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Background: Joint modeling of longitudinal and time-to-event data is often
advantageous over separate longitudinal or time-to-event analyses as it can
account for study dropout, error in longitudinally measured covariates, and
correlation between longitudinal and time-to-event outcomes. The current lit-
erature on joint modeling focuses mainly on the analysis of single studies with
a lack of methods available for the meta-analysis of joint data from multiple
studies.
Methods: We investigate a variety of one-stage methods for the meta-analysis
of joint longitudinal and time-to-event outcome data. These methods are
applied to the INDANA dataset to investigate longitudinally measured systolic
blood pressure, with each of time to death, time to myocardial infarction, and
time to stroke. Results are compared to separate longitudinal or time-to-event
meta-analyses. A simulation study is conducted to contrast separate versus joint
analyses over a range of scenarios.
Results: The performance of the examined one-stage joint meta-analytic mod-
els varied. Models that accounted for between study heterogeneity performed
better than models that ignored it. Of the examined methods to account for
between study heterogeneity, under the examined association structure, fixed
effect approaches appeared preferable, whereas methods involving a baseline
hazard stratified by study were least time intensive.
Conclusions: One-stage joint meta-analytic models that accounted for between
study heterogeneity using a mix of fixed effects or a stratified baseline haz-
ard were reliable; however, models examined that included study level random
effects in the association structure were less reliable.
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1 INTRODUCTION

Univariate shared random effect joint models for longitudinal and time-to-event data simultaneously model a single
longitudinal and a single time-to-event outcome.1 The model consists of a longitudinal sub-model and a time-to-event
sub-model linked through an association structure, which quantifies the relationship between the two outcomes. Many
options are presented in the literature for each sub-model (such as linear mixed effects models or splines for the longitu-
dinal sub-model, and proportional hazards or accelerated failure time models for the time-to-event sub-model). A range
of association structures exist,2 including sharing random effects between the sub-models,3 sharing the current longi-
tudinal trajectory (both the fixed and random effects), or sharing the first derivative of the longitudinal trajectory.4 The
research presented here focuses on joint models that concern a single continuous longitudinal and a single possibly cen-
sored time-to-event outcome, linked using an association structure consisting of shared zero mean random effects with a
common association parameter for random effects acting at the same level.3

Joint models for longitudinal and time-to-event data are often employed to account for study dropout and measure-
ment error in time varying covariates, while producing less biased estimates of study parameters.3,5 An example of their
application compared to separate longitudinal models is presented by Powney et al,6 who discuss the MAGNETIC trial,7

which reported a longitudinal case with missing data where a complete case analysis found no significant difference
between treatment groups, whereas the use of joint models to account for missing data resulted in a statistically signif-
icant difference. A recent review of current reporting of single study joint analyses by Sudell et al8 identified that the
number of published joint analyses has been increasing over recent years, suggesting a growing resource of joint datasets.
Examples of single study joint models applied in the literature include those of Jacoby et al,9 Kolamunnage-Dona et al,10

Lloyd-Williams et al,11 and Kovanda et al.12

Glass13 defined meta-analysis (MA) as the statistical analysis or pooling of results from several studies. Meta-analyses
can result in analyses with increased precision and power, while permitting new research questions to be answered. An
individual participant or patient data meta-analysis (IPD-MA) utilizes the original data collected in each study, whereas
an aggregate data meta-analysis (AD-MA) utilizes study level results, including those available in published reports.
IPD-MA can be one-stage or two-stage. A two-stage meta-analysis fits models to the data from each study included in
the meta-analysis and, then, uses standard MA techniques14,15 to pool the study specific parameter estimates. A one-stage
meta-analysis stores the data from all studies included in the meta-analysis in a single meta-dataset, to which a single
model is fitted (which should account for the clustering of data within studies).

The literature for meta-analyses is extensive,14,15 but research into the meta-analysis of joint longitudinal and
time-to-event data is limited to a small number of references.8,16 However, it is reasonable that if joint modeling is pre-
ferred over separate longitudinal or time-to-event models in certain single study cases (eg, to account for informative
dropout in longitudinal study designs17 or when a time-to-event outcome is influenced by longitudinal outcomes18), the
use of joint models rather than separate methods may also be preferred in a meta-analytic setting.

Currently, methodological research has mainly focused on joint models applied to single study datasets (for overviews,
see the works of Tsiatis and Davidian5 and Yu et al19), although a limited number of references exist that deal with
multi-center joint data,20 and multi-level joint models.21 However, these references did not specifically investigate the
meta-analytic case. Multi-center and meta-analytic datasets are similar, in that they have a structure where individu-
als are nested within studies or centers. However, the number of higher level units differs between cases; meta-analyses
often contain fewer studies, each containing a larger number of individuals, whereas multi-center datasets often contain
a larger number of centers, each containing a comparatively smaller number of individuals. As such, the spread of data
across the different levels is different for a meta-analytic dataset compared with a multi-center dataset, leading to poten-
tially different approaches being required. This paper extends this methodology by investigating multi-level joint models
specifically for use in meta-analytic datasets.

Recently, Sudell et al16 investigated methods for the two-stage MA of joint data. In this article, we investigate one-stage
models to analyze individual participant multi-study joint longitudinal and time-to-event data (termed joint IPD). The
results of the one-stage meta-analytic joint models are compared with one-stage separate longitudinal or time-to-event
meta-analytic models. The article begins with a discussion of the methods employed in the investigation. The presented
methods are then applied to an example dataset. A simulation study is then conducted to test the methods under a range
of scenarios. The article concludes with a discussion of joint modeling methodology in one-stage MA.

2 METHODS FOR ONE-STAGE JOINT IPD-MA

As mentioned, this research assumes the availability of joint longitudinal and time-to-event IPD. This IPD is consid-
ered to have three nested levels, namely, longitudinal measurements at level 1, nested within individuals at level 2,
nested within studies at level 3. The joint models considered in this research assume a linear mixed effects model for the
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longitudinal outcome, and a Cox Proportional Hazards (PH) model with an unspecified baseline hazard for the
time-to-event outcome. The two sub-models are linked through shared zero mean random effects, with common asso-
ciation parameter (represented using 𝜶 terms) for the random effects acting at the same level. Unlike joint models for
single study data, the proposed models must account for the clustering of individuals within studies and model potential
heterogeneity between these studies.

The one-stage joint model follows the structure

Y𝑘𝑖𝑗 = X𝟏𝜷𝟏 + Z(𝟐)
ki b(𝟐)

ki + Z(𝟑)
k b(𝟑)

k + 𝜀𝑘𝑖𝑗 (1)
𝜆𝑘𝑖(t) = 𝜆0(t) exp

(
X𝟐𝜷𝟐 + W2𝑘𝑖(t)

)
W2𝑘𝑖(t) = 𝛼(2)

(
Z(2)
𝑘𝑖

b(2)
𝑘𝑖

)
+ 𝛼(3)

(
Z(3)

k b(3)
k

)
.

Studies are identified by k = 1…K, where K is the total number of studies in the meta-dataset. Individuals within each
study are represented by i = 1…nk, where nk denotes the total number of individuals in study k. The longitudinal mea-
surement points are identified using j = 1…mki, where mki represents the total number of longitudinal measurements
recorded for individual i in study k.

The longitudinal measurement recorded for individual i in study k at time-point j is represented by Ykij, with the longi-
tudinal error term 𝜀kij. Fixed effects are represented using 𝜷 terms, with the first element of the subscript identifying the
sub-model they belong to (such that 𝜷1 = 𝛽11, 𝛽12, 𝛽13, … are the longitudinal sub-model fixed effects and 𝜷2 = 𝛽21, 𝛽22,
𝛽23, … are the time-to-event sub-model fixed effects). Random effects are represented by b, with individual level (level 2)
random effects represented by b(𝟐)

ki and study level (level 3) random effects by b(𝟑)
k . Design matrices are represented by X for

the fixed effects and Z for the random effects. X1 represents the longitudinal sub-model fixed effects design matrix, and X2
represents the time-to-event sub-model fixed effects design matrix. Additionally, Z(𝟐)

ki represents the design matrix for the
individual level (level 2) random effects, and Z(𝟑)

k represents the design matrix for the study level (level 3) random effects.
The individual level random effects follow distribution b(2)

𝑘𝑖
∼ N(𝟎,D), whereas the study level random effects follow

distribution b(3)
k ∼ N (𝟎,A), and the error terms each follow distribution 𝜀𝑘𝑖𝑗 ∼ N(0, 𝜎2

e ). The individual level and the study
level random effects are considered independent of each other and of the error terms. The random effects are intended to
represent how covariate effects differ for units at the respective levels (individuals or studies) from those estimated for the
overall population by the fixed effects, for example, how the individuals contained within a particular study differ from
those in the overall population. As such, the Z matrices are assumed to be subsets of the X1 matrix.

In the time-to-event sub-model, 𝜆0(t) represents the unspecified baseline hazard. The sub-models are linked through
shared zero mean random effects, with common association parameters 𝛼(2) for the individual level random effects and
𝛼(3) for the study level random effects. Note that if a particular component of the joint model is not required (eg, the study
level random effects), terms involving this component (eg, Z(𝟑)

k b(𝟑)
k ) do not appear in the model.

A range of model groups are investigated, which represent a variety of methods to account for between study hetero-
geneity. The specifications of the model groups are stated in Table 1. These models involve only longitudinal time (tkij), a
binary treatment assignment variable (treatki), and study membership (studyki) as covariates. However, the models exam-
ined can be easily extended if other covariates are of interest to the MA. Note that instances of longitudinal time tkij in
the association structure term W2ki(t) (which is present in the time-to-event sub-model) are replaced by the individual's
survival time TSki.

Model group 0 in Table 1 is a naïve model which does not account for between study heterogeneity in any way.
This model is presented here to highlight the consequence of ignoring the clustered nature of multi-study joint data.
Note that any instances of longitudinal time in the association structure are replaced with the individual's survival time
(denoted TSki, equal to the minimum of their event and censoring times).

Model group 1 accounts for between study heterogeneity using a fixed study membership variable, along with its inter-
action with treatment assignment, in both sub-models. Study membership is expected to be a factor variable, and so a
separate 𝛽13, 𝛽14, 𝛽22, and 𝛽23 parameter will be produced for each study k in the meta-analysis (apart from the reference or
baseline study), denoted 𝛽13k, 𝛽14k, 𝛽22k, and 𝛽23k. The study considered to be the reference study should be the represen-
tative of the population of interest. In model group 1, inclusion of the fixed study membership variable allows calculation
of study specific fixed longitudinal trajectory intercepts (with 𝛽10 representing the fixed intercept for the reference study,
and 𝛽10 + 𝛽14k for non-reference study k). Likewise, study specific longitudinal treatment effects can be calculated (with
𝛽13 representing the fixed longitudinal treatment effect for the reference study, and 𝛽13 + 𝛽15k for non-reference study k).
In the time-to-event sub-model, the 𝛽22k parameter represents the difference in risk of an event between study k, and the
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TABLE 1 Specification of one-stage model groups examined

Model Group Model Component Equation

0 Longitudinal sub-model Ykij = 𝛽10 + 𝛽11tkij + 𝛽12treatki +𝑏(2)0𝑘𝑖 + 𝑏
(2)
1𝑘𝑖𝑡𝑘𝑖𝑗 + ε𝑘𝑖𝑗

Time-to-event sub-model 𝜆ki(t) = 𝜆0(t) exp (𝛽21treatki + W2ki(t))
Association structure 𝑊2𝑘𝑖(𝑡) = 𝛼(2)(𝑏(2)0𝑘𝑖 + 𝑏

(2)
1𝑘𝑖𝑇𝑆𝑘𝑖)

1 Longitudinal sub-model Ykij = 𝛽10 + 𝛽11tkij + 𝛽12treatki + 𝛽13studyki + 𝛽14treatki ∗ studyki +𝑏(2)0𝑘𝑖 + 𝑏
(2)
1𝑘𝑖𝑡𝑘𝑖𝑗 + ε𝑘𝑖𝑗

Time-to-event sub-model 𝜆ki(t) = 𝜆0(t) exp (𝛽21treatki + 𝛽22studyki + 𝛽23treatki ∗ studyki + W2ki(t))
Association structure 𝑊2𝑘𝑖(𝑡) = 𝛼(2)(𝑏(2)0𝑘𝑖 + 𝑏

(2)
1𝑘𝑖𝑇𝑆𝑘𝑖)

2 Longitudinal sub-model Ykij = 𝛽10 + 𝛽11tkij + 𝛽12treatki + 𝛽13studyki +𝑏(2)0𝑘𝑖 + 𝑏
(2)
1𝑘𝑖𝑡𝑘𝑖𝑗 +𝑏

(3)
1𝑘 trea𝑡𝑘𝑖 + ε𝑘𝑖𝑗

Time-to-event sub-model 𝜆ki(t) = 𝜆0(t) exp (𝛽21treatki + 𝛽22studyki + W2ki(t))
Association structure W2𝑘𝑖(t) = 𝛼(2)(b(2)

0𝑘𝑖 + b(2)
1𝑘𝑖T𝑆𝑘𝑖) + 𝛼(3)(b(3)

1k treat𝑘𝑖)

3 Longitudinal sub-model Ykij = 𝛽10 + 𝛽11tkij + 𝛽12treatki +𝑏(2)0𝑘𝑖 + 𝑏
(2)
1𝑘𝑖𝑡𝑘𝑖𝑗 +𝑏

(3)
0𝑘 + 𝑏

(3)
1𝑘 trea𝑡𝑘𝑖 + ε𝑘𝑖𝑗

Time-to-event sub-model 𝜆ki(t) = 𝜆0(t) exp (𝛽21treatki + W2ki(t))
Association structure W2𝑘𝑖(t) = 𝛼(2)(b(2)

0𝑘𝑖 + b(2)
1𝑘𝑖T𝑆𝑘𝑖) + 𝛼(3)(b(3)

0k + b(3)
1k treat𝑘𝑖)

4 Longitudinal sub-model Ykij = 𝛽10 + 𝛽11tkij + 𝛽12treatki + 𝛽13studyki + 𝛽14treatki ∗ studyki +𝑏(2)0𝑘𝑖 + 𝑏
(2)
1𝑘𝑖𝑡𝑘𝑖𝑗 + ε𝑘𝑖𝑗

Time-to-event sub-model 𝜆ki(t) = 𝜆0k(t) exp (𝛽21treatki + W2ki(t))
Association structure 𝑊2𝑘𝑖(𝑡) = 𝛼(2)(𝑏(2)0𝑘𝑖 + 𝑏

(2)
1𝑘𝑖𝑇𝑆𝑘𝑖)

5 Longitudinal sub-model Ykij = 𝛽10 + 𝛽11tkij + 𝛽12treatki +𝛽13studyki +𝑏(2)0𝑘𝑖 + 𝑏
(2)
1𝑘𝑖𝑡𝑖𝑚𝑒𝑘𝑖𝑗 +𝑏

(3)
1𝑘 trea𝑡𝑘𝑖 + ε𝑘𝑖𝑗

Time-to-event sub-model 𝜆ki(t) = 𝜆0k(t) exp (𝛽21treatki + W2ki(t))
Association structure W2𝑘𝑖(t) = 𝛼(2)(b(2)

0𝑘𝑖 + b(2)
1𝑘𝑖T𝑆𝑘𝑖) + 𝛼(3)(b(3)

1k treat𝑘𝑖)

reference study. The deviation in risk of an event due to treatment group is equal to 𝛽21 for the reference study, and by
𝛽21 + 𝛽23k for non-reference study k.

Model group 2 accounts for between study heterogeneity using a fixed study membership variable in both sub-models,
and a study level zero-mean random treatment effect (b(3)

1k ). Study specific longitudinal trajectory intercepts and log-hazard
ratio risks of an event for each study can be calculated from the fixed effects as for model group 1. The interpretation of
the study specific random treatment effect b(3)

1k is more complex than for separate longitudinal or time-to-event one-stage
MA-models due to its presence in both sub-models. In the longitudinal sub-model, the b(3)

1k term adjusts the overall popu-
lation treatment effect coefficient 𝛽12 to give the observed treatment effect in study k of 𝛽12 +b(3)

1k . Through the association
structure, b(3)

1k is present in the time-to-event sub-model. As such, the population treatment effect coefficient 𝛽21 is altered
to give a study specific estimate of the deviation in the risk of an event due to treatment group (𝛽21 + 𝛼(3)b(3)

1k ).
Model group 3 accounts for between study heterogeneity solely using study level random effects, as it involves a study

level random intercept (b(3)
0k ) and random treatment effect (b(3)

1k ). Again, the interpretation of these random effects is more
complex than for separate one-stage longitudinal or time-to-event MA-models due to their presence in both sub-models
through the association structure. The study level random intercept b(3)

0k causes the longitudinal intercept for study k to
equal 𝛽10+b(3)

0k , but also 𝛼(3)b(3)
0k represents the deviation in the risk of an event in the kth study from the population average

taken across all studies in the meta-analysis. The interpretation of the random treatment effect (b(3)
1k ) is the same as for

model group 2.
Model group 4 has a longitudinal sub-model with the same specification (and so interpretation) as model group 1. How-

ever, the baseline hazard in the time-to-event sub-model is stratified by study (𝜆0k(t)), and the time-to-event sub-model
contains only a fixed treatment assignment term. As such, between study heterogeneity in the time-to-event model is
captured by the study specific baseline hazards.

Model group 5 accounts for between study heterogeneity in a variety of ways. A fixed study membership term is included
in the longitudinal sub-model, a study level random treatment effect (b(3)

1k ) is present in both sub-models through the
association structure, and the baseline hazard of the time-to-event sub-model is stratified by study. Each component of
the model has interpretations as already discussed.

In addition to the one-stage joint MA-models, we also fit separate longitudinal and time-to-event one-stage MA-models
for the comparison with the joint estimates. These separate models have the same specification as the corresponding joint
model sub-models, except for the W2ki(t) term that is removed from the time-to-event one-stage MA-models.
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3 MODEL FITTING

The models described in Section 2 were fitted using the Expectation Maximization (EM) algorithm,22 whose use in sin-
gle study joint modeling analyses has been described by Wulfsohn and Tsiatis1 and Rizopoulos.4 Starting values for the
algorithm were extracted from initial separate longitudinal and time-to-event model fits (of the same specification as
the corresponding sub-models of the joint model, excluding the association structure). In the Expectation or E-step, esti-
mates of functions of random effects were calculated using pseudo-adaptive Gaussian quadrature procedures,23 where
conditional modes of the random effects calculated in the initial separate longitudinal model fit were used to calcu-
late appropriate locations for the abscissa to be used throughout the model fitting process. In the Maximization or
M-step, these estimated functions of the random effects were used to calculate maximum likelihood estimates of model
parameters. The derived maximum likelihood estimators have been made available as Supplemental Material.

4 SOFTWARE

We developed a flexible R24 code to fit one-stage multi-study joint models described in this article, which will be avail-
able as joineRmeta package; the R codes can currently be downloaded at https://github.com/mesudell/joineRmeta/. This
software is an extension of the single study joint modeling package joineR25 to the multi-study case. Example code and
simulated data are available in the supplemental information, demonstrating methods discussed in this article.

5 APPLICATION

5.1 Example data
To investigate the behavior of the proposed methods in a real world scenario, the methods were applied to a subset of the
INDANA dataset.26 This is a multi-study dataset compiled to investigate the effect of patient characteristics on the efficacy
of pharmacological treatment for high blood pressure. The subset analyzed here (henceforward referred to as the INDANA
dataset) contains any study identified by the INDANA collaboration26 that supplied both longitudinal and time-to-event
data and contains 6 studies (EWPHE,27 COOP,28 STOP,29 SHEP,30 MRC1,31 and MRC232). The INDANA dataset concerns
hypertensive patients assigned to one of two treatment groups, that is, any treatment for hypertension versus placebo, no
treatment, or usual care. Longitudinally measured Systolic and Diastolic Blood Pressure were available, referred to as SBP
and DBP. Three time-to-event outcomes were measured, namely, time to death, time to myocardial infarction (MI), and
time to stroke.

The data contained 9 possible longitudinal time-points at baseline, 6 months, 1 year, and annually thereafter to a max-
imum of 7 years. The SHEP study recorded individuals at only 6 measurement times, while STOP and MRC1 presented
7 measurement times, with the remaining studies presenting data at each of the 9 possible measurement times. Only
longitudinal data recorded prior to an individual's survival time contributed to the analyses. Tables of the number of
measurements provided by each study at each time point are available in the supplemental information (supplemental
tables S1-S3).

Analyses of SBP and each time-to-event outcome are presented in Tables 2 to 4. For EWPHE, an intention to treat
analysis was only possible for fatal endpoints, and so the study only contributes to the analysis of SBP and time to death.
As such, the final dataset examined contained a maximum of 6 studies totalling at most 29825 individuals. The exact
number of individuals involved in each analysis is stated in the captions of Tables 2 to 4.

The aim of this investigation was to illustrate the proposed one-stage joint meta-analytic models, rather than to investi-
gate potential treatment modifiers. As such, while the INDANA dataset contained a range of patient covariates that could
influence the outcomes, models in this investigation included only treatment assignment, study membership, and the
longitudinal time covariate.

The models of specification shown in Table 1 were fitted to the data for each combination of outcomes (SBP and each
of time to death, time to MI, and time to stroke, with longitudinal outcome Ykij = SBPkij). However, plots of the longi-
tudinal trajectories for each study paneled by event type (Supplemental Figures S1-S3) indicated a changepoint early in
the trajectories. A range of terms were tested to account for non-linearity due to the changepoint including t2

𝑘𝑖𝑗
, exp(−tkij)

and exp(−a ∗ tkij). Comparison of the log-likelihoods and AIC values of the models determined that inclusion of the term
exp(−3 ∗ tkij) gave the best fit. Consequently, in addition to the terms stated in Table 1, each longitudinal sub-model also

https://github.com/mesudell/joineRmeta/
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contained a exp(−3 ∗ tkij) term (for clarity, full model specifications for real data analyses are available in Supplemental
Table S4).

In the models examined, a statistically significant negative treatment assignment coefficient in the time-to-event model
would indicate that assignment to any treatment for hypertension versus placebo, no treatment, or usual care significantly
reduced the risk of the event in question. Model groups 0, 2, 3, 4, and 5 each produce a single global time-to-event treatment
effect estimate (𝛽21), whereas model group 1 produces study specific treatment effect estimates (calculated by 𝛽21 for the
reference study, and by 𝛽21 + 𝛽23k for non-reference study k).

A statistically significant negative treatment assignment coefficient in the longitudinal sub-model would indicate that
assignment to any treatment for hypertension significantly decreased SBP. Model groups 0, 2, 3, and 5 each produce a
single global longitudinal treatment effect estimate (𝛽12), whereas model groups 1 and 4 produce study specific estimates
(calculated by 𝛽12 for the reference study, and 𝛽12 + 𝛽14k for non-reference study k).

A statistically significant positive study level association parameter (𝛼(3)) indicates that individuals in studies with lon-
gitudinal outcome values above the corresponding overall population mean are at higher risk of experiencing the event at
a given time point. A statistically significant positive individual level association parameter (𝛼(2)) indicates that individ-
uals with longitudinal values above that predicted by the terms in the longitudinal sub-model (apart from the individual
level random effects) are at higher risk of experiencing the event at a given time point. Association parameters were only
estimated for joint analyses.

5.2 Results from the INDANA dataset meta-analyses
Tables 2–4 present the results of application of model groups 0–5 (as stated in Supplemental Table S4) to the INDANA
dataset. Graphical representations of these results are shown in Supplemental Figures S4–S12.

Across all pairwise combinations of outcomes investigated, the estimated treatment effect from the separate longitudi-
nal one-stage IPD-MA and the joint one-stage IPD-MA longitudinal sub-model was significant and negative, indicating
that assignment to treatment for hypertension significantly reduced SBP compared to placebo, no treatment, or usual
care. The estimated treatment effect from the separate and joint analyses agreed well across model groups examined, apart
from model group 3 (which solely accounted for between study heterogeneity using study level random effects). Here,
the separate results were similar to those produced by the other model groups; however, the results from the joint analy-
sis, while still significant, were much smaller in magnitude than the joint results from the other modeling groups. In the
separate group 3 model, the study level random effects accounted for between study heterogeneity in the longitudinal tra-
jectory. However, in the joint model, they also accounted for between study heterogeneity in the time-to-event sub-model
through their presence in the association structure. It was important to determine if sharing study level random effects
in this way between sub-models caused bias in covariate estimates, examined through simulations in Section 5.

Throughout the analyses, the estimated time-to-event treatment coefficient from the joint one-stage IPD-MA models
was smaller in magnitude than those from the separate one-stage IPD-MA model. However, the direction of the results
agreed between the separate and the joint analyses. For SBP and time to death, the separate and joint analyses agreed in
the significance of results, with a significant reduction in risk of death due to assignment to any treatment for hypertension
estimated only for the STOP trial for model group 1. For SBP and time to MI, model groups 0, 2, 3, 4, and 5 for both
the separate and joint analyses estimated significant negative global treatment effect estimates, indicating a significant
reduction in risk of MI due to assignment to treatment for hypertension. However, for model group 1, only the study
specific estimate for the SHEP trial from the joint analysis was significant. For SBP and time to stroke, model groups 0,
2, 3, 4, and 5 for both the separate and joint analyses estimated significant negative global treatment effect estimates,
indicating a significant reduction in risk of stroke due to assignment to treatment for hypertension. These treatment
assignment coefficients were larger in magnitude than the results for time to death or time to MI. For model group 1, the
separate time-to-event model identified study specific significant treatment effects for COOP and MRC1; however, the
joint analysis additionally identified significant effects for SHEP and STOP.

Individual level random effects were included in all model groups examined, causing the individual level association
parameter 𝛼(2) to be present in all model groups. For each set of outcomes examined, all model groups estimated significant
positive values for 𝛼(2), indicating that individuals with SBP values above the corresponding population average are at
higher risk of an event. We should note that model group 0 consistently estimated 𝛼(2) values of larger magnitude than
the other model groups (which were consistent in the magnitude of 𝛼(2) estimated). This highlights the importance of
accounting for between study heterogeneity in joint analyses of multi-study data.
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Study level random effects were only employed in model groups 2, 3, and 5, meaning that the study level association
parameter 𝛼(3) was only estimated in these model groups. There was a noticeable discrepancy between results from model
group 3 and model groups 2 or 5. Model group 3 contained both a study level random intercept and treatment effect,
whereas model groups 2 and 5 contained only a study level random treatment effect. Model group 3 estimated a significant
positive study level association parameter across all three sets of analyses (with interpretation that studies with SBP values
above the population average were at higher risk of an event). However, as noted earlier, for the joint analysis, estimated
parameters from model group 3 were inconsistent with the results produced by the other model groups. Model groups
2 and 5 estimated insignificant 𝛼(3) values across the three sets of analyses, which were different in magnitude to model
group 3, and had wide confidence intervals. These results motivated a simulation study to investigate when the use of
shared study level random effects may be recommended.

6 SIMULATION INVESTIGATIONS

In practice, meta-analyses involve data with very different characteristics to those displayed in our real data example.
For example, associations between the longitudinal and time-to-event outcomes may be different in significance and/or
magnitude. The number of studies included in the meta-analysis might differ. There might be a different level of variability
or heterogeneity between studies involved in the meta-analysis. To assess the behavior of the models stated in Table 1
under a range of these different conditions, a range of simulation investigations were conducted. These simulations can
be split into three main sets: Simulation Set 1 investigates the models under different levels of association, Simulation
Set 2 investigates differing numbers of studies included in the meta-analysis, and Simulation Set 3 investigates differing
levels of between study heterogeneity. During the simulation investigations, data were firstly simulated using the models
and methods discussed in Section 6.1. The models stated in Table 1 were then fitted to each simulated dataset, the results
of which are presented in Section 6.2.

6.1 Data simulation
Data for each set of simulations were simulated under the same model structure, but with different model parameter
values, which we will now describe. For each set of simulations, for each scenario, 1000 datasets were simulated.

For each dataset within each set of simulations, multi-study joint data were generated containing a single continuous
normally distributed longitudinal outcome and a single censored time-to-event outcome. The number of included studies
varies between simulation sets; however, each simulated study contained 500 individuals randomized equally to two
treatment groups. A maximum of 10 longitudinal measurements at times 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 were
permitted, with measurements recorded only up to the individual's survival time (TSki). Data for all studies were simulated
simultaneously, with any between study heterogeneity generated through specification of the distribution of study level
random effects. The longitudinal data were simulated under Equation (2).

Y𝑘𝑖𝑗 = 𝛽10 + 𝛽11t𝑘𝑖𝑗 + 𝛽12treat𝑘𝑖 + b(2)
0𝑘𝑖 + b(2)

1𝑘𝑖t𝑘𝑖𝑗 + b(3)
0k + b(3)

1k treat𝑘𝑖 + 𝜀𝑘𝑖𝑗 (2)

In Equation (2), the longitudinal outcome Ykij follows a linear mixed effects model containing fixed intercept, time and
treatment assignment terms (with coefficients 𝛽10, 𝛽11, and 𝛽12), individual level random intercept and slope terms (b(2)

0𝑘𝑖
and b(2)

1𝑘𝑖), study level random intercept and treatment effect terms (b(3)
0k and b(3)

1k ), and an error term 𝜀kij. The random effects
follow multivariate normal distributions, with individual level random effects distributed b(2)

𝑘𝑖
∼N(𝟎,D), and study level

random effects distributed b(3)
k ∼N(𝟎,A). The random effects are independent of each other and of the error terms, which

are considered to be independently and identically distributed 𝜀𝑘𝑖𝑗∼N(0, 𝜎2
e ).

The simulation of time-to-event data under a proportional hazards model with time varying covariates is described by
Bender et al33 and Austin.34 In these simulations, the time-to-event data were generated under Equation (3), where 𝜆0(t)
is an unspecified baseline hazard.

𝜆𝑘𝑖(t) = 𝜆0(t) exp (𝛽21treat𝑘𝑖 + W2𝑘𝑖(t)) (3)

W2𝑘𝑖(t) = 𝛼(2)W1𝑘𝑖(t) = 𝛼(2)
(

b(2)
0𝑘𝑖 + b(2)

1𝑘𝑖T𝑆𝑘𝑖

)
+ 𝛼(3)

(
b(3)

0k + b(3)
1k treat𝑘𝑖

)
As a time varying covariate is present in the time-to-event sub-model (the individual level random time term b(2)

1𝑘𝑖,
present through the association structure), event times are simulated under a Gompertz distribution, as it has a baseline
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hazard that can vary over time. Consequently, individual event times TEki are generated under Equation (4) (where
Z(𝟑)

ki b(𝟑)
k = b(3)

0k + b(3)
1k treat𝑘𝑖).

T𝐸𝑘𝑖 =
1

𝛼(2)b(𝟐)
𝟏ki + 𝜃1

log
⎡⎢⎢⎢⎣
1 +

(
𝛼(2)b(2)

1𝑘𝑖 + 𝜃1

) (
− log(U𝑘𝑖)

)
exp

(
𝜃0 + 𝛽21treat𝑘𝑖 + 𝛼(2)b(2)

0k + 𝛼(3)
(

Z(𝟑)
ki b(𝟑)

k

))
⎤⎥⎥⎥⎦

(4)

In Equation (4), Uki is an individual specific realization from a Uniform U(0, 1) distribution. The parameters 𝜃0 (the
exponential of which is the scale parameter of a Gompertz distribution) and 𝜃1 (the shape parameter of a Gompertz
distribution) are used along with the coefficients in the model to control the distribution of the event times.

The event times TEki were specified to be Gompertz distributed with mean 𝜇0 = 3 and standard deviation 𝜎0 = 0.5. Using
the extreme value distribution (as recommended by Bender et al,33 with 𝛾 ≈ 0.5772 representing Euler's constant), this
lead to the parameters controlling the event times distributions to be set to

𝜃1 = 𝜋√
6𝜎0

= 𝜋

(0.5)
√

6
≈ 2.5651

𝜃0 = log (𝜃1 exp(−𝛾 − 𝜇0𝜃1)) = log (𝜃1 exp(−𝛾 − 3𝜃1)) ≈ −7.330517.

A Gompertz distribution has increasing hazard for a positive shape parameter, constant hazard for a shape parameter
equal to 0 (equivalent to an exponential distribution), and a decreasing hazard for negative shape parameters. Under the
above model, the probability density function of the event times takes form

𝑓0(t) = 𝜅 exp(𝜃1t) exp
(

𝜅

𝜃1
(1 − exp(𝜃1t))

)
,where 𝜅 = exp 𝜃0. (5)

If the shape parameter is negative, if time is allowed to tend toward infinity, there is a non-zero probability of living forever.
As such, in the function used to simulate event times (available in the aforementioned joineRmeta package), when the
Gompertz distribution is employed, event times are simulated under a two step process. First, for each individual i within
study k, the following two conditions are checked (using the realization from the U(0, 1) distribution, Uki):

Condition 1 ∶
(
𝜃1 + 𝛼(2)b(2)

1𝑘𝑖

)
< 0

Condition 2 ∶ U𝑘𝑖 < exp
⎛⎜⎜⎜⎝

exp
(
𝜃0 + 𝛼(2)b(2)

0𝑘𝑖

)
𝜃1 + 𝛼(2)b(2)

1𝑘𝑖

⎞⎟⎟⎟⎠
.

If the conditions are both true, the individual is automatically assigned an event time of infinity; otherwise, their event
time is generated under Equation (4).

The censoring times were simulated under an exponential distribution with parameter 𝜆cens. As such, individual
censoring times TCki are generated using equation

T𝐶𝑘𝑖 =
− log(U𝑘𝑖)

𝜆cens
. (6)

The event rate of the simulated data was controlled through the censoring process. Due to the volume of planned simula-
tions, only datasets with a “low” (∼25%) event rate were generated. A range of censoring parameters were tested to obtain
datasets with mean event rate at 25%, leading to setting 𝜆cens = exp (−0.426). The survival time for each individual was
the minimum of their censoring and event times (TSki = min (TEki, TCki)).

All data used in the simulation studies were simulated under the models shown in Equations (2) and (3), although cer-
tain parameter values were altered between different sets of simulations. Parameter values in the simulation sets were
chosen such that deviations of different methods from the true parameter values would be clearly discernible. A summary
of the values used for the different sets of simulations is given in Table 5. All simulation groups utilized the same fixed
effect and error term variance values (𝛽10 = 1, 𝛽11 = 3, 𝛽12 = 2, 𝛽21 = 3, 𝜎2

e = 0.01). Additionally, throughout different sets
of simulations, the individual level random effects covariance matrix D remained constant (defined in Table 5). However,
the remaining aspects of the datasets (association parameters, number of included studies, level of between study het-
erogeneity) varied between simulation sets. These aspects are stated in Table 5 and are briefly discussed in the following
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TABLE 5 Parameters used when simulating data for simulation investigations

Simulation Set 1: Varying Simulation Set 2: Varying Number Simulation Set 3: Varying
Association Parameters of Included Studies Level of Study Heterogeneity

Number of included studies 5 5, 10, 15 5
Number of individuals within 500 500 500
each study

Measurement times 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4
Longitudinal fixed effect 𝛽10 = 1, 𝛽11 = 3, 𝛽12 = 2 𝛽10 = 1, 𝛽11 = 3, 𝛽12 = 2 𝛽10 = 1, 𝛽11 = 3, 𝛽12 = 2
parameters (𝛽10, 𝛽11, 𝛽12)
Time-to-event fixed effect 𝛽21 = 3 𝛽21 = 3 𝛽21 = 3
parameters (𝛽21)
Individual level association 𝛼(2) = (0, 0.5, 1) 𝛼(2) = 0.5 𝛼(2) = 0.5
parameter (𝛼(2))

Individual level random effects D =
(

1 0.5
0.5 1.5

)
D =

(
1 0.5

0.5 1.5

)
D =

(
1 0.5

0.5 1.5

)
covariance matrix (D)

Study level association 𝛼(3) = (0, 0.5, 1) 𝛼(3) = 0.5 𝛼(3) = 0.5
parameter (𝛼(3))
Study level random effects
covariance matrix (A) A1 =

(
0 0
0 0

)

A =
(

1 0.5
0.5 1.5

)
A =

(
1 0.5

0.5 1.5

)
A2 =

(
1 0.5

0.5 1.5

)

A3 =
(

2 1
1 3

)
Error term variance (𝜎2

e ) 0.01 0.01 0.01
Parameters controlling event
time distribution (𝜃0, 𝜃1) 𝜃1 = 𝜋

(0.5)
√

6
𝜃1 = 𝜋

(0.5)
√

6
𝜃1 = 𝜋

(0.5)
√

6

𝜃0 = log (𝜃1 exp (−𝛾 − 3𝜃1)) 𝜃0 = log (𝜃1 exp (−𝛾 − 3𝜃1)) 𝜃0 = log (𝜃1 exp (−𝛾 − 3𝜃1))

Parameter controlling survival exp(−0.426) exp(−0.426) exp(−0.426)
time distribution (𝜑)

sections. Throughout, both separate longitudinal or time-to-event one stage MA and joint one stage MA were conducted,
to compare the two approaches,

6.1.1 Simulation set 1: Varying levels of association
In practice, the magnitude of the association between the longitudinal and time-to-event outcomes at the individual and
the study level of the data could impact the performance of the model groups defined in Section 2. Consequently, we
performed a simulation investigation to assess the effect of varying magnitudes of association at different levels.

The individual level association parameter 𝛼(2) and the study level association parameter 𝛼(3) were permitted to take
values 0, 0.5, and 1, giving a total of 9 unique scenarios. The number of included studies in each dataset equalled 5,
whereas the study level random effects covariance matrix A (Table 5) remained constant across scenarios.

6.1.2 Simulation set 2: Varying numbers of studies included in the meta-analysis
The models introduced in Section 2 that include study level random effects may not reliably estimate the distribution
of the study level random effects unless the number of studies included in the meta-analysis is large. In addition, mod-
els including fixed interaction terms between study membership and treatment group may become unwieldy or difficult
to estimate as the number of included studies increases. To investigate this, simulations were conducted comparing
one-stage analyses of joint data for datasets containing 5, 10, or 15 studies.

During this set of simulations, the association parameters were held constant across scenarios (with 𝛼(2) = 𝛼(3) = 0.5).
Additionally, the study level random effects covariance matrix A (Table 5) remained constant across scenarios.

6.1.3 Simulation set 3: Varying levels of between study heterogeneity
Finally, the level of between study heterogeneity could affect the behavior of the different one-stage models described in
Section 2. As such, the third set of simulations alters the study level random effects covariance matrix A across different
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scenarios, to increase or reduce between study heterogeneity. Values taken for A, labeled A1, A2, and A3 are specified
in Table 5, representing cases for no between study heterogeneity and, then, two increasing levels of between study
heterogeneity.

During this simulation set, across all scenarios, 5 studies were simulated for each dataset, with association parameters
held constant across scenarios at 𝛼(2) = 𝛼(3) = 0.5.

6.1.4 Models fitted to simulated data
Model groups 0 through 5 (as defined in Table 1) were fitted to each of the datasets simulated for each scenario within
each set of simulations. As the data were simulated under a joint model of structure from Model Group 3, the results of
fitting examples of Model Group 3 to the data could be expected to provide less biased results than the other model groups.

6.1.5 Reporting of simulation results
For model groups that estimated study specific parameters (the longitudinal treatment effect in model groups 1 and 4, and
the time-to-event treatment effect in model group 1), overall pooled effects have been reported by combining study specific
estimates using methods equivalent to conducting a random effects MA of study level results.14,35 Results are reported as
the mean estimate produced across studies (SE between simulation estimates) [coverage], where SE is the standard error
(the standard deviation) of the produced estimates. As defined by Burton et al,36 and using a significance level of 𝛾 = 0.05,
coverage is calculated as the proportion of times the 100(1 − 𝛾)% confidence intervals for parameter estimate 𝛽v, defined
by 𝛽v±Z1−𝛾∕2SE(𝛽v), includes the “true” value of parameter 𝛽 that the data were simulated under (where Z1 − 𝛾/2 ≈ 1.96 for
significance level 0.05, and v takes values 1 to the total number of simulations performed, here 1000). Where parameters
are not estimated for a model group (eg, 𝛼(3) for model groups not including study level random effects), an NA is printed.
The total number of successful model fits are also reported. As the joint models were fitted using the EM algorithm,22

separate longitudinal and time-to-event models were automatically fitted to determine suitable starting values for the
algorithm. Consequently, the number of failed fits was equal for the separate and joint model analyses.

6.2 Results of simulation investigations
6.2.1 Results of simulation set 1: Differing levels of association
The results of Simulation Set 1 are presented in Tables 6 and 7. Graphical representations of the mean estimates displayed
in Tables 6 and 7 are provided in Supplementary Figures S13–S16, with representations of the point estimates from each
simulation given in Supplemental Figures S17–S28. Across the scenarios investigated, most model groups showed a high
proportion of successful model fits (99.9% or over). However, model group 1 experienced more failed fits when 𝛼(3) ≠ 0
(94.2%, 97.7%, and 99.8% model fit success rate).

Longitudinal treatment effect (𝜷12)
Throughout Simulation Set 1, the mean pooled longitudinal treatment effect estimate was similar in magnitude between
the separate and joint one-stage analyses. The coverage for model group 0 was poor for both the separate and joint analyses;
however, the coverage for the remaining model groups for the separate longitudinal one-stage MA-model was consis-
tently high. Conversely, the joint one-stage MA-model results displayed high coverage for models that did not include
study level random effects, but low coverage across all levels of association for any model group that involved study
level random effects. The reason for the comparable mean estimates, but differing coverage, between the separate and
joint one-stage MA-models, is identifiable through examination of the results from each separate scenario (Supplemental
Figures S17–S28). The confidence intervals for 𝛽12 for joint one-stage models involving study level random effects were
quite narrow, leading to poor coverage even though the point estimates are clustered about the “true” value of 𝛽12.

Time-to-event treatment effect (𝜷21)
For all scenarios investigated in Simulation Set 1, the width of confidence intervals for estimates of 𝛽21 increased for both
separate and joint analyses, as 𝛼(3) increased in magnitude. The results from separate or joint analyses for model group 0
(which ignored between study heterogeneity) were poor when there was non-zero association.

When individual level association was zero, the estimates produced by the separate analyses for 𝛽21 were close to their
“true” value of 3; however, the separate analyses underestimated 𝛽21 when 𝛼(2) was non-zero. For the separate analyses,
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for 𝛼(2) = 0, coverage for 𝛽21 estimates decreased as study level association increased; however, when 𝛼(2) ≠ 0, coverage
was close to 0.

For the joint analyses, for any model group that accounted for between study heterogeneity in some way (model groups
1–5), the mean estimates were close to the “true” value of 𝛽21 for all model groups; however, model groups 2, 3, and
5 displayed mean estimates diverging from the “true” value of 𝛽21 as the magnitude of the “true” 𝛼(3) value increased.
Coverage was good across all scenarios for model group 1. For the remaining model groups, coverage decreased as the
magnitude of the “true” 𝛼(3) value increased, although coverage was good for joint models from any of model groups 1 to
5 when 𝛼(3) = 0.

Association parameters (𝜶(2), 𝜶(3))
The individual level association parameter 𝛼(2) was poorly estimated by model group 0. However, the estimates of 𝛼(2) were
close to the “true” parameter value for model groups 1, 2, 4, and 5, with good coverage. However, for model group 3, which
solely accounted for between study heterogeneity using study level random effects, where the “true” 𝛼(2) was non-zero,
as the magnitude of 𝛼(3) increased from zero, the mean parameter estimate decreased in magnitude, with corresponding
decrease in coverage.

The estimation of the study level association parameter was poor in model groups 2 and 5, with large coverage val-
ues explained by wide confidence intervals (Supplemental Figures S22–S24). Mean estimates of 𝛼(3) were closer to the
“true” values in model group 3, although they were still underestimated. Coverage for all model groups that estimated
𝛼(3) decreased as the value of the “true” 𝛼(3) increased.

Summary
Under a one-stage joint model containing a single longitudinal and single time-to-event outcome, with association struc-
ture sharing both individual and study level random effects (when present), with common association parameter at each
level, separate time-to-event one-stage MA-models appeared to behave poorly when 𝛼(2) ≠ 0; however, joint one-stage
MA-models displayed issues when study level random effects were shared between sub-models.

6.2.2 Results of simulation set 2: Differing numbers of included studies
The results of Simulation Set 2 are presented in Table 8. Graphical representations of the mean estimates displayed in
Table 8 are provided in Supplementary Figures S29–S32, with representations of the point estimates from each simulation
given in Supplemental Figures S33–S36. The proportion of successful model fits was 99.9% or above for all model groups
for all scenarios investigated.

Longitudinal treatment effect (𝜷12)
Across all scenarios investigated, for both the separate and the joint analyses, the mean estimate for the longitudinal
treatment effect 𝛽12 was close to the “true” value of 2. Coverage was poor for both the separate and joint analyses for
model group 0, which ignores between study heterogeneity. Coverage was consistently good for the separate analyses in
the remaining model groups and good for joint models from model groups 1 and 4. However, coverage was poor from
joint models for model groups involving study level random effects.

Time-to-event treatment effect (𝜷21)
For the time-to-event treatment effect 𝛽21, we saw mean estimates from the joint analyses closer to the “true” value of
3 for the joint analyses than the separate analyses. Coverage for the separate analyses was below 6% for all scenarios
investigated, whereas coverage for the joint models appeared best for model group 1 (above 85%), followed by model
groups 4 and 5 (above 69%). Coverage was noticeably lower for model group 0, which ignored between study heterogeneity,
and coverage decreased for model groups 2 and 3 as the number of included studies increased.

Association parameters (𝜶(2), 𝜶(3))
The mean estimate for the individual level association was close to the “true” value of 0.5 for model groups 1–5, with
slightly worse estimates from model group 0. Coverage was good for model groups 1, 2, 4, and 5. However, coverage
decreased with increasing the number of studies for model groups 0 and 3.

Study level association was poorly estimated in model groups 2 and 5, with estimates closer to the “true” value of 0.5 for
model group 3. However, coverage was consistently poor and decreased with increasing the number of included studies.



SUDELL ET AL. 263

TA
B

LE
8

Si
m

ul
at

io
n

gr
ou

p
2

(v
ar

yi
ng

nu
m

be
rs

of
in

cl
ud

ed
st

ud
ie

s)
.R

es
ul

ts
re

po
rt

ed
as

m
ea

n
pa

ra
m

et
er

es
tim

at
e

(S
E

be
tw

ee
n

si
m

ul
at

io
n

es
tim

at
es

)[
co

ve
ra

ge
]

N
um

be
ro

f
N

um
be

r
of

Lo
ng

it
ud

in
al

Tr
ea

tm
en

tE
ff

ec
t

Ti
m

e-
to

-E
ve

nt
Tr

ea
tm

en
tE

ff
ec

t
A

ss
oc

ia
ti

on
Pa

ra
m

et
er

s
In

cl
ud

ed
Su

cc
es

sf
ul

(𝜷
12
=

2)
(𝜷

21
=

3)
St

ud
ie

s
M

od
el

Fi
ts

Se
pa

ra
te

M
od

el
Jo

in
tM

od
el

Se
pa

ra
te

M
od

el
Jo

in
tM

od
el

Jo
in

tM
od

el
Jo

in
tM

od
el

(𝜶
(2

)
=

0.
5)

(𝜶
(3

)
=

0.
5)

Group0

5
10

00
2.

01
(0

.5
5)

[1
8.

5]
2.

01
(0

.5
5)

[1
7.

0]
1.

57
(0

.1
8)

[0
.0

]
2.

74
(0

.2
9)

[4
3.

5]
0.

46
1

(0
.0

4)
[4

9.
7]

N
A

10
10

00
2.

00
(0

.3
8)

[1
9.

5]
2.

00
(0

.3
8)

[1
8.

8]
1.

54
(0

.1
2)

[0
.0

]
2.

69
(0

.2
2)

[2
8.

4]
0.

45
7

(0
.0

3)
[3

1.
3]

N
A

15
10

00
2.

01
(0

.3
1)

[2
2.

6]
2.

01
(0

.3
1)

[2
0.

1]
1.

54
(0

.1
0)

[0
.0

]
2.

66
(0

.1
8)

[1
4.

6]
0.

45
2

(0
.0

3)
[1

7.
5]

N
A

Group1

5
10

00
2.

01
(0

.5
5)

[8
6.

2]
2.

01
(0

.5
5)

[8
7.

5]
1.

69
(0

.4
7)

[6
.0

]
3.

04
(0

.2
6)

[8
5.

0]
0.

50
6

(0
.0

2)
[9

2.
8]

N
A

10
10

00
2.

00
(0

.3
8)

[9
2.

2]
2.

00
(0

.3
8)

[9
2.

6]
1.

69
(0

.5
0)

[3
.2

]
3.

04
(0

.1
8)

[8
9.

6]
0.

50
7

(0
.0

1)
[8

8.
0]

N
A

15
10

00
2.

01
(0

.3
1)

[9
3.

9]
2.

01
(0

.3
1)

[9
3.

5]
1.

69
(0

.4
7)

[1
.9

]
3.

04
(0

.1
5)

[9
1.

7]
0.

50
6

(0
.0

1)
[8

6.
0]

N
A

Group2

5
10

00
2.

01
(0

.5
5)

[8
7.

3]
2.

01
(0

.5
5)

[1
1.

0]
1.

76
(0

.2
1)

[0
.0

]
3.

10
(0

.2
7)

[6
2.

5]
0.

50
5

(0
.0

2)
[9

3.
7]

0.
04

5
(0

.5
5)

[3
2.

3]
10

10
00

2.
00

(0
.3

8)
[9

2.
2]

2.
00

(0
.3

8)
[9

.8
]

1.
76

(0
.1

5)
[0

.0
]

3.
11

(0
.1

9)
[5

9.
1]

0.
50

6
(0

.0
2)

[9
0.

4]
0.

03
5

(0
.1

2)
[5

.3
]

15
10

00
2.

01
(0

.3
1)

[9
3.

3]
2.

01
(0

.3
1)

[1
2.

2]
1.

76
(0

.1
2)

[0
.0

]
3.

10
(0

.1
5)

[5
6.

4]
0.

50
5

(0
.0

1)
[9

0.
6]

0.
02

9
(0

.0
9)

[0
.5

]

Group3

5
99

9
2.

01
(0

.5
5)

[8
7.

4]
2.

01
(0

.5
5)

[1
1.

4]
1.

57
(0

.1
8)

[0
.0

]
2.

88
(0

.2
7)

[6
2.

9]
0.

48
1

(0
.0

3)
[8

3.
2]

0.
42

7
(0

.1
7)

[4
2.

8]
10

10
00

2.
00

(0
.3

8)
[9

2.
2]

2.
00

(0
.3

8)
[1

2.
2]

1.
54

(0
.1

2)
[0

.0
]

2.
83

(0
.1

9)
[5

2.
5]

0.
47

4
(0

.0
2)

[6
0.

9]
0.

42
6

(0
.1

0)
[3

8.
2]

15
10

00
2.

01
(0

.3
1)

[9
3.

3]
2.

01
(0

.3
1)

[1
3.

9]
1.

54
(0

.1
0)

[0
.0

]
2.

80
(0

.1
6)

[3
9.

3]
0.

47
1

(0
.0

2)
[3

9.
5]

0.
41

6
(0

.0
8)

[2
9.

5]

Group4

5
10

00
2.

01
(0

.5
4)

[8
6.

5]
2.

01
(0

.5
4)

[8
7.

5]
1.

73
(0

.2
0)

[0
.0

]
3.

04
(0

.2
6)

[6
9.

7]
0.

50
1

(0
.0

2)
[9

5.
2]

N
A

10
10

00
2.

00
(0

.3
8)

[9
2.

2]
2.

00
(0

.3
8)

[9
2.

3]
1.

73
(0

.1
4)

[0
.0

]
3.

04
(0

.1
8)

[6
9.

7]
0.

50
2

(0
.0

2)
[9

4.
0]

N
A

15
10

00
2.

01
(0

.3
1)

[9
3.

9]
2.

01
(0

.3
1)

[9
3.

5]
1.

73
(0

.1
1)

[0
.0

]
3.

03
(0

.1
5)

[7
0.

6]
0.

50
1

(0
.0

1)
[9

4.
8]

N
A

Group5

5
99

9
2.

04
(0

.5
8)

[8
4.

8]
2.

04
(0

.5
8)

[1
0.

6]
1.

74
(0

.2
0)

[0
.0

]
3.

04
(0

.2
6)

[7
0.

2]
0.

50
1

(0
.0

2)
[9

4.
8]

0.
03

0
(0

.2
3)

[4
1.

3]
10

10
00

2.
00

(0
.3

8)
[9

2.
2]

2.
00

(0
.3

8)
[1

0.
7]

1.
73

(0
.1

4)
[0

.0
]

3.
04

(0
.1

8)
[6

9.
2]

0.
50

3
(0

.0
2)

[9
3.

9]
0.

03
8

(0
.1

2)
[9

.2
]

15
10

00
2.

01
(0

.3
1)

[9
3.

3]
2.

01
(0

.3
1)

[1
2.

3]
1.

73
(0

.1
1)

[0
.0

]
3.

03
(0

.1
5)

[6
9.

5]
0.

50
1

(0
.0

1)
[9

3.
6]

0.
03

2
(0

.1
0)

[1
.4

]



264 SUDELL ET AL.

Summary
Under a one-stage joint model containing a single longitudinal and single time-to-event outcome, with association struc-
ture sharing both individual and study level random effects, with common association parameter at each level, there
appeared to be little benefit of increasing the number of included studies. However, this result may not hold for other
association structures, eg, just sharing individual level random effects between studies.

6.2.3 Results of simulation set 3: Differing levels of between study heterogeneity
The results of Simulation Set 3 are presented in Table 9. Graphical representations of the mean estimates displayed in
Table 9 are provided in Supplementary Figures S37–S40, with representations of the point estimates from each simulation
given in Supplemental Figures S41–S44. There were issues with model fitting for a large proportion of simulations for
model groups involving study level random effects when there was no between study heterogeneity (A = A1); otherwise,
the proportion of successful fits was 99.8% or over.

Longitudinal treatment effect (𝜷12)
Across scenarios investigated, the mean estimated longitudinal treatment effect produced by both the separate and joint
one-stage MA-model were close to the “true” parameter values. Coverage of estimates produced by model group 0 was
good from both the separate and the joint one-stage MA-models when no between study heterogeneity existed; however,
coverage decreased as between study heterogeneity increased. For the remaining model groups, coverage was consistently
good for the separate analyses, but joint analyses involving study level random effects displayed decreasing coverage as
between study heterogeneity increased.

Time-to-event treatment effect (𝜷21)
Throughout the scenarios investigated, the time-to-event treatment effect was consistently underestimated by the separate
analyses compared to the joint (which displayed estimates closer to the “true” value of the parameters). Models involving
study level random effects showed estimates diverging slightly from the “true” value as between study heterogeneity
increased. Coverage was consistently good for model group 1; however, the remaining model groups displayed decreasing
coverage as between study heterogeneity increased.

Association parameters (𝜶(2), 𝜶(3))
The mean estimate for individual level association 𝛼(2) was good for model groups 1, 2, 4, and 5, with corresponding high
coverage. However, model groups 0 and 3 showed mean estimates increasingly below the true value, with corresponding
decreasing coverage as between study heterogeneity increased.

Mean estimates for study level association 𝛼(3) were poor for model groups 2 and 5, and closer to the true value for
model group 3. Coverage was good for model groups 2 and 5 for the case of no between study heterogeneity, and decreased
as between study heterogeneity increased. However, examination of Supplemental Figure S44 indicates that wide confi-
dence intervals explained the higher coverage at no between study heterogeneity, with the width of confidence intervals
decreasing as between study heterogeneity increases. Coverage was relatively constant but not good for model group 3
across examined levels of between study heterogeneity.

Summary
Under a one-stage joint model containing a single longitudinal and single time-to-event outcome, with association struc-
ture sharing both individual and study level random effects, with common association parameter at each level, model
group 1 appeared to be the most consistently reliable modeling option. However, as noted earlier, this result may not hold
for other joint model specifications.

7 DISCUSSION

In this research, we have presented and investigated a variety of models for use when analyzing multi-study joint longitu-
dinal and time-to-event data. Analyses of single study joint datasets are increasing.8 Ensuring availability of appropriate
methods for the meta-analysis of such data is vital, in order to maximize use of available data and better inform healthcare
decisions.
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We have examined a range of the possible modeling options; however, other combinations of the approaches discussed
here to account for between study heterogeneity are also possible. Each of the model groups examined presents a range
of advantages and disadvantages. Models that use fixed effects to account for between study heterogeneity estimate K − 1
parameters for each term involving study membership (one for each study apart from the reference study). As such, results
may not be generalizable to external studies, and the number of parameters estimated quickly increases as the number of
studies included in the meta-analysis increases. However, such methods do allow calculation of effect sizes within each
study (although this is not a primary aim of meta-analyses).

Conversely, use of study level random effects accounts for between study heterogeneity, but study specific effect esti-
mates are not generally automatically provided (unless the estimates of the random effects can be extracted from models
fitted). However, this should not be an issue, as meta-analyses aim to pool data rather than provide study specific estimates.
The number of parameters to be fitted due to study level random effects does not increase as the number of included stud-
ies increases. However, the distribution of the random effects may be poorly estimated unless a large number of studies
are included in the meta-analysis.

Additionally, model groups with a common baseline hazard across studies assume proportional hazards across all stud-
ies included in the meta-analysis. However, model groups that stratify the baseline hazard by study assume proportional
hazards within but not across studies. This may be a more reasonable assumption, especially if the demographics of the
studies differ.

The simulation investigation displayed poor performance for models that ignored any between study heterogeneity
present in the data. Consequently, it is clear that accounting for any between study heterogeneity present in multi-study
joint data is vital. The most consistently well-performing model group was model group 1, which accounted for between
study heterogeneity using fixed study membership and interaction between study membership and treatment assignment
in both sub-models. The remaining model groups for the joint analyses showed issues under various scenarios. As the
coverage was good for separate models for any model group that accounted for between study heterogeneity, the poor
coverage in the joint analyses for model groups 2, 3, and 5 may be due to the dual use of the study level random effects to
account for between study heterogeneity and account for study level behavior in the link between the longitudinal and
time-to-event outcomes. It may be that this dual use is not possible, unless an unrealistically large number of studies are
included in the meta-analysis.

While point estimates were similar in magnitude between the separate and joint analyses for the longitudinal treat-
ment effect, we note bias in the estimates of the time-to-event treatment effect from separate analyses where a non-zero
association between the longitudinal and time-to-event outcomes is present. This behavior has previously been noted in
single study cases by Guo and Carlin,18 and in two-stage joint MA analyses by Sudell et al,16 our research confirms that
this issue persists for one-stage analyses. This behavior may be comparable to the established situation where omission
of covariates from Cox models causes bias in estimated effect parameters.37-39 The W2ki(t) term is included in the joint
time-to-event sub-model but is not present in the separate time-to-event sub-model. Where association is present (ie,
where 𝛼(2) ≠ 0 or 𝛼(3) ≠ 0), the joint analyses model risk of an event associated with the longitudinal outcome through the
W2ki(t) term. This term (which has an effect on risk of an event when association is present) is not included in the sepa-
rate time-to-event model, giving a possible explanation for the observed biased treatment effect estimates. As noted in the
work of Sudell et al,16 similar behavior was not observed between the separate and joint longitudinal analyses as the model
specifications for the longitudinal trajectory are identical in both cases. As such, it is recommended that joint one-stage
MA-models are used in place of separate time-to-event one-stage MA-models where significant association exists. This
can be assessed prior to analyses through plotting of the longitudinal trajectories paneled by event type16; differences
between the trajectories between those censored and experiencing an event can indicate presence of such an association.

The models investigated utilized an unspecified baseline hazard in the time-to-event sub-model. Hseih et al40 noted
that when unspecified baseline hazards are used in a joint model, standard errors should be obtained through bootstrap-
ping procedures to avoid their underestimation. As such, the time commitment to perform bootstrapping procedures on
large meta-datasets was considerable. Performing bootstrapping procedures on a standard computing environment took
several days for the real dataset. Consequently, bootstraps were performed in parallel using the University of Liverpool's
HTCondor system (see the work of Litzkow et al,41 https://research.cs.wisc.edu/htcondor/, and http://condor.liv.ac.uk/),
which was also used to run the simulations, with the results compiled using purpose written code rather than relying on
single computer bootstrapping procedures. Researchers using large datasets without coding experience or access to such
computer systems may experience issues conducting large scale joint data meta-analyses.

In our clinical example, we assume common association parameters across treatment groups. However, in reality, the
association between the longitudinal blood pressure and risk of an event could differ between those assigned to any

https://research.cs.wisc.edu/htcondor/
http://condor.liv.ac.uk/
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treatment for hypertension versus those assigned to placebo, no treatment, or usual care.42 In single study cases, associa-
tion structures involving interactions between baseline covariates and the association parameters have been presented2,4;
however, this association structure has not yet been investigated in meta-analytic joint models.

The research presented here prompts a range of future areas of research. Investigation of one-stage joint MA-models
with varying association structures, including sharing only individual level random effects or sharing the current value
of the longitudinal trajectory, is vital. Additionally, it is vital to investigate alternative modeling options, such as alterna-
tive baseline hazard specifications, which could reduce model fitting times by removing the necessity of bootstrapping.
In addition, in our simulation study, we assumed common longitudinal measurement schedules across the included
studies, identical numbers of individuals recruited to each study, and common association parameter across studies. Fur-
ther simulation investigations varying these aspects could provide additional useful information for future joint data
meta-analyses.

In conclusion, this research indicates the benefit of the one-stage meta-analysis of joint longitudinal and time-to-event
data where significant association exists between the longitudinal and time-to-event outcomes. Given the current
research, it is recommended that analyses do not rely on models that share study level random effects between sub-models.
Further research into one-stage joint MA-models is required.
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