genome sequencing, as previously described [6,11]. DNA extraction was per-
formed using Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) according
to the manufacturer’s instructions. DNA libraries were prepared by the Nextera DNA
Prep Kit (illumina Inc, San Diego, CA, USA) and the Nextera DNA CD Indexes (illumina
Inc, CA, USA) according to the manufacturer’s instructions. The libraries were sequenced
by loading onto the MiSeq sequencing system (illumina Inc, CA, USA) with 2 × 300 bp
paired-end read run for 56 h. Prior to genome assembly, the quality of the raw sequencing
reads was first evaluated using the FastQC and trimmed with Trimmomatic v0.39. De novo
assembly on raw data reads was performed using Unicycler 0.4.9. Parsnp v. 1.7.4 was used
for core-genome alignment and variant calls [26]. A maximum-likelihood phylogenetic tree
based on total core-genome single-nucleotide polymorphisms (SNPs) was constructed by
IQ-TREE 2 (http://www.iqtree.org, accessed on 5 September 2022) and viewed by FigTree
v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree, accessed on 5 September 2022). MLST
was assigned by PubMLST (https://pubmlst.org/organisms/acinetobacter-baumannii,
accessed on 5 September 2022) using the Oxford scheme.

2.7. Statistical Analysis

A logistic regression model with bivariate and multivariable analyses was used to
determine the risk factors of gastrointestinal colonization of CRAB. In the bivariate analyses,
one of the risk factors (i.e., referral from residential care home for the elderly, presence
of indwelling devices, Charlson comorbidity index, use of beta-lactam/beta-lactamase
inhibitors, cephalosporins, and fluoroquinolones in the preceding 6 months, and history
of hospitalization in the past 6 months) was included in each model. In the multivariate
analysis, all risk factors were selected to the model by stepwise variable selection. In
addition, matching variables (i.e., age and sex) were included in the model, as suggested
in the literature [27]. Kaplan-Meier survival analysis was conducted on the time to death
from the diagnosis of gastrointestinal colonization of CRAB; patients who survived up to
31 December 2021 were considered as censored. Log-rank test was used to compare the
statistical difference between the survival curves of the case and control groups. The effect of
gastrointestinal colonization of CRAB on mortality was evaluated using the Cox regression
model, adjusted for age and sex and other risk factors selected by stepwise variable selection.
SPSS, version 27 (IBM), was used to perform the statistical analyses. All reported p-values
were two-sided. A p-value of <0.05 was considered statistically significant.

3. Results
3.1. Multi-Pronged Screening Strategy for Carbapenem-Resistant A. baumannii

From 1 October 2015 to 31 December 2019, a total of 63,588 patients with 161,339 fecal
specimens were screened in a healthcare network in Hong Kong West under the multi-
pronged screening strategy for MDROs. Among the 63,588 patients, 61,856 (97.3%) were
hospitalized patients, of which 54,525 (88.1%) were screened upon admission (Figure 1).

http://www.iqtree.org
http://tree.bio.ed.ac.uk/software/figtree
https://pubmlst.org/organisms/acinetobacter-baumannii
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The prevalence of CRAB was shown to be 2.4% (1309/54,525) by targeted screening upon
admission. Among the 1309 CRAB-positive patients, 1063 (81.2%) were defined as new
cases who had no culture positive for CRAB in clinical or screening specimens in the past
12 months. Out of these new CRAB cases, 746 (70.2%) were diagnosed in our acute-care
hospital, and 698 (93.6%) fulfilled the definition of gastrointestinal colonization of CRAB.
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Figure 1. Gastrointestinal colonization of carbapenem-resistant A. baumannii (CRAB) in a healthcare
network in Hong Kong.

3.2. Analysis of Gastrointestinal Colonization of Carbapenem-Resistant A. baumannii

The overall incidence of gastrointestinal colonization of CRAB was 10.03 per 10,000 patient
admissions (698 patients in 696,063 admissions), and 3.35 per 10,000 patient days (698 patients
in 2,085,119 patient days), which was statistically higher than the incidence of community-
onset symptomatic CRAB infections (6.39 per 10,000 patient admission and 2.13 per
10,000 patient days) during the study period (incidence rate ratio, 95% confidence interval
(CI): 1.6, 1.5–1.7 and 1.6, 1.3–1.9; p < 0.001 for both rates).

Of the 698 patients with newly diagnosed gastrointestinal colonization of CRAB, 494
(70.8%) were admitted to the medical wards. In addition, 164 (23.5%) of the 698 patients had
co-colonization of other MDROs, including MRSA (148 patients), CRE (10 patients), and C.
difficile (six patients). Among the 148 patients with co-colonization of CRAB and MRSA in
the gastrointestinal tract, a significantly higher proportion had indwelling devices (56.1%,
83/148 vs. 46.4%, 248/534; odds ratio (OR): 1.5; 95% CI: 1.0–2.1; p = 0.039) as compared to
the 534 patients with gastrointestinal colonization of CRAB.
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For the remaining 534 patients with gastrointestinal colonization of CRAB only, 347
were male and 187 were female, with a median age of 85 years (range: 1 month to 103 years).
Overall, 501 (93.8%) of the 534 patients were aged ≥61 years, including 46 (8.6%) aged
61–70 years, 90 (16.9%) aged 71–80 years, 240 (44.9%) aged 81–90 years, and 125 (23.4%)
aged ≥91 years. Sixty-seven (12.5%) of the 534 patients developed symptomatic CRAB
infections during prospective follow-up for 2 years. Two (3.0%) of the 67 patients had a
positive blood culture, 29 (43.3%) had a positive culture in respiratory specimens, 22 (32.8%)
in urine specimens, and 14 (20.9%) in wound specimens. Symptomatic infections occurred
at a median of 61 days (range: 2 to 671 days) after the identification of gastrointestinal
colonization of CRAB (Figure 2).
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Figure 2. Patients with symptomatic carbapenem-resistant A. baumannii (CRAB) infections after the
diagnosis of gastrointestinal colonization.

The epidemiological characteristics and risk factors for gastrointestinal colonization of
A. baumannii are shown in Table 1. Briefly, patients referred from residential care homes
for the elderly (RCHEs), presence of indwelling devices, and use of beta-lactam/beta-
lactamase inhibitors, carbapenems, and proton pump inhibitors in the preceding 6 months,
as well as history of hospitalization in the past 6 months, were significantly associated with
gastrointestinal colonization of CRAB, as demonstrated in the multivariable analysis.

The all-causes mortality of patients with gastrointestinal colonization of CRAB was
significantly higher than that of the controls in one year (56.7%, 303/534 vs. 25.9%, 277/1068;
OR: 3.7; 95% CI: 3.0–4.7; p < 0.001) and in two years (69.7%, 372/534 vs. 35.1%, 375/1068;
OR: 4.2; 95% CI: 3.4–5.3; p < 0.001). With Kaplan–Meier survival analysis, the median
survival of cases and controls was 235 and 1232 days, respectively. Log-rank test showed
that the cases had a significantly shorter survival duration than the controls (p < 0.001). The
adjusted hazard ratio of gastrointestinal colonization of CRAB was 1.8 (95% CI: 1.5–2.2;
p < 0.001) by Cox regression analysis.
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Table 1. Epidemiological characteristics for patients with or without gastrointestinal colonization of
carbapenem-resistant A. baumannii (CRAB) in the age- and sex-matched controls a.

Characteristics
Patients with
GIC of CRAB

(n = 534) b

Patients without
GIC of CRAB

(n = 1068) c

Bivariate Analysis d Multivariable Analysis d

Odds Ratio
(95% CI) p-Value Odds Ratio

(95% CI) p-Value

Patient referred from RCHE 373 (69.9%) 184 (17.2%) 11.1 (8.7–14.2) <0.001 16.0 (11.6–22.0) <0.001

Presence of indwelling device e 248 (46.4%) 231 (21.6%) 3.1 (2.5–3.9) <0.001 1.5 (1.1–2.1) 0.007

Charlson comorbidity index (mean ± SD) 4.3 ± 2.1 4.3 ± 2.3 1.0 (1.0–1.1) 0.876 NA f NA f

Use of antibiotics in preceding 6 months g

Beta-lactam/beta-lactamase inhibitors 183 (34.3%) 86 (8.0%) 6.0 (4.5–7.9) <0.001 2.3 (1.6–3.5) <0.001

Cephalosporins 38 (7.1%) 27 (2.5%) 3.0 (1.8–4.9) <0.001 NA f NA f

Carbapenems 106 (19.9%) 29 (2.7%) 8.9 (5.8–13.6) <0.001 4.2 (2.5–7.3) <0.001

Fluoroquinolones 69 (12.9%) 56 (5.2%) 2.7 (1.9–3.9) <0.001 NA f NA f

Use of PPI in preceding 6 months h 296 (55.4%) 247 (23.1%) 4.1 (3.3–5.2) 0.001 1.7 (1.3–2.4) <0.001

Hospitalization in the past 6 months 456 (85.4%) 515 (48.2%) 6.3 (4.8–8.2) <0.001 3.5 (2.4–4.9) <0.001

CI, confident interval; GIC, gastrointestinal colonization; NA, not applicable; PPI, proton pump inhibitors; RCHE,
residential care home for the elderly; SD, standard deviation. a Patients with co-colonization of carbapenem-
resistant Enterobacterales, methicillin-resistant S. aureus, vancomycin-resistant Enterococci, and C. difficile were
excluded for case-control analysis. b Case patients had isolation of CRAB in fecal specimen and had no isolation of
CRAB in the other clinical or screening specimens during hospitalization. c Age- and sex-matched patients staying
in the same clinical specialty within the same quarter of a CRAB case and with negative result of CRAB in fecal and
clinical or screening specimens were chosen as controls in a ratio of 1:2. d An odds ratio significantly greater than
1 implied higher risk of having gastrointestinal colonization of CRAB. In the multivariable model, risk factors were
selected by stepwise variable selection, and age and sex were entered. e Indwelling devices included nasogastric
tube, tracheostomy or endotracheal tube, urinary catheter, and drain. f Variables were not selected by the stepwise
procedure. g Beta-lactam/beta-lactamase inhibitors included cefoperazone/sulbactam, ticarcillin/clavulanate, and
piperacillin/tazobactam; cephalosporins included cefotaxime, ceftriaxone, ceftazidime, cefepime, and ceftaroline;
carbapenems included meropenem, imipenem/cilastatin, and ertapenem; fluoroquinolones included ciprofloxacin,
levofloxacin, and moxifloxacin. h Proton pump inhibitors included dexlansoprazole, esomeprazole, lansoprazole,
omeprazole, pantoprazole, and rabeprazole.

3.3. Whole-Genome Sequencing

Eight patients had concomitant blood and rectal swab culture positive for CRAB isolates
which demonstrated resistance to all antimicrobial agents, including ampicillin/sulbactam,
piperacillin, piperacillin/tazobactam, ticarcillin/clavulanate, cefoperazone/sulbactam, cef-
tazidime, ciprofloxacin, gentamicin, amikacin, tobramycin, and cotrimoxazole, in addition
to imipenem/cilastatin, during the same episode of hospitalization. The isolates were
subjected to whole-genome sequencing. Of all eight patients, the isolates from the blood
cultures and rectal swabs were clustered together per patient (Figure 3). Both isolates
from the blood culture and rectal swab of patient 1 to patient 7 were all ST-195 multilocus
sequence type (MLST), while both isolates from the blood culture and rectal swab of patient
8 were typed as ST-473 MLST.
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4. Discussion

In this study, we demonstrated the incidence of gastrointestinal colonization of CRAB
in a healthcare region over 4 years, involving more than 63,000 patients and 161,000 fecal
specimens, which is the largest series in the literature. The prevalence of gastrointestinal
colonization of CRAB was found to be 2.4% upon admission, which was lower than the
corresponding findings of 4% to 12% in intensive care units, where the number of recruited
patients was 63 to 565 [28–30]. The apparently higher prevalence of gastrointestinal col-
onization of CRAB upon admission to the intensive care unit could be related to the use
of broad-spectrum antibiotics before admission to the intensive care units. In fact, the
use of beta-lactam/beta-lactamase inhibitors, which included cefoperazone/sulbactam,
ticarcillin/clavulanate, piperacillin/tazobactam, as well as carbapenems, in the preceding
6 months was significantly associated with gastrointestinal colonization of CRAB, as shown
in our multivariable analysis involving 534 cases and 1068 age- and sex-matched controls.
Use of carbapenems was also shown to be one of the significant risk factors for nosoco-
mial colonization of CRAB detected in rectal swab specimens by multivariable analysis in
45 cases and 90 retrospective, matched controls [31].

The use of proton pump inhibitors (dexlansoprazole, esomeprazole, lansoprazole,
omeprazole, pantoprazole, and rabeprazole) in the preceding 6 months was significantly
associated with gastrointestinal colonization of CRAB. Gastric acid suppression was shown
to increase the risk of gastrointestinal colonization of MDROs, including extended-spectrum
beta-lactamase-producing Enterobacterales, carbapenemase-producing Enterobacterales,
and VRE, by 75% in a primary meta-analysis of 12 studies, including 22,305 patients [32]. In
addition to our previous finding of the association between proton pump inhibitors use and
gastrointestinal colonization of MRSA [18], we also demonstrated the association between
the use of proton pump inhibitors and gastrointestinal colonization of CRAB, which has
not been reported in the literature and deserves further investigation.
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The mechanisms of gastrointestinal colonization of A. baumannii are largely unknown.
Secretory IgA was found to enhance the colonization of A. baumannii in the gastrointestinal
tract, which was mediated by bacterial thioredoxin A in a mice model. A targeted deletion
mutant of bacterial thioredoxin A reduced the bacterial load of A. baumannii in the gastroin-
testinal tract. In addition, the associated 50% lethal dose of a deletion mutant of bacterial
thioredoxin A was increased nearly 100-fold in an intraperitoneal sepsis model, suggesting
that bacterial thioredoxin A mediates gastrointestinal colonization as well as contributes
to the pathogenesis of A. baumannii [33]. Further studies are warranted to investigate the
mechanisms of gastrointestinal colonization of CRAB.

Gastrointestinal colonization of CRAB may have a significant impact on infection
prevention and control. Patient-to-patient transmission of A. baumannii with gastrointestinal
colonization was demonstrated in 17% of patients using multilocus sequence typing with
subsequent pulsed-field gel electrophoresis for discrimination [34]. In the setting of the
intensive care unit, patients with gastrointestinal colonization of A. baumannii had higher
odds of bed rails contamination than those with only respiratory colonization [35]. Further
study in the intensive care unit also revealed that 16% of environmental samples and
38% of air samples were positive in the rooms when the patients had gastrointestinal
colonization of CRAB, whereas 10% of environmental samples and 13% of air samples
were positive in the rooms when patients had respiratory colonization of CRAB [36].
Environmental contamination may serve as a persistent source leading to the outbreak of
CRAB and MRAB [37–42], and most outbreaks occurred in intensive care units [37,38,40].
Air dispersal of MRAB also contributes to nosocomial transmission and outbreak [24].

The burden of gastrointestinal colonization of CRAB does not only affect intensive
care units [28–30,34,37,38,40]. Of all 698 patients with newly diagnosed gastrointestinal
colonization of CRAB, 71% were admitted to medical wards. In view of the limited
number of isolation facilities, priority use of single-room isolation was given to patients
with symptomatic CRAB infections instead of patients with asymptomatic gastrointestinal
colonization of CRAB [23]. These 698 patients contributed to 2646 CRAB colonization days
in the general wards, which may have posed a risk of nosocomial transmission. With the
implementation of directly observed hand hygiene practice, we could achieve a decreasing
trend of hospital-onset CRAB infections despite the burden of gastrointestinal colonization
of CRAB in the general wards [23].

The challenge of gastrointestinal colonization of CRAB is increasing, as evidenced by
the admission of patients colonized with CRAB from RCHEs. In our case-control analysis, a
significantly higher proportion of patients with gastrointestinal colonization of CRAB was
referred from RCHEs, which had the highest odds ratios among all factors, as shown in
the multivariable analysis. In Hong Kong, RCHE is a collective term for all long-term care
facilities and nursing homes that provide daily nursing care for their residents, who may
require the use of feeding tubes, urinary catheters, and other medical devices [14,43,44].
The prevalence of MDROs, especially MRSA, was increasingly reported to be almost 50%
in RCHEs during the COVID-19 pandemic [45]. In fact, CRAB also emerged in RCHEs
with high background rates of MRSA. The prevalence of gastrointestinal colonization of
CRAB was found to be 4.5% in 2015 [14], which was already higher than that in our current
study. Therefore, infection prevention and control should be simultaneously implemented
in acute-care and long-term care facilities, including RCHEs. In addition, a significantly
higher proportion of patients with gastrointestinal colonization of CRAB had indwelling
devices. The use of indwelling devices also correlates with gastrointestinal co-colonization
of CRAB and MRSA, as shown in our study. Nursing care practice relating to indwelling
devices should be revisited. Unrecognized CRAB transmission may have occurred in the
hospitals because history of hospitalization in the past 6 months was also a significant risk
factor for gastrointestinal colonization of CRAB.

The clinical impact of patients with gastrointestinal colonization of CRAB should
be addressed. Similar to the patients with gastrointestinal colonization of MRSA, where
symptomatic MRSA infections occurred in 14% of patients in a median of 112 days [19],
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symptomatic CRAB infections also developed in 13% of patients in a median of 61 days in
this study. Decolonization of CRAB, as an important resistant Gram-negative organism,
has received attention [46]. Gut microbiota modulation may play a role in gastrointestinal
decolonization of MDROs, including CRAB, in the future [47].

Whole-genome sequencing was performed for the blood and fecal isolates of CRAB,
which were resistant to all antimicrobial agents, collected from patients during the same
episode of hospitalization. The clonality between the blood and fecal isolates was es-
tablished in individual patients, which was similar to the finding of the whole-genome
sequencing for the blood and fecal isolates of MRSA collected from patients during the
same episode of hospitalization [19]. As shown in the whole-genome sequencing, ST-195
MLST was the predominant type, which was in contrast to our previously circulating
strain of A. baumannii [48], suggesting that whole-genome sequencing should be regu-
larly performed to update the molecular epidemiology of MDROs. In fact, whole-genome
sequencing is increasingly used for molecular epidemiological analysis and outbreak inves-
tigations [24,49–51].

There were several limitations in this study. Firstly, we did not perform a full set of
CRAB screenings by collecting specimens from multiple body sites. The yield of cultures
from different body sites may not be comparable. The burden of asymptomatic colonization
of CRAB was also underestimated. However, the comparison of cultures from different
body sites was analyzed previously [12–14]. More importantly, we aimed to focus on
the epidemiology of patients with gastrointestinal colonization of CRAB. Secondly, we
did not demonstrate the change of incidence of gastrointestinal colonization of CRAB
with respect to infection control measures, since our enhancement of infection control
intervention using directly observed hand hygiene before meal and medication rounds
for conscious, hospitalized patients was implemented before the commencement of this
active surveillance culture program [23]. We also confined the study period to before the
onset of the COVID-19 pandemic, where additional infection prevention and control was
implemented which may have introduced confounding factors to our analysis [52–57].

5. Conclusions

Gastrointestinal colonization of CRAB is not uncommonly recognized upon admission,
and its incidence is higher than community-onset symptomatic CRAB infections. Future
studies are warranted to investigate the transmission dynamics, degree of environmental
contamination, and potential regimen for gastrointestinal decolonization to minimize the
risk of outbreaks in healthcare settings.
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