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The transcription factor GATA1 regulates the expression of essential erythroid and 
megakaryocytic differentiation genes through binding to the DNA consensus sequence 
WGATAR. The GATA1 protein has four functional domains, including two centrally 
located zinc-finger domains and two transactivation domains at the N- and C-termini. 
These functional domains play characteristic roles in the elaborate regulation of diversi-
fied GATA1 target genes, each of which exhibits a unique expression profile. Three types 
of GATA1-related hematological malignancies have been reported. One is a structural 
mutation in the GATA1 gene, resulting in the production of a short form of GATA1 that 
lacks the N-terminal transactivation domain and is found in Down syndrome-related 
acute megakaryocytic leukemia. The other two are cis-acting regulatory mutations 
affecting expression of the Gata1 gene, which have been shown to cause acute eryth-
roblastic leukemia and myelofibrosis in mice. Therefore, imbalanced gene regulation 
caused by qualitative and quantitative changes in GATA1 is thought to be involved in 
specific hematological disease pathogenesis. In the present review, we discuss recent 
advances in understanding the mechanisms of differential transcriptional regulation by 
GATA1 during erythroid differentiation, with special reference to the binding kinetics of 
GATA1 at conformation-specific binding sites.

Keywords: cis-acting elements, GATA1 transcription factor, DnA-binding domain, protein–protein interactions, 
erythropoiesis

inTRODUCTiOn

GATA1 is an essential transcription factor (TF) in erythroid and megakaryocyte differentiation that 
regulates a considerable number of target genes involved in the proliferation, differentiation, and 
survival of hematopoietic progenitors. GATA1 is a member of GATA factor family, which recognizes 
the GATA-binding (T/A)GATA(A/G) motif (1). Six members are found in vertebrates and are divided 
into two subfamilies: GATA1/2/3 belong to the hematopoietic subfamily (2), while GATA4/5/6 are 
referred to as the endodermal GATA factors (3). GATA1 is expressed in lineage-committed progeni-
tors preprogrammed toward erythrocytes, megakaryocytes, eosinophils, and mast cells (4), whereas 
GATA2 is abundantly expressed in hematopoietic stem cells, early multipotent progenitors, and 
monocyte-lineage-committed cells (5, 6). GATA1 and GATA2 display partially overlapping expres-
sion patterns during erythroid and megakaryocytic differentiation (7, 8).
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FiGURe 1 | Schematic diagram of GATA1 functional modifications 
mediated by sequences adjacent to the GATA-binding site.  
A transcription factor (TF) recruited to the region adjacent to the GATA-
binding motifs modifies the DNA binding, kinetics, and stoichiometry of 
GATA1. Consequently, the GATA1-centered transcriptional complex formation 
on the cis-acting elements is altered, which alters the transcriptional activity 
of GATA1.
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Expression of the Gata1 gene in hematopoietic stem cells and 
early progenitor cells is repressed by an epigenetic mechanism 
that precludes access of GATA2 (9). Along with differentiation, 
GATA2 primes Gata1 gene expression and results in Gata1 
gene self-activation and Gata2 gene repression by GATA1. 
Consequently, GATA1 and GATA2 expression levels show 
dynamic features, referred to as “GATA-factor switching,” during 
erythroid differentiation (10). GATA1 and GATA2 partially share 
binding sites at target genes, acting both redundantly and com-
petitively to regulate gene expression (11). Therefore, the balance 
of GATA1 and GATA2 expression contributes to fine-tuning the 
transcriptional regulation of target genes.

GATA1 has four functional domains, consisting of two trans-
activation domains that reside in the amino (N)- and carboxyl 
(C)-termini and two zinc-finger domains that are referred to 
as N- and C-terminal zinc fingers in the middle of the protein. 
The former two function redundantly and cooperatively to tran-
scriptionally regulate individual target genes (12), while the latter 
two are highly conserved in all GATA factors as DNA-binding 
and interaction domains for regulatory proteins and other TFs. 
The C-finger domain (CF) is particularly indispensable for 
DNA binding by GATA1, while the N-finger domain (NF) is 
insufficient for DNA binding alone but stabilizes DNA binding 
by the CF (13, 14). The NF is especially important for Friend of 
GATA1 (FOG1) interaction (15) and GATA1 homodimerization 
(16–19). Multiple molecules have been identified to interact with 
the CF, such as LIM domain only 2 (LMO2) (20) and MED1, a 
component of the mediator complex (21). Thus, a dual zinc-finger 
structure appears to modulate DNA-binding and protein–protein 
interactions to form the characteristic GATA1 complex and leads 
to the diverse target gene expression regulation.

Several hematopoietic disorders are linked to GATA1 
dysfunction. Germ-line and somatic GATA1 gene mutations 
that produce a short form of GATA that lacks the N-terminal 
transactivation domain are causal in Diamond–Blackfan anemia 
(22) and preleukemic disease in Down syndrome patients (23), 
respectively. Substitution mutations in the NF are associated with 
X-linked hematopoietic diseases and are accompanied by throm-
bocytopenia, porphyria, and dyserythropoietic anemia (24). 
Cell-based complementation approaches have determined how 
the mutations alter the functions of GATA1 (25). Furthermore, 
genetically manipulated mouse models that phenocopy human 
diseases have been established and provide insight into the patho-
genesis caused by GATA1 dysfunction (26–29). Furthermore, 
quantitative reduction of GATA1 has been described as causal in 
acute erythroblastic leukemia and myelofibrosis in mice (30–32).

GATA-binding motifs are found scattered in a variety of 
genes that are distributed throughout the genome. However, it 
is largely unknown how GATA1 properly organizes diversified 
gene expression to generate distinct expression profiles during 
erythropoiesis. Recent comprehensive analyses of GATA1 occu-
pancy have shown that diversities in the neighboring sequence of 
consensus GATA-binding motifs can modify the transcriptional 
output. Multiple motifs of transcription regulation may act in 
a synergistic manner when they align in order with the GATA-
binding motif in a cis-acting element. In this article, we describe 
diverse DNA binding and transcriptional regulation mediated by 

GATA1 during erythropoiesis, focusing on the cis-acting element 
configuration.

COMPOSiTe eLeMenTS wiTH An e-BOX 
AnD A GATA-BinDinG MOTiF

A number of molecules reportedly interact with GATA1 and 
modulate its function. TFs recruited with GATA1 diversify the 
transcriptional output based on how the molecules complex 
with GATA1. Accretion of TFs to the neighboring regions of the 
GATA-binding motif appears to modify the DNA binding, kinet-
ics, and stoichiometry of GATA1, and subsequently modifies the 
formation of GATA1-centered transcriptional complexes on the 
cis-acting elements (Figure 1).

Transcription factors that interact with GATA1 have specific 
motifs that are enriched in repetitive regions of the genome. 
Chromatin immunoprecipitation (ChIP)-sequencing analyses 
identified GATA1 (20, 33–35) and GATA2 (36) interactions and 
co-localization with SCL on the E-box–GATA combined motif, 
thus forming a large protein complex with E2A, LMO2, and LIM 
domain-binding 1. SCL is a member of the basic helix-loop-helix 
family of TFs, which recognize DNA-binding sites containing 
the E-box motif (CANNTG) as a heterodimer with E2A (37). 
The E-box sequence is enriched 7–12  bp upstream of GATA 
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motifs in erythroid-specific genes. The DNA-binding affinities 
of GATA1 and SCL to the combined E-box–GATA motif are 
increased by co-localization with each other, thereby modifying 
the transcriptional activity of GATA1 (37–39). SCL occupancy 
is often found at GATA-occupied loci lacking an E-box (40). By 
contrast, SCL occupancy is abrogated by the lack of GATA1 on 
the E-box–GATA motif in certain genes, such as genes encoding 
erythroid-specific 5-aminolevulinate synthase, uroporphyrino-
gen III synthase, and pyruvate kinase, in which single-nucleotide 
mutations of the GATA motif have been found in patients with 
erythroid disorders (41). Thus, the combination of GATA-binding 
and E-box motifs contributes to specific transcriptional regula-
tion by varying the DNA-binding characteristics and structure of 
the complex containing GATA1 and SCL, and possibly by varying 
other components of the complex (Figure 1).

The large complex binding to the E-box–GATA motif usually 
acts as a transcription activator (40). Interestingly, in the genes 
activated by GATA2 and repressed by GATA1, SCL is co-localized 
with GATA2 when the gene is activated, while the SCL occupancy 
is decreased when GATA1 takes the place of GATA2 (40). One 
plausible explanation for the difference in SCL occupancy is 
that differences in undesignated sequences in the composite  
E-box–GATA motif may influence complex formation, depend-
ing on whether GATA1 or GATA2 is present. Binding analyses 
utilizing naked DNA have indicated that SCL preferentially 
binds to CAGGTG (33) or CAGATG (42) motifs in essential 
hematopoiesis genes, whereas CATCTG sequences are enriched 
in GATA2-occupied loci in lineage-negative hematopoietic 
progenitors (43). Furthermore, the spacer lengths and sequences 
between E-box and GATA-binding motif vary at individual loci. 
We envision delicate differences in sequence alignment among 
E-box–GATA composite elements conferring changes in complex 
structure, DNA-binding affinity, and protein–protein interac-
tions, consequently diversifying target gene expression profiles.

CACC-BOX ADJACenT TO GATA-
BinDinG MOTiF

Genome-wide ChIP-sequencing analyses have revealed that the 
NCNCNCCCN (extended CACC) motif is frequently found 
in the region of GATA1 ChIP peaks in erythroid-committed 
cells (44, 45). The CACC motif is a known consensus sequence 
recognized by Krüppel-like transcription factors (KLFs). Among 
the 17 mammalian KLFs, KLF1 (EKLF), KLF2, and KLF13 are 
involved in erythrocyte maturation and differentiation (46–48). 
In particular, the quantitative ratio of GATA1 and KLF1 in the 
nucleus is tuned by their acetylation states, which are mediated by 
HDACs, to control erythroid-specific gene expression (49–51). 
Many KLF1 variants have been found in recent years as the causes 
of different types of red cell disorders (52, 53).

Krüppel-like transcription factors have three conserved 
C2H2-type zinc fingers at the C-terminus that are involved in 
DNA binding and directly interact with GATA1 (54). When the 
GATA and CACC motifs are located close together in the regula-
tory region, GATA1 and KLF1 improve the DNA-binding affinity 
of each other, synergistically increasing gene expression in hemat-
opoietic and non-hematopoietic cells (54, 55). Thus, a composite 

element composed of GATA- and CACC-binding motifs works 
as a cis-regulatory region distinct from each individual motif ’s 
function (Figure 1). ChIP-sequencing peaks of GATA1 and KLF1 
overlap in several gene loci. However, the number of co-occupied 
loci is lower than expected based on the significant cooperative 
function of GATA1 and KLF1 in the erythroid differentiation (56, 
57). One plausible explanation is that other KLFs share CACC 
motif binding with KLF1 when adjacent to GATA motif. In addi-
tion, TFs belonging to specificity protein (SP) family bind to the 
CACC motif and have a triple-C2H2-type DNA-binding domain 
highly conserved with KLFs. SP1, which has relatively ubiqui-
tous expression pattern and plays key roles in critical biological 
process through regulating metabolic genes (58), is reported to 
interact and cooperatively work with GATA1 to control gene 
expression (54, 59). Furthermore, ZBP-89, a Krüppel-type zinc 
finger TF, has a potential to bind CACC motifs and complex with 
GATA1 (60). KLF2 regulates embryonic erythropoiesis through 
redundantly and cooperatively working with KLF1 (47, 61). 
Therefore, other TFs that share CACC motif binding with KLF1 
may influence KLF1 function and consequently influence GATA1 
function (Figure 1). Questions regarding how the undesignated 
nucleotides in the consensus CACC motif contribute to the 
preferential binding of KLFs and SPs remain to be answered, and 
GATA1 function may be modified by alternate factors recruited 
to the CACC motif.

BinDinG MOTiFS FOR COLLABORATive 
TFs

In addition to the E-box and CACC motifs, a variety of cis- 
regulatory sequences found adjacent to the GATA-binding 
motif have been reported to mediate the transcriptional output 
of GATA1 during erythroid differentiation. Consensus NFE2-
binding (C/T)GCTGA(C/G)TCA(C/T) motifs are found close 
to the GATA-binding motif in genes encoding β-globin and 
erythroid-specific membrane protein (62, 63). CP2 was originally 
identified as a regulator for human α-globin gene expression (64) 
and regulates erythroid differentiation through the binding at the 
CNRG-N5-6-CNR(G/C) motif. A CP2-binding motif adjacent to 
the GATA motif is required in the regulation of erythroid-specific 
genes, such as mouse Gata1, mouse Klf1, mouse Nfe2, mouse 
Epor, human/mouse UROS, the human/mouse globin gene 
clusters, and human CDC6, in vivo (65–72).

We assume that the sequence adjacent to the GATA motif may 
alter the DNA-binding mode of GATA1, the formation of tran-
scription complexes, and organization of chromatin structures if 
a TF recognizes and binds the sequence. Given these associations, 
we propose that sequence alignments of regions neighboring the 
GATA-binding motifs influence the transcriptional activity of 
GATA1 (Figure 1).

COMPOSiTe eLeMenTS wiTH DUAL 
GATA1-BinDinG MOTiFS

We noticed that one or more GATA-binding motifs are found in 
scattered regions throughout the genes involved in erythropoiesis. 
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FiGURe 2 | GATA1-binding kinetics at conformation-specific binding 
sites. (A) Schematic diagrams of the GATA1-binding modes at the indicated 
configurations of GATA-binding motifs. (B) Differences in transactivation 
dynamics of GATA1 between single- and Pal-GATA motifs. NF, N-finger 
domain; CF, C-finger domain.
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Given that the sequence adjacent to the GATA-binding motif is 
varied in each region, individual GATA1 is predicted to access  
cis-regulatory regions differentially to contribute to gene expres-
sion and to allow sophisticated gene regulation. cis-Targeting 
experiments have found that each GATA-binding motif indepen-
dently and redundantly plays a role in the expression of certain 
genes in mice (65, 66, 73, 74). However, the regulation of the 
spatiotemporal control of gene expression is poorly understood.

Focusing on the GATA-binding motif, one significant obser-
vation is that two or more GATA-binding motifs are sometimes 
oriented closely in line, generating composite GATA elements in 
which GATA-binding motifs are aligned side-by-side in either 
tandem or palindromic orientation. Considering that GATA1 
forms a homodimer through NF and CF interactions (19), com-
posite GATA elements composed of two GATA-binding motifs 
may have a more significant function than two single GATA-
binding motifs. Furthermore, the DNA-binding structure of 
GATA3 revealed that the NF binds the opposite face of DNA that 
is bound by the CF and interacts with the C-terminal basic-tail 
of the CF that is inserted into the minor groove (75). Therefore, 
when two GATA-binding motifs are aligned side-by-side, the 
direction of the two GATA-binding motifs seems to be important.

PALinDROMiC DUAL GATA-BinDinG 
MOTiFS

When two GATA-binding motifs are aligned in a palindromic 
orientation, two types of composite GATA elements are gener-
ated: either a head-to-head (YTATCW–WGATAR) or tail-to-tail 
(WGATAR–YTATCW) orientation. The difference in orientation 
may influence GATA1 binding modes. For simplicity’s sake, we 
refer to the GATA-binding motifs aligned in head-to-head and 
tail-to-tail palindromic orientations as Pal-GATA or rPal-GATA 
motifs, respectively.

GATA1 binds to DNA with the CF while the NF scarcely 
functions during DNA binding (76). Indeed, the association and 
dissociation kinetics of GATA1 on a single-GATA motif on naked 
DNA, as measured in DNA-binding surface plasmon resonance 
(SPR) studies, do not change regardless of the NF function (77). 
By contrast, an electrophoretic mobility shift assay showed that 
the NF can associate with DNA on GAT(N) sequences, although 
the binding affinity is too weak to support GATA1–DNA binding 
independently (14). Therefore, in cases where a GAT(N) sequence 
is aligned adjacent to a GATA-binding motif that is bound by the 
CF, the NF may contribute to DNA binding. Particularly, the NF 
increases GATA–DNA-binding affinity in the Pal-GATA motif on 
both naked and chromatin DNA (14, 78).

There are three important observations about the N-finger 
function regarding its DNA binding. First, the DNA-binding 
kinetics at Pal-GATA motifs with R216 substitution mutations 
are similar to those of GATA1 lacking an entire NF, indicating 
the R216 residue is essential for NF-DNA association. The R216 
residue is located on the opposite face to the FOG1 association 
face (20). Therefore, NF-DNA binding appears to be independent 
of FOG1 association. To date, multiple substitution mutations in 
the NF have been found in inherited human diseases (24, 78). 
The disease pathogenesis caused by the R216 mutation likely 

differs from that due to impaired FOG1 association, although the 
disease phenotypes partially overlap (79–82).

Second, the NF prefers to bind to a specific configuration of 
two GATA-binding motifs. SPR analysis showed that GATA1 
lacking an NF binds to rPal-GATA motif similarly to wild-type 
GATA1 (77). GATA1 with a substitution mutation at R216 
binds to tandem-oriented GATA motifs (Tandem-GATA motif) 
similarly to wild-type GATA1 (77), suggesting that the NF-DNA 
association is not critical for binding to the rPal-GATA motif and 
Tandem-GATA motif. By contrast, the SPR parameters of GATA1 
binding at Pal-GATA motifs do not fit the 1:1 binding model found 
at single-GATA motifs (77). GATA1 binds to single-GATA motifs 
monovalently through the CF, while Pal-GATA motif binding is 
bivalent and uses both the CF and NF (Figure 2A). Thus, GATA1 
differentially binds single-GATA and Pal-GATA motifs.

Lastly and importantly, if the NF loses its DNA-binding capac-
ity, the disabled GATA1 binds to Pal-GATA motifs monovalently, 
as it would at single-GATA motifs. Regardless of the NF function 
in DNA binding, GATA1 is able to bind to any configuration of 
GATA-binding motifs, although the GATA1 occupancy levels 
at Pal-GATA motifs depend on the binding capacity of the NF 
(77). Therefore, monovalent binding of GATA1 to the Pal-GATA 
motif is proposed to retain some activity, though not comparable 
to the full activity from bivalent GATA1 binding. Importantly, 
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time-course reporter analyses in which GATA1 was introduced 
into non-hematopoietic cells have revealed that bivalent binding 
of GATA1 at Pal-GATA motifs is required for transactivation 
during early phases of GATA1 induction or at low GATA1 expres-
sion levels (Figure 2B) (77). GATA1 shows a dynamic expression 
profile during erythroid differentiation (10). The bivalent binding 
of GATA1 to Pal-GATA motifs may induce allosteric binding 
effects and enable GATA1 to precipitously induce target genes 
during the early erythroid differentiation phases (Figure 1).

DOUBLe GATA MOTiFS ORienTeD in 
TAnDeM

Similar to GATA1 binding at Pal-GATA motifs, SPR parameters 
of GATA1 binding at Tandem-GATA motifs does not fit the 1:1 
binding model, and the SPR values are not altered by substitution 
mutations at R216 (77). Furthermore, if GATA1 lacks homodi-
merization capacities, then the disabled GATA1 binds to Tandem-
GATA motifs similarly to GATA1 binding at single-GATA motifs 
(77). This finding generates an image of two GATA1 molecules 
in a dimer formation bivalently binding to two tandem-oriented 
GATA-binding motifs through the individual CFs (Figure 2A). 
Considering that GATA1 recognizes and binds to single-GATA 
motifs through the CF, there might be cases in which two GATA1 
molecule monomers bind to two GATA-binding motifs aligned 
in any configuration if GATA1 is abundant, as described in previ-
ous studies of transgenic zebrafish (18). The secondary GATA1 
molecule more efficiently binds to Tandem-GATA motifs than 
other configurations of dual GATA-binding motifs by forming a 
GATA1 homodimer.

In mice and zebrafish, GATA1 dimerization is important 
for erythropoiesis because it regulates specific genes, including 
the Gata1 gene (18, 19). Similar to the Pal-GATA motifs, the 
GATA1 monomer binds to Tandem-GATA motifs monovalently 
if GATA1 fails to form a homodimer (77). Taking into consid-
eration the above-mentioned issues, bivalent binding of GATA1 
homodimers to Tandem-GATA motifs might have a specific 
function that differs from the monovalent GATA1 monomers 
binding at Tandem-GATA motifs (Figure 1).

COnCLUSiOn

Accession to DNA via the consensus GATA-binding motif is a 
fundamental issue in the role of GATA1 as a TF. However, simple 
GATA1–DNA interactions only explain certain aspects of tran-
scriptional regulation and fail to address comprehensive GATA1 
regulation of various target genes, each of which has its own 
expression profile. Recent findings have made great advances 
in our knowledge of how the molecules recruited to regions 
adjacent to GATA-binding motifs modify the binding kinetics, 
reaction stoichiometry, and complex formations centered with 
GATA1, which may allosterically regulate GATA1 transcriptional 
activity (Figure 1). Intriguingly, a feature of GATA1 being a dual 
zinc-finger structure allows bivalent GATA1 binding to two 
GATA-binding motifs aligned side-by-side in both palindromic 
and tandem orientations. This variety may allow further func-
tional diversity in GATA1 binding above monovalent binding 
for simple GATA-binding motifs. The molecular mechanisms 
of GATA1 transcriptional activity have been dissected in recent 
decades, and the contributions of GATA1 mutations to disease 
pathogenesis have been vigorously investigated. Nonetheless, 
how the configuration of cis-acting elements in the sequence sur-
rounding GATA-binding motifs can generate diversified GATA1 
transcriptional activity remains to be explored.
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