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Abstract: The pine (Pinus L.) is the largest and most heteromorphic plant genus of the pine family
(Pinaceae Lindl.), which grows almost exclusively in the northern hemisphere. The demand for
plant-based remedies, supplements and functional food is growing worldwide. Although pine-based
products are widely available in many parts of the world, they are almost absent as food ingredients.
The literature shows the beneficial effects of pine preparations on human health. Despite the wide
geographical distribution of pine trees in the natural environment, there are very few data in the
literature on the widespread use of pine in food technology. This study aims to present, characterise
and evaluate the content of phytochemicals in pine trees, including shoots, bark and conifer needles,
as well as to summarise the available data on their health-promoting and functional properties,
and the potential of their use in food and the pharmaceutical industry to support health. Various
species of pine tree contain different compositions of bioactive compounds. Regardless of the solvent,
method, pine species and plant part used, all pine extracts contain a high number of polyphenols.
Pine tree extracts exhibit several described biological activities that may be beneficial to human
health. The available examples of the application of pine elements in food are promising. The reuse of
residual pine elements is still limited compared to its potential. In this case, it is necessary to conduct
more research to find and develop new products and applications of pine residues and by-products.

Keywords: Pinus; pine; antioxidants; functional food; bioactive compounds

1. Introduction

Pinus (Pinaceae) is considered the largest genus of conifers, which includes more than
100 different species (Tables 1 and 2) [1].

Table 1. Taxonomic hierarchy of genus Pinus L. [2].

Kingdom Plantae

Subkingdom Viridiplantae
Infrakingdom Streptophyta
Superdivision Embryophyta

Division Tracheophyta
Subdivision Spermatophytina

Class Pinopsida
Subclass Pinidae

Order Pinales
Family Pinaceae
Genus Pinus L.
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Table 2. Classification of subgenus Pinus [1].

Section Pinus Section Trifoliae

Subsection Pinus Subsection Pinaster Subsection Contortae Subsection Australes Subsection Ponderosae

P. densata, densiflora,
hwangshanensis, kesiya,
luchuensis, massoniana,
merkusii, mugo, nigra,

resinosa, sylvestris,
tabuliformis,

taiwanensis, thunbergii,
tropicalis, uncinata,

yunnanensis

P. brutia, canariensis,
halepensis, heldreichii,

pinaster, pinea,
roxburghii.

P. banksiana, clausa,
contorta, virginiana;

P. attenuata, caribaea,
cubensis, echinata,

elliottii, glabra, greggii,
herrerae, jaliscana,

lawsonii, leiophylla,
lumholtzii, muricata,
occidentalis, oocarpa,

palustris, patula,
praetermissa, pringlei,

pungens, radiata, rigida,
serotina, taeda,

tecunumanii, teocote

P. cooperi, coulteri,
donnell-smithii, devoniana,
douglasiana, durangensis,
engelmannii, hartwegii,

jeffreyi, maximinoi,
montezumae, nubicola,

ponderosa, pseudostrobus,
sabineana, torreyana,

washoensis.

Pinus is a term first applied by Lineus in his work “Species Plantarum” for a group
of 10 species, only five of which are currently included in this genus, i.e., P. cembra, P.
pinea. P. strobus, P. taeda and P. sylvestris [3]. Because of the prevalence and morphological
diversity of pines that can be found in many countries, many conflicting affiliations are
known, particularly because many early affiliations to this genus were based on a very
small number of morphological discriminants [3]. Pinus belongs to Pinaceae as a result
of having shoot dimorphism, which includes short shoots (fascicles) that have one to
eight narrow needles surrounded by bud scales at the base. Strong woody cone scales
with the apical structure exposed after the first growing season (bump) and in the mature
cone are also typical of the genus Pinus. Currently, Pinus is treated as a monophyletic
taxon [1]. The subgenus Pinus (diploxylon or hard pines) has two fibrovascular bundles
per needle, diverging pulvini at cataphyll bases (“fascicle breaks”), which usually have
persistent sheaths. There are two to eight needles per fascicle and the position of the resin
canals is polymorphic (septa; internal, medial external); the seed wings are articulated
or oppressed [4]. In this subgenus, section Trifoliae, which is characterised by persistent
fascicle sheaths, can be distinguished. Most species have cones with thick, woody scales
that open at maturity; however, a few species have serotine pine cones. The section includes
all North American hard pines, excluding P. tropicalis and P. resinosa [1]. The Pinus section
has persistent fascicle sheaths. The number of needles ranges from one to three. External
or medial resin canals are usually found [1]. Mature cones open at maturity (excluding P.
pinea) and have thick scales. In most species, the seed wings are articulated; however, in P.
canariensis and P. roxburghii, they have a decorative function. The section is widespread
throughout Eurasia and the Mediterranean basin, as well as includes two species from the
Americas: P. resinosa from eastern North America and P. tropicalis from western Cuba [1].

2. Nutritional Value and Mineral Content

Table 3 shows data on the nutritional value of different parts of trees of the genus
Pinus. The nutritional value was identified in seeds, needles, bark and shoots.
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Table 3. Nutritional value and mineral content.

Index Species Part of the Tree Content Reference

Energy value P. contorta L. needles 500 kcal/100 g [5]

Energy value P. pinea L. seeds 583 kcal/100 g [6]

Dry mass

P. sylvestris L. shoots 13.98% [7]

P. taeda L.
stem 30.74% [8]

needles 1.55% [8]

crude protein P. contorta L. needles 3.63% [5]

crude protein P. pinea L. seeds 31.6 g/100 g [6]

fat P. pinea L. seeds 44.9 g/100 g [6]

triglycerides

P. sylvestris L.

inner bark 33.40 mg/g [9]

outer bark 1.71 mg/g [9]

conifer needles 10.3 µmol/g dry weight [10]

Mono- and diglycerides
of fatty acids

inner bark 2.26 mg/g [9]

outer bark 5.46 mg/g [9]

conifer needles 2.3 µmol/g dry weight [10]

steryl esters
inner bark 1.54 mg/g [9]

outer bark 0.19 mg/g [9]

free fatty acids
inner bark 0.63 mg/g [9]

outer bark 1.68 mg/g [9]

conifer needles 10.3 µmol/g [10]

resin acids
inner bark 7.16 mg/g [9]

outer bark 2.39 mg/g [9]

sterols and
triterpenic alcohols

inner bark 4.50 mg/g [9]

outer bark 2.98 mg/g [9]

fatty alcohols
inner bark 1.33 mg/g [9]

outer bark 1.25 mg/g [9]

carbohydrates P. pinea L. seeds 13.3 g/100 g [6]

total soluble sugar P. pinea L. seeds 5.15 g/100 g [6]

reducing sugar P. pinea L. seeds 0.7 g/100 g [6]

glucose P. sylvestris L. needles 121.8 µmol/g [10]

fructose P. sylvestris L. needles 151.3 µmol/g [10]

galactose/arabinose P. sylvestris L. needles 5.2 µmol/g [10]

sucrose P. sylvestris L. needles 59.6 µmol/g [10]

sucrose P. pinea L. seeds 4.3 g/100 g [6]

raffinose/melibiose P. sylvestris L. needles 4.1 µmol/g [10]

starch P. sylvestris L. needles 124.8 µmol/g [10]

Na P. pinea L. seeds 11.7 g/100 g [6]

Ca P. pinea L. seeds 13.8 mg/100 g [6]

Ca P. sylvestris L. bark 0.38% [11]

Ca P. sylvestris L. needles 0.53% [12]
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Table 3. Cont.

Index Species Part of the Tree Content Reference

Ca P. taeda L. stem 0.09% [8]

Ca P. taeda L. needles 0.31% [8]

K P. pinea L. seeds 713 mg/100 g [6]

K P. sylvestris L. Needles 0.54% [12]

K P. sylvestris L. bark 0.172% [11]

K P. taeda L. stem 0.08% [8]

K P. taeda L. needles 0.54% [8]

Mg P. pinea L. seeds 325 mg/100 g [6]

Mg P. sylvestris L. Needles 0.09% [12]

Mg P. sylvestris L. bark 0.059 [11]

Mg P. taeda L. stem 0.14% [8]

Mg P. taeda L. needles 0.18% [8]

P P. pinea L. seeds 512 mg/100 g [6]

S P. sylvestris L. Needles 0.095% [12]

Fe P. pinea L. seeds 10.2 mg/100 g [6]

Fe P. sylvestris L. Needles 61.7 µg/g [12]

Mn P. pinea L. seeds 6.9 mg/100 g [6]

Mn P. sylvestris L. Needles 275.6 µg/g. [12]

Zn P. pinea L. seeds 6.4 mg/100 g [6]

Zn P. sylvestris L. Needles 53.63 µg/g [12]

Cu P. pinea L. seeds 1.5 mg/100 g [6]

Cu P. sylvestris L. Needles 5.3 µg/g [12]

Cu P. sylvestris L. bark 2.98 mg/kg [11]

N P. sylvestris L. bark 0.49% [11]

N P. taeda L. stem 0.35% [8]

N P. taeda L. needles 1.39% [8]

ascorbic acid P. pinea L. seeds 2.5 mg/100 g [6]

ascorbic acid P. sylvestris L. shoots 29.3 mg/g [7]

Thiamine P. pinea L. seeds 1.5% [6]

Riboflavin P. pinea L. seeds 0.28% [6]

The seeds have the highest energy value due to a high fat content [6]. The seeds also
generally have the highest content of the tested nutrients, excluding vitamin C, which
is higher in the conifer needles. The seeds of P. pinea can be a good source of Mg, P
and especially Zn [6]. These seeds have higher zinc content than sesame seeds (approx.
4.5 mg/100 g) and seeds of some pumpkin species (0.54–1.31 mg/100 g), which are consid-
ered to be good dietary sources of zinc [13,14]. It is well known that different parts of plants
have different nutritional content [15]. Seeds are generally lower in vitamins than the green
parts of plants; however, they are higher in macronutrients, especially fats [16]. The uptake
of mineral nutrients and their content in a plant depends not only on their content in the
soil in the form available for plants, but also on the mutual quantitative ratio of individual
mineral nutrients in the environment and on the afforestation level [17–20]. Other fac-
tors, such as soil pH, temperature, water supply, rainfall, access to sunlight, precipitation,
weather and climate change, are also of great importance [21–23]. Nutrients, which can be
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categorized as macro- and micronutrients, have a nutritional role in plants [24]. Macronu-
trients affect biochemical processes, physiological responses and yield quantity [17,25].
When it comes to macronutrients, their role in plant organisms includes many life processes
that determine plant functioning [24,26]. Therefore, it is very difficult to clearly indicate a
specific role of elements because they act in a complex way. The role of micronutrients, on
the other hand, is more specific, as it is related to specific, well-defined life processes in the
plant and to plant growth [27,28]. Nutrient deficiency results in various disorders in terms
of the normal growth and development of the plant [29,30]. Some nutrients, because of
their specific functions in the plant, may limit the growth of certain pathogens [31]. Those
constituents include zinc, sulphur, calcium and potassium [32]. Plant raw materials are a
good source of minerals in the diet. This includes brews such as tea brews, coffee brews
and herbal mixtures. As indicated by the results of many works, pine shoots can also be a
valuable raw material for the preparation of brews in nutrition [33,34]. Pine seeds were
found to be a good source of magnesium—an electrolyte essential for many metabolic
and biological processes in the body, including acting as a cofactor in over 300 enzyme
reactions [35]. Pine seeds were also found to be high in phosphorus and zinc, which are key
minerals in terms of metabolic processes and energy metabolism [36]. Both the outer and
inner bark is rich in resinous acids. These compounds may be toxic and allergenic; however,
a positive effect has also been shown—abietic acid, which is found mainly in the inner bark,
can act as an inhibitor of testosterone 5α-reductase [37]. Testosterone reductase inhibitors
are used for treatment of benign prostatic hyperplasia, prostate cancer and pattern hair
loss [38].

3. Polyphenol Content

Polyphenols are chemical compounds found in herbs, vegetables and fruit that have
a wide range of uses. Currently, more than 8000 phenolic compounds are known. They
include flavonoids, tannins, phenolic acids and their derivatives such as polymers [39].
Polyphenols are essential secondary metabolites that allow plants to grow and develop.
They also protect plants from insects and other factors [38,40,41]. Polyphenols found in
plants are involved in functions related to sensory properties such as colour, bitterness
and sourness [42,43]. The presence of benzene rings and hydroxyl groups is common
to all polyphenols. However, they are very diverse and can be divided into several
subgroups. There are different ways to categorise these compounds based on their source
of origin, biological function or chemical structure [39]. Polyphenols can be divided into
different categories. Classifications are frequently used according to the number of present
phenolic rings and structural components, which combine these rings, by differentiating the
molecules into phenolic acids, flavonoids, stilbenes and lignans [44,45]. Simple phenols and
flavonoids correspond to most natural phenolic substances. Moreover, flavonoids belong
to the most common group of these compounds. Their common order is C6–C3–C6, which
corresponds to two aromatic rings (rings A and B) bonded to three carbon atoms to produce
an oxidised heterocycle (ring C). As a result of the type of hydroxylation and differences
in the chromate ring (C ring), flavonoids can be further divided into distinct subgroups,
including anthocyanins, flavan-3-ols, flavones, flavanones and flavonols [46–48]. The
demand for phenolic acids is very high in many industries because they are used as
precursors to other important bioactive molecules that are regularly needed for therapeutic
and cosmetic purposes, as well as for food industry. Phenolic acids are also commercially
available as dietary supplements [49].

Various parts of a pine (needles, seeds, bark and cones) and different solvents can
be used to extract polyphenols. The pine bark is the best-examined part. Although all
pine extracts have significant amounts of polyphenols, their content in the extract de-
pends on the solvent type, extraction method, plant part used or pine species (Table 4).
This results from natural variability, such as genotype, crop differences and harvesting
conditions, climate, soil type, etc. [49,50]. Polyphenols were found to reduce morbidity
and slow the progression of cardiovascular, neurodegenerative and cancer diseases. The
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mechanism of action of polyphenols is strongly associated with their antioxidant activity
and reduction of reactive oxygen species in the human body [51,52]. Furthermore, the
health-promoting properties of plant polyphenols include anti-inflammatory, anti-allergic,
anti-atherosclerotic, anticoagulant and antimutagenic effects [53]. There are now pine tree
preparations on the market, which are concentrated sources of polyphenols. The most
popular pine tree preparation is an extract from P. pinaster—Pycnogenol® (Horphag Re-
search Ltd., Geneva, Switzerland). The quality of this extract is defined in the United States
Pharmacopeia (USP 28). Between 65% and 75% of Pycnogenol are procyanidins comprising
catechin and epicatechin subunits with varying chain lengths. Other constituents include
polyphenolic monomers, phenolic or cinnamic acids and their glycosides. According to
many studies, the constituents of Pycnogenol are highly bioavailable [54]. The daily intake
of polyphenols among the general population ranges from 0.1 to 1.0 g per day. Fruit,
vegetables, herbs, spices, coffee, tea and wine are the main source of polyphenols [55,56].

Table 4. Polyphenol content.

Compound Species Part of the Tree Content Reference

gallic acid

P. sylvestris L. shoots

208.38 ± 069 µg/g dw [7]

2,5-dihydroxybenzoic acid 16.63 ± 0.54 µg/g dw [7]

4-hydroxybenzoic acid 1084.92 ± 39.04 µg/g dw [7]

caffeic acid 1502.03 ± 52.53 µg/g dw [7]

syringic acid 145.44 ± 3.28 µg/g dw [7]

p-coumaric acid 387.89 ± 15.83 µg/g dw [7]

ferulic acid 2088.89 ± 56.89 µg/g dw [7]

chlorogenic acid 518.25 ± 4.90 µg/g dw [7]

sinapic acid 54.09 ± 2.06 µg/g dw [7]

t-cinnamic acid 111.44 ± 3.4 µg/g dw [7]

vanillic acid 0.46 ± 0.01 µg/g dw [7]

salicylic acid 0.36 ± 0.00 µg/g dw [7]

naringenin 1.59 ± 0.02 µg/g dw [7]

vitexin 0.61 ± 0.01 µg/g dw [7]

rutin 0.63 ± 0.02 µg/g dw [7]

quercetin 0.98 ± 0.03 µg/g dw [7]

apigenin 0.30 ± 0.01 µg/g dw [7]

kaempferol 0.38 ± 0.01 µg/g dw [7]

luteolin 0.30 ± 0.01 µg/g dw [7]

protocatechuic acid
P. radiata bark 46.2 ± 1.1 µg/mg [57]

P. sibirica seeds

49.2 ± 0.5 mg/100 g dw [58]

(+)-Catechin 52.5 ± 0.6 mg/100 g dw [58]

vanillic acid 85.5 ± 1.0 mg/100 g dw [58]

epigallocatechin gallate 47.0 ± 1.4 mg/100 g dw [58]

syringic acid 101 ± 0.3 mg/100 g dw [58]

()-epicatechin; 125 ± 3.1 mg/100 g dw [58]

taxifolin 172 ± 3.1 mg/100 g dw [58]

eriodictyol 383 ± 1.0 mg/100 g dw [58]

(E)-cinnamic acid 12.2 ± 1.2 mg/100 g dw [58]

naringenin 37.0 ± 2.1 mg/100 g dw [58]
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Table 4. Cont.

Compound Species Part of the Tree Content Reference

catechin

P. sinaster bark

117.0 ± 8.0 mg/L [59]

gallocatechin 16.8 ± 4.9 mg/L [59]

taxifolin 447.7 ± 32.5 mg/L [59]

quercetin 105.5 ± 2.7 mg/L [59]

3,4 hydroxybenzoic acid 17.3 ± 2.4 mg/L [59]

gallic acid 3.6 ± 0.7 mg/L [59]

caffeic acid 20.6 ± 1.1 mg/L [59]

o-coumaric acid 47.5 ± 25.3 mg/L [59]

ferulic acid 47.2 ± 0.8 mg/L [59]

rosmarinic acid 72.5 ± 4.0 mg/L [59]

ellagic acid 402.2 ± 51.4 mg/L [59]

naringin 173.4 ± 55.5 mg/L [59]

apigenin 53.9 ± 0.1 mg/L [59]

resveratrol 40.0 ± 0.4 mg/L [59]

trans-ferulic acid

P. radiata bark

5.9 ± 0.1 µg/mg [57]

trans-caffeic acid 2.6 ± 0.1 µg/mg [57]

()-epicatechin; 21.6 ± 1.7 µg/mg [57]

(+)-Catechin 198.5 ± 6.4 µg/mg [57]

cis-taxifolin 73.6 ± 2.7 µg/mg [57]

trans-taxifolin 382.5 ± 12.1 µg/mg [57]

quercetin 15.2 ± 1.0 µg/mg [57]

quercetin, resin acid (abietic acid,
neoabietic acid), taxifolin, catechin,

quercetin derivative, taxifolin
derivative, catechin and gallocatechin,
kaempferol, rhamnetin isorhamnetin,
myricetin, 3,4-dihydroxybenzoic acid,

3,4-dihydroxycinnamic acid,
pinosylvin 3-methyl ether,

dihydromonomethyl pinosylvin,
resveratrol, glycoside, pinoresinol,

secoisolariciresinol

P. wallichiana and
P. roxburghii, P.

gerardiana

stem and needle
extract presence found [60,61]

1,5-diliydroxy-3,6,7-triniethoxy-8-
allyloxyxanthone,

1-hydroxy-3,6-diinethoxy-2-β
glucopyranoxanthone, friedelin, ceryl

alcohol, b-sitosterol, taxifolin,
quercetin, catechin, kaempferol,

rhamnetin, 3,4-dihydroxybenzoic acid,
3,4-dihydroxycinnamic acid,

pinosylvin, pinoresinol, resin acid,
sterols, gallocatechin and tannins

was found.
hexacosyl ferulate

P. roxburghii bark presence found [62,63]

12-hydroxydodecanoic acid,
14-hydroxytetradecanoic acid and

16-hydroxy-hexadecanoic acid
needle wax presence found [64]

Abbreviation dw—dry weight.
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4. Essential Oils

Essential oils are volatile, natural, complex compounds with strong odours, which are
generated by aromatic plants as secondary metabolites. They are usually obtained through
steam or water distillation. Because of their known antiseptic, bactericidal, virucidal,
fungicidal, medicinal and aromatic properties, they are used in the food industry and
pharmacy to increase shelf life. They are also used as antibacterial, analgesic, sedative, anti-
inflammatory, spasmolytic substances and local anaesthetics [65–67]. Most constituents
of essential oils can be classified as lipophilic terpenoids, phenylpropanoids, or short-
chain aliphatic hydrocarbon derivatives of low molecular weight; the former are the
most common and characteristic. These include allylic, mono, bi- or tricyclic mono- and
sesquiterpenoids from different classes that constitute the major part of essential oils, such
as hydrocarbons, ketones, alcohols, oxides, aldehydes, phenols or esters [68,69]. Moreover,
organic acids, phenols, coumarins, nitrogen and sulphuric substances are also found in
essential oils. A single essential oil can have from 20 to 200 components, of which only
one is ever dominant and gives a scent to the whole mixture of compounds. Variations
in the composition of essential oils depend on environmental factors, plant varieties and
the plant parts from which the oil is extracted [70]. Therefore, the chemical composition
of oil is closely related to its storage conditions, as well as the environment in which
the starting material was stored before its distillation. Since terpenes, i.e., α-pinene, are
volatile and thermolabile, they are easily oxidised and hydrolysed [71–73]. The essential
oil content is only a small percentage of the total weight of the plant. The oils can be
found in plant cell tissue, glands or canals located in several parts of the plant (leaves,
bark, roots, flowers, fruit, seeds). The presence of this mixture in living tissue is not fully
explained. It is believed to be related to attracting insects that pollinate the plant or to
repelling potential pests [74–76]. Pine essential oils are most frequently used as perfume
and repellent ingredients. Turpentine is used for manufacturing many cosmetics, air
fresheners and aromatherapy products [77–79]. The product that remains after distillation
is the rosin that is a non-volatile fraction of oleoresins. It usually contains approx. 90%
of resin acids and 10% of neutral components, monocarboxylic acids and diterpenoid
acids, whereas the most common acids are abietic or pimaranic ones [80]. Rosin is used for
manufacturing of adhesives, printer’s inks, soldering fluxes, varnishes and sealing waxes.
It is also used as a glazing agent in many food products, including medicines and chewing
gums [81].

Pine essential oils contain more than 50 ingredients. Their concentrations vary de-
pending on the plant variety, crop, distillation method and part of the plant (Table 5).
The following compounds are found in the greatest quantity: α-pinene, β-pinene, β-
phellandrene, β-caryophyllene, camphene, α-terpineol, germacrene D, bornyl acetate,
citronellol, β-caryophyllene and tricyclene [82–84]. Alpha-pinene (α-pinene) and beta-
pinene (β-pinene) belong to bicyclic monoterpenes, commonly found in various species of
pine trees of the genus Pinus [85]. Studies have shown that these phytochemicals exhibit
diverse biological activity, which contributes to their various uses and applications. They
can be used as fungicides, flavours and fragrances, as well as antiviral and antimicrobial
agents [86]. The uses of α- and β-pinene go beyond therapeutic and nutritional applica-
tions. They are versatile compounds that are used in polymer synthesis [87]. Pinenes are
generally recognised as safe (GRAS); thus, they are recognised by the U.S. Food and Drug
Administration (FDA) as compounds that can be used in food products [88].
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Table 5. The composition of essential oils extracted from pine [82].

Part of the Plant Bioactive Components Average Concentration (%)

Needles

α-pinene 31.6

β-pinene 13.8

β-phellandrene 9.8

germacrene D 9.2

α-Terpineol 6.2

camphene 7.7

bornyl acetate 4.4

twigs

β-phellandrene 34.4

α-pinene 17.7

β-pinene 17.4

germacrene D 6.5

bornyl acetate 4.3

camphene 3.2

α-Terpineol 2.1

Needles and twigs

Tricyclene, Sabinene, Myrcene,
3-Carene, β-Z-Ocimene, γ-Terpinene,

Terpinolene, E-Pinene hydrate,
α-Campholenal, iso-3-Thujanol,

Z-Verbenol, Borneol, Terpinene-4-ol,
Myrtenal, E-Piperitol, Linalool acetate,

α-Terpineol acetate, α-Copaene,
β-Bourbonene, β-Elemene,

β-Caryophyllene, β-Copaene,
α-E-Bergamotene, α-Humulene,

Z-Muurola-4(14),5-diene, γ-Cadinene,
δ-Cadinene, α-Cadinene, E-Nerolidol,

Germacrene-4-ol, Spathulenol,
Caryophyllene oxide, Humulene

epoxide II, Z-Cadin-4-en-7ol, Cubenol,
α-Muurolol, α-Cadinol,

Eudesma-4(15),7-diene-1-β-ol,
Oplopanone, Cembrene

<1

5. Antioxidant Activity

Free radicals and other reactive oxygen species, such as superoxides, hydroxyl radicals
and hydrogen peroxide, are generated by either exogenous substances or endogenous
metabolic processes of the human body, or in food products, react very rapidly with DNA,
lipids and proteins, causing cell damage. Antioxidants, whose action is based on their
ability to donate hydrogen atoms to free radicals, are compounds that protect against
them [89,90]. In recent years, the interest in natural antioxidants has increased, which
resulted in an intensification of research on them in various scientific fields. As a result,
numerous articles concerning natural antioxidants, including polyphenols, flavonoids,
vitamins and volatile compounds, have been published. Various assays were developed to
evaluate the antioxidant activity of plants and food ingredients [91–94]. The use of at least
two different methods of testing the antioxidant activity of samples is a generally accepted
good practice. A combination of electron- or free radical capture assays, such as DPPH,
ABTS, ACA or FRAP, as well as lipid peroxidation assays, is also recommended [95–98].

Different parts of trees (bark, needles, shoots, seeds), as well as various extraction
methods and solvents, were used in the study on antioxidant properties of trees from the
Pinus genus. As a result, extracts were correlated with various components and, thus, differ-
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ent antioxidant potentials, measured using multiple methods (Table 6). Several correlations
may be observed. In the study of total polyphenol content using the Folin-Ciocalteu reagent,
alcoholic extracts obtained from the tree bark, particularly from P. radiata (1610 mg of gallic
acid equivalents/200 mL) and P. brutia (412.42 ± 7.56 mg gallic acid/g extract), adopting
higher values compared to the aqueous extracts obtained from the shoots of P. sylvestris
(0.86 ± 0.09 mg gallic acid/g dw) [7,99,100]. In free radical tests, which determined the
value of EC50, the ethanolic extracts from P. koraiensis seeds (0.023 ± 0.004 mg/mL) and
methanolic extracts from P. bruti bark (9.17 ± 0.13 µg/mL) assumed the lowest values of
EC50, and thus, exhibited the strongest antioxidant activity [100,101]. Many existing stud-
ies explicitly state that the application of aqueous mixtures of water and organic solvents,
such as ethanol, methanol, acetone, isopropanol or acetonitrile, significantly increases the
antioxidant efficacy of many plant products [102]. In research studying the effect of solvent
on the antioxidant activity of P. densiflora needle extracts using various concentrations of
water and ethanol (0–100%), it was observed that 40% ethanolic needle extracts exhibited
the highest radical scavenging capacity, followed by extracts containing 60%, 20%, 80%,
0% and 100% of ethanol, respectively [103]. Similar results were observed in the study on
P. densiflora bark, which compared the content of phenolic compounds and antioxidant
potential of extracts containing ethanol in the range of 0, 20, 40, 60, 80 or 100%, 20 or 40% of
methanol, isopropanol and acetonitrile, as well as used acetone with distilled water (v/v)
as extraction solvents [102]. Experiments revealed that bark extracts containing 20% of
ethanol, 40% of ethanol and 20% of acetronile displayed the highest antioxidant potential
and the highest content of phenolic compounds [102].

Table 6. Antioxidant properties of various Pinus species.

Method Species Material Result Reference

Total phenolic content P. koraiensis Seed 40% ethanolic extract 264 ± 10.52 mg of gallic acid equivalents/g [101]

P. pinaster Bark ethanolic extract 890 mg of gallic acid equivalents/200 mL [99]

P. radiata Bark ethanolic extract 1610 mg of gallic acid equivalents/200 mL [99]

P. cembra L. Bark 80% aqueous
methanol extract 299.3 ± 1.4 mg of gallic acid/g extract [104]

P. cembra L. Needle 80% aqueous
methanol extract 78.22 ± 0.44 mg of gallic acid/g extract [104]

P. sylvestris L. Shoot aqueous extract 0.86 ± 0.09 mg of gallic acid/g dw [7]

P. sylvestris L. Air-dried shoot 40%
aqueous ethanol extract 13.4 ± 4.07 mg of gallic acid/g dw [105]

P. sylvestris L. Vacuum-dried shoot 40%
aqueous ethanol extract 8.34 ± 2.01 mg of gallic acid/g dw [105]

P. sylvestris L. Freeze-dried shoot 40%
aqueous ethanol extract 5.73 ± 2.55 mg of gallic acid/g dw [105]

P. brutia Bark 80%aqueous
methanol extract 412.42 ± 7.56 mg of gallic acid/g extract [100]

OH scavenging
activity EC50 P. koraiensis Seed 40% ethanolic extract 0.391 ± 0.055 mg/mL [101]

P. brutia Bark 80%aqueous
methanol extract 0.5 ± 0.0 mg/mL [100]

DPPH radical
scavenging activity P. koraiensis Seed 40% aqueous

ethanol extract EC50 value 0.023 ± 0.004 mg/mL [101]

P. cembra L. Bark 80% aqueous
methanol extract EC50 value 71.1 ± 0.5 µg/mL [104]

P. cembra L. Needle 80% aqueous
methanol extract EC50 value 186.1 ± 1.7 µg/mL [104]

P. sylvestris L. Shoot aqueous extract 200.94 ± 23.47 mg of gallic acid/g dw [7]

P. sylvestris L. Air-dried shoot 40%
aqueous ethanol extract 332.25 ± 10.49 dw µM Trolox/g dw [105]
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Table 6. Cont.

Method Species Material Result Reference

P. sylvestris L. Vacuum-dried shoot 40%
aqueous ethanol extract 299.72 ± 15.97 dw µM Trolox/g dw [105]

P. sylvestris L. Freeze-dried shoot 40%
aqueous ethanol extract 339.00 ±19.61 dw µM Trolox/g dw [105]

P. radiata Aqueous bark extract 36.3 ± 5.0% at 2.0 µg/mL [57]

P. brutia Bark 80%aqueous
methanol extract 1.47 ± 0.02 Trolox equivalent mg/mL [100]

O2 inhibition activity P. sylvestris L. Vacuum-dried shoot 40%
aqueous ethanol extract 8.34 ± 2.01 mg of gallic acid/g dw [105]

ABTS radical cation
scavenging assay P. sylvestris L. Freeze-dried shoot 40%

aqueous ethanol extract 5.73 ± 2.55 mg of gallic acid/g dw [105]

P. cembra L. Needle 80% aqueous
methanol extract 0.3 ± 0.0 µM Trolox equivalent to 1 µg/mL extract [104]

P. radiata Aqueous bark extract 55.1 ± 5.8% at 1.0 ug/mL [57]

Reducing power
assay EC50 P. cembra L. Bark 80% aqueous

methanol extract 26.0 ± 0.3 mg/mL [104]

P. cembra L. Needle 80% aqueous
methanol extract 104 ± 2 mg/mL [104]

P. brutia Bark 80%aqueous
methanol extract 9.17 ± 0.13 µg/mL [100]

Ferrous ion chelating
ability assay P. cembra L. Needle 80% aqueous

methanol extract EC50 = 1.755 ± 22 µg/mL [104]

P. sylvestris L. Shoot aqueous extract 42.76 ± 5.7 µM FeSO4/g dw [7]

P. sylvestris L. Air-dried shoot 40%
aqueous ethanol extract 37.79 ±3.64 µM FeSO4/g dw [105]

P. sylvestris L. Vacuum-dried shoot 40%
aqueous ethanol extract 47.25 ±14.06 µM FeSO4/g dw [105]

P. sylvestris L. Freeze-dried shoot 40%
aqueous ethanol extract 21.79 ± 4.36 µM FeSO4/g dw [105]

Superoxide anion P. radiata Aqueous bark extract 47.6 ± 5.8% at 23.0 ug/mL [57]

P. brutia Bark 80%aqueous
methanol extract 39.37 ± 0.85 µg/mL [100]

Hydrogen peroxide P. radiata Aqueous bark extract 47.8 ± 12.3% at 8.0 ug/mL a [57]

15-LO inhibition assay P. brutia Bark 80%aqueous
methanol extract EC50 = 22.47 ± 0.75 µg/mL [100]

6. Pharmacological Properties

People around the world use herbal supplements and medicines due to their beneficial
effects on human health [106]. Bark, needles, pollen and other parts of numerous pine
species have been used for many years and proven to constitute excellent raw materials
in the production of goods [107]. The first documented use of pine bark extracts dates
back to 1535, when French explorer Jacques Cartier described events in which he and his
crew avoided death from scurvy—a disease caused by vitamin C deficiency—by drinking
pine bark brew. In 1951, French researcher Jacques Masquelier began studying herbal raw
materials to identify their bioactive components. He was able to extract proanthocyanidins
from the P. pinaster bark in the amount that could be used for manufacturing purposes [54].
Despite their acknowledged medicinal properties, the timber industry had regarded tree
bark and shoots as inconvenient waste products; only in recent years have they been
widely recognised as a rich source of natural polyphenols, containing potentially beneficial
nutritional, health and medicinal properties [99]. Many standardised extracts of various
pine species are currently used as dietary supplements and phytochemicals aiding in the
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treatment of various diseases around the world, including chronic inflammation, circulatory
disorders and asthma (Table 7).

Several in vitro, animal and human studies have indicated the prophylactic and ther-
apeutic effects of extracts from various pine species [107–130]. In a systematic review,
published by the Cochrane Collaboration, which included 27 RCTs evaluating the effects
of supplements containing pine bark extracts on 10 different chronic diseases: asthma,
Attention Deficit Hyperactivity Disorder, cardiovascular disease and risk factors, chronic
venous insufficiency, diabetes, erectile dysfunction, female sexual dysfunction, osteoarthri-
tis, osteopenia and traumatic brain injury, it was concluded that small sample sizes, a
limited number of RCTs, variability in outcome measures and poor reporting of the RCTs
included, rendered it impossible to draw definitive conclusions about the efficacy or safety
of supplements containing pine bark extract [108]. However, the aforementioned review
did not take into account many other studies, including particularly interesting research
on skin health and protection. Both the study on photoprotective and anti-photoaging
effects presented a positive influence of P. pinaster bark extracts [109,110]. Furthermore,
the role of antioxidants from the pine extracts in neuroprotective activity may prove to be
fundamental, as P. radiata bark extracts exhibited effectiveness in two cases of RCT [111,112].
Nervous system inflammation and oxidative stress are believed to be the most characteristic
symptoms of Alzheimer’s disease and play a key role in neurotoxicity. Thus, a suitable an-
tioxidant strategy may improve the treatment of neurodegenerative diseases and dementia.
Numerous studies have confirmed the neuroprotective effects of polyphenolic compounds,
which protect neurons from the neurotoxin-induced injuries, as well as provide the ability
to inhibit nervous system inflammations and the potential to advocate memory, learning
and cognitive functions [113].

Table 7. Pharmacological properties of Pinus.

Activity Material Experimental Model Result Source

Antihypertensive P. densiflora Sieb. et
Zucc. extract

A group of Wistar-Kyoto rats—a
normotensive group—was orally

administered tap water. Four
groups of spontaneously

hypertensive rats were orally
administered tap water,

captopril (a positive control),
50 mg/kg/day of KRPBE P.

densiflora bark extract (Korean
red pine bark extract; KRPBE)

and 150 mg/kg/day of KRPBE,
respectively. The blood pressure

of rats was measured once a
week during the seven weeks of

oral administration of drugs.
After seven weeks, the

researchers collected the rats’
lungs, kidneys and serum, and
subsequently determined the

activity of
angiotensin-converting enzyme
(ACE), as well as the content of

angiotensin II and
malondialdehyde (MDA).

Blood pressure of rats served
with captopril and KRPBE was
significantly lower than that of

the SHR control group. The
activity of ACE, as well as the
content of angiotensin II and

MDA, was significantly lower in
groups administered with

captopril and KRPBE than those
in the SHR control group.

[114]
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Table 7. Cont.

Activity Material Experimental Model Result Source

Anti-adipogenic P. densiflora aqueous
bark extract

Four-week-old male C57BL/6
mice were fed with regular feed
(18% kcal from fat) or HFD (60%
kcal from fat). Animals fed with
HFD were additionally subjected
to PineXol treatment at 10 or 50
mg/kg body weight (PX10 or

PX50, respectively).

Compared to the HFD group,
the PX50 group was

characterised by statistically
lower body weight and body fat

mass (p < 0.05 and p < 0.001,
respectively). In the PX50 group,

concentrations of hepatic
triglycerides, total cholesterol
and low-density lipoprotein
cholesterol were lower than

those in the HFD group
(p < 0.01). The levels of acetyl

CoA carboxylase (p < 0.01),
elongase of a very long chain of
fatty acids 6 (p < 0.01), stearoyl

CoA desaturase 1 (p < 0.05),
microsomal triglyceride transfer

protein (p < 0.01) and sterol
regulatory element-binding

protein 1 (p < 0.05) in the PX50
group were significantly lower
compared to their respective

levels in the HFD group. In the
white adipose tissue, the levels

of CCAAT enhancer-binding
protein alpha (p < 0.05),

peroxisome
proliferator-activated receptor

gamma (p < 0.001) and perilipin
(p < 0.01) in the PX50 group were

lower than those in the
HFD group.

[115]

Hepatoprotective P. roxburghii
wood oil

The administration of P.
roxburghii wood oil at 200, 300
and 400 mg/kg body weight
was examined in terms of its

hepatoprotective activity on rat
liver damage induced by carbon

tetrachloride and ethanol.

Noticeably high levels of serum
aspartate aminotransferase,
alanine aminotransferase,

alkaline phosphatase, total
bilirubin, malondialdehyde

(MDA) and low levels of
reduced glutathione (GSH) and

total protein induced by
hepatotoxins, significantly
inclined towards adopting

normal levels due to the wood
oil administered at 200 and

300 mg/kg.

[117]

Hepatoprotective P. roxburghii
wood oil

The administration of P.
roxburghii wood oil at 200, 300
and 400 mg/kg body weight
was examined in terms of its

hepatoprotective activity on rat
liver damage induced by carbon

tetrachloride and ethanol.

Noticeably high levels of serum
aspartate aminotransferase,
alanine aminotransferase,

alkaline phosphatase, total
bilirubin, malondialdehyde

(MDA) and low levels of
reduced glutathione (GSH) and

total protein induced by
hepatotoxins, significantly
inclined towards adopting

normal levels due to the wood
oil administered at 200 and

300 mg/kg.

[117]
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Table 7. Cont.

Activity Material Experimental Model Result Source

Antidiabetic
P. roxburghii

ethanolic bark
extract

Rats were induced with diabetes
through alloxan injection
(120 mg/kg body weight).

Control rats were either healthy
and untreated, or induced with

diabetes, untreated and
provided only with distilled

water. The acute effect of
ethanolic extract was evaluated
by administering 100, 300 and

500 mg/kg body weight p.o. of
the extract to normoglycemic
rats. In the chronic model, the

ethanolic extract was
administered to normal and

alloxan-induced, diabetic rats at
100, 300 and 500 mg/kg body

weight p.o. per day for 21 days.
Levels of blood glucose and the

values of body weight were
monitored at specific intervals

using different biochemical
parameters.

Statistical data indicated a
significant (p < 0.01) increase in

the body weight, as well as a
decrease in the level of blood

glucose, glycated haemoglobin,
total cholesterol and serum

triglycerides. The level of HDL
cholesterol was significantly
(p < 0.01) increased in rats

administered with the extract.

[116]

Antidyslipidemic

P. roxburghii
needles, hexane (B),

chloroform (C),
n-butanol soluble
(D) and n-butanol

insoluble (E)
fractions.

Dyslipidemic hamsters were
divided into six groups and fed
with five solvent fractions (A, B,

C, D and E) of P. roxburghii
needles.

Extract from P. roxburghii
needles exhibited the significant
potential to decrease the level of
the plasma lipid profile, as well
as having a beneficial effect on
the HDL-C and its ratio with

total cholesterol in a
dyslipidemic hamster model.

[118]

Analgesic
P. roxburghii Sarg.

stem bark ethanolic
extract

Analgesic activity was evaluated
using acetic acid-induced

writhing and tail immersion tests
in Swiss albino mice.

Alcoholic extract from Pinus
roxburghii Sarg. (at 100, 300 and

500 mg/kg) significantly and
dependently reduced the

number of abdominal
constrictions induced in mice by
administering a 1% solution of

acetic acid. This dose-dependent
protective effect reached a

maximum pain inhibition of
80.95% at 500 mg/kg.

[119]
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Table 7. Cont.

Activity Material Experimental Model Result Source

Hepatoprotective P. roxburghii
wood oil

The administration of P.
roxburghii wood oil at 200, 300
and 400 mg/kg body weight
was examined in terms of its

hepatoprotective activity on rat
liver damage induced by carbon

tetrachloride and ethanol.

Noticeably high levels of serum
aspartate aminotransferase,
alanine aminotransferase,

alkaline phosphatase, total
bilirubin, malondialdehyde

(MDA) and low levels of
reduced glutathione (GSH) and

total protein induced by
hepatotoxins, significantly
inclined towards adopting

normal levels due to the wood
oil administered at 200 and

300 mg/kg.

[117]

Anticonvulsant P. roxburghii
alcoholic extract

Anticonvulsant activity was
evaluated by means of maximal

electroshock (MES) and
pentylenetetrazole-induced

(PTZ) seizures in Wistar albino
rats at various doses (i.e., 100,

300 and 500 mg/kg).

In the MES-induced seizure
model, AEPR at 300 and
500 mg/kg body weight

significantly reduced all phases
of convulsion (p < 0.01). In the
PTZ-induced seizure model,

administration of the extract at
300 and 500 mg/kg half an hour

before the injection of PTZ
significantly delayed the onset of

clonic seizures (p < 0.01).

[120]

Anti-viral (HIV-1)
P. pinaster ssp.

atlantica extract
(Pycnogenol)

The inhibitory effect of the
extract on virus binding to MT-4
cells was examined by infecting

the MT-4 cells with
IIIB-env-Hiv-1 in the presence or

absence of extract.

Addition of the compound at the
time of injection resulted in a

dose-dependent inhibition of the
cytopathic effect, as well as a

dose-dependent reduction
in p24.

[121]

Anti-viral
(Epstein-Barr virus)

P. massoniana
aqueous bark

extract

Inhibition of the immediate-early
viral gene transpiration by the

extract was assessed by transient
transfection assay.

P. massoniana bark extract
(PMBE) at 60 microg/mL or a

higher dose, inhibits the
expression of the Epstein-Barr
virus (EBV) lytic proteins, such
as Rta, Zta and EA-D. The EBV
lytic cycle was blocked by the

inhibition of the immediate-early
gene transcription.

[122]

Wound healing

Methanol and P.
longifolia roxburghii

aqueous leave
extracts

Extracts were examined in terms
of wound healing properties on

excision and incision wound
models in Wistar albino rats.

Both extracts exhibited
significant wound healing

activity. However, the rate of
wound contraction and

epithelialisation was faster in
groups administered with

methanol extract.

[123]

Anti-cancer P. roxburghii
essential oil

The essential oil was tested
against human cancer cell lines,

i.e., cultured HCT-116 (colon
cancer), KBM-5 (myelogenous
leukaemia), U-266 (multiple
myeloma cells), MiaPaCa-2

(pancreatic cancer cells), A-549
(lung carcinoma cells) and SCC-4
(squamous cell carcinoma) cell

lines by means of the MTT assay.

The percentage inhibition of
PREO activity was found to be

concentration-dependent. U-266
exhibited maximum inhibition of

83%, while HCT-116, SCC4,
MiaPaCa-2, A-549 and KBM-5

manifested 71, 69, 73, 73 and 76%
of inhibition, respectively.

[124]
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Table 7. Cont.

Activity Material Experimental Model Result Source

Hepatoprotective P. roxburghii
wood oil

The administration of P.
roxburghii wood oil at 200, 300
and 400 mg/kg body weight
was examined in terms of its

hepatoprotective activity on rat
liver damage induced by carbon

tetrachloride and ethanol.

Noticeably high levels of serum
aspartate aminotransferase,
alanine aminotransferase,

alkaline phosphatase, total
bilirubin, malondialdehyde

(MDA) and low levels of
reduced glutathione (GSH) and

total protein induced by
hepatotoxins, significantly
inclined towards adopting

normal levels due to the wood
oil administered at 200 and

300 mg/kg.

[117]

Petroleum ether,
ethyl acetate,

chloroform and P.
roxburghii Sarg.

ethanolic extract

Effect of Pinus roxburghii Sarg.
extracts on the growth of human
IMR32 neuroblastoma cancer cell

line was studied using the
SRB assay.

Petroleum ether and chloroform
extracts were the only extracts

that exhibited anticancer activity.
[125]

Cardio-protective
P. pinaster ssp.

atlantica extract
(Pycnogenol)

Twenty-three patients with
coronary artery disease (CAD)

completed this randomised,
double-blind, placebo-controlled
cross-over study. Apart from the
standard cardiovascular therapy,

patients received Pycnogenol
(200 mg/day) for 8 weeks

followed by the placebo, or vice
versa. At a baseline and after

each treatment period, the
endothelial function, assessed in

a non-invasive manner via
flow-mediated dilatation (FMD)

of the brachial artery using
high-resolution ultrasound,

biomarkers of oxidative stress
and inflammation, platelet
adhesion and 24 h blood

pressure monitoring were
evaluated.

In CAD patients, treatment with
Pycnogenol was associated with
an improvement of FMD from

5.3 ± 2.6 to 7.0 ± 3.1 (p < 0.0001),
while no change was observed in
case of placebo (5.4 ± 2.4 to 4.7

± 2.0; p = 0.051).
Isoprostane—which influences

the oxidative stress
index—significantly decreased
from 0.71 ± 0.09 to 0.66 ± 0.13

after treatment with Pycnogenol,
while no change was observed in
the group treated with placebo
(mean difference 0.06 pg/mL

with an associated 95% CI (0.01,
0.11), p = 0.012). Inflammation
markers, platelet adhesion and
blood pressure levels did not

change following the treatment
with Pycnogenol or placebo.

[126]

Hepatoprotective P. roxburghii wood
oil

The administration of P.
roxburghii wood oil at 200, 300
and 400 mg/kg body weight
was examined in terms of its

hepatoprotective activity on rat
liver damage induced by carbon

tetrachloride and ethanol.

Noticeably high levels of serum
aspartate aminotransferase,
alanine aminotransferase,

alkaline phosphatase, total
bilirubin, malondialdehyde

(MDA) and low levels of
reduced glutathione (GSH) and

total protein induced by
hepatotoxins, significantly
inclined towards adopting

normal levels due to the wood
oil administered at 200 and

300 mg/kg.

[117]
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Table 7. Cont.

Activity Material Experimental Model Result Source

Neuroprotective

P. densiflora aqueous
bark extract

Neuroprotective effect
(anticholinesterase activity) was
determined using the AChE and
BChE assays while intracellular
oxidative stress was evaluated

using the fluorescent assay using
DCFH-DA on neuronal PC-12

cells.

Pretreatment of PC-12 cells with
Kextract decreased the oxidative

stress in a dose-dependent
manner compared to cells

exposed solely to oxidative
stress. Inhibition of AChE and

BChE occurred at 10 µg/mL and
100 µg/mL in TE

values—approx. 68.3 nM and
15.1 nM for the inhibition of

AChE and BChE, respectively.

[127]

P. roxburghii Sarg.
methanolic extract

The in vitro cell viability activity
of P. roxburghii was assessed

using the PC-12 cell lines. The
in vivo neuroprotective activity

of P. roxburghii was tested on
Wistar albino rats (both sexes).
ICV-STZ (3 mg/kg, bilateral)
was administered to induce a

memory deficit.

P. roxburghii exhibited significant
cell viability at 10, 50 and 100
µg/mL in an in vitro assay on
PC-12 cell lines. In the in vivo
activity, ICV-STZ significantly

deteriorated memory, cognition,
tissue oxidative stress and the
AchE activity. P. roxburghii (at
100, 200 and 300 mg/kg p.o.)

and donepezil (at 3 mg/kg, p.o.)
significantly (p < 0.05) reversed
the behavioural changes in rats
when tested in a morris water
maze and elevated plus maze.

Increased levels of lipid
peroxidation, AchE activity and

decreased the level of
glutathione were significantly

(p < 0.05) antagonised by P.
roxburghii, similarly to the case of

donepezil in rat brain.

[128]

P. radiata bark

Sixty adults who sustained a
mild TBI 3–12 months before

recruitment and were
experiencing persistent cognitive

difficulties (CFQ score > 38),
were randomised in order to

receive enzogenol
(1000 mg/day)

or a corresponding dose of
placebo for 6 weeks.

Subsequently, all participants
received

enzogenol for a further 6 weeks,
followed by placebo for 4 weeks.

Compliance, side-effects,
cognitive failures, working and

episodic memory,
post-concussive symptoms and
mood were evaluated at baseline,

as well as in the 6th, 12th and
16th week.

Enzogenol was found to be safe
and well-tolerated. Trend and

breakpoint
analyses revealed a significant
reduction in cognitive failures

after 6 weeks (mean CFQ score,
95% CI, Enzogenol versus
placebo 6.9 (10.8 to 4.1)).

Improvements in the frequency
of self-reported cognitive failures

were estimated to continue
until the 11th week before

stabilising.

[111]
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Table 7. Cont.

Activity Material Experimental Model Result Source

P. radiata

During the period of 5 weeks,
the participants (42 males aged

50–65) were supplemented either
with Enzogenol combined with
vitamin C, or vitamin C only. A

battery of computerised
cognitive tests was administered

while cardiovascular and
haematological parameters were

assessed before and after
supplementation.

The speed of the response to the
spatial working memory and
immediate recognition tasks

improved after supplementation
with Enzogenol combined with

vitamin C, whereas
supplementation with vitamin C

alone did not induce any
improvement. A trend in the
reduction of systolic blood
pressure was observed in

patients supplemented with
Enzogenol combined with

vitamin C, but not with vitamin
C alone. The blood safety

parameters remained
unchanged.

[112]

Photoprotective P. pinaster

A total of 21 volunteers were
administered oral

supplementation of Pycnogenol:
1.10 mg/kg body weight (b.

wt.)/day (d) for the first 4 weeks
and 1.66 mg/kg b. wt./d for the
following 4 weeks. The minimal

erythema dose (MED) was
measured twice before the
supplementation (baseline
MED), once after the first

4 weeks of supplementation and
the last time at the end of

the study.

An increase in MED was
observed after supplementation
with 1.10 mg/kg b. wt./d of PBE

for 4 weeks (mean MED 5
34.62 mJ/cm2, 95% CI 5 from

31.87 to 37.37). A
supplementation with

1.66 mg/kg b. wt./d of PBE for
the last 4 weeks of the study

caused an even further increase
in MED (mean MED 5

39.62 mJ/cm2, 95% CI 5,
from 37.51 to 41.73).

[109]

Anti-photoaging P. pinaster

A total of 112 women with mild
to moderate skin photoaging

symptoms were randomised to
either take part in a 12-week
open trial regimen of 100 mg

PBE supplementation once a day
or to be in a parallel-group—a

trial regimen of 40 mg PBE
supplementation once a day.

A significant decrease in clinical
grading of skin photoaging

scores was observed during both
100 mg and 40 mg of PBE daily

supplementation regimens.
Furthermore, a significant

reduction in the pigmentation of
age spots was demonstrated

using skin colour measurements.

[110]

Abbreviations: KRPBE—Korean red pine bark extract; SHR—spontaneously hypertensive rats; ACE—angiotensin-converting enzyme;
MDA—malondialdehyde; HFD—high fat diet, PX—PineXol; GSH—glutathione; AEPR—alcoholic extract of bark of Pinus roxburghii Sarg.;
MES—maximal electroshock; PTZ—pentylenetetrazole; EBV—Epstein-Barr virus; PREO—P. roxburghii essential oil; MED—minimal ery-
thema dose; CAD—coronary artery disease; FMD—flow-mediated dilatation; AChE—acetylcholinesterase; BChE—butyrylcholinesterase;
ICV-STZ—Intracerebroventricular Streptozotocin Injections; CFQ—Cognitive Failures Questionnaire; b. wt./d—body weight/day; PBE—
pine bark extract.

7. Antimicrobial Activity

The increasing incidence of infectious diseases, severe side effects related to the
intake of many antibiotics and the development of antibiotic resistance substantiate the
growing interest in the identification of new antimicrobial compounds, both natural and
synthetic agents [131–133]. Plant resin has been applied to treat diseases in folk medicine for
thousands of years. It was also used in the pharmaceutical industry before the introduction
of modern antibiotics. Many of the secondary metabolites of trees adopt a protective
function against predators and pathogenic microorganisms. The antimicrobial activity of
extracts, oils and resins from trees of the Pinus genus may be related to various organic
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compounds, such as alkaloids, phenols and terpenes (Tables 4 and 5) [82,134]. The discovery
of biological effects of the Pinus spp. compounds suggests that they may be applied in the
creation of environmentally friendly and biocompatible pharmaceuticals.

The most common human pathogen, colonising one-third of healthy people through-
out the world, is Staphylococcus aureus [135]. S. aureus is also an etiologic agent contributing
to the development of many human infections, including pneumonia, meningitis, toxic
shock syndrome, bacteremia and endocarditis. S. aureus is further known for its rapidly
advancing resistance to antibiotics [136–139]. The studies proved that extracts and essential
oils from P. cembra, P. koraiensis, P. brutia, P. densiflora and P. sylvestris inhibit the growth
of many S. aureus strains, including: ATCC 25923, 25923, 503, 29213, ATCC BAA-977 and
ATCC 13565 (Table 8) [104,140–142]. Trees from the Pinus species display properties aiding
in the fight against many strains of various bacteria. The highest inhibition was observed
in M. luteus NRRL B-4375, Proteus vulgaris ATCC 13315, Shigella flexneri AT CC 12026 and
Streptococcus faecalis ATCC 19433 [141,142]. Shigella flexneri is a gram-negative bacterium
causing the most contagious bacterial shigellosis. Shigellosis generates 1.1 million deaths
and more than 164 million cases each year. The majority of said cases involve children in
developing countries. Pathogenesis of S. flexneri is based on its ability to invade and repli-
cate within the colonic epithelium, leading to severe inflammation and destruction of the
epithelium itself [143]. Despite intensive research, conducted for over 60 years using vari-
ous vaccination strategies, a safe and effective vaccine is not yet available [144]. Numerous
studies indicate that plant secondary metabolites can inhibit the spread of phytopathogens,
by acting both as antimicrobial agents and elicitors of other defensive responses. Many
of the aforementioned metabolites negatively affect the clinically relevant pathogens and
their use as “antibiotic enhancers” or “virulence attenuators” fighting against infectious
diseases in humans is promising [145].

Table 8. Commercial pharmacological products from pine.

Name of Formulation Plant Part Used Pharmacological Activity Declared by the Manufacturer References

Polyherbal oil extract Oleoresin of P. roxburghii Analgesic and anti-inflammatory [129]

Rumalaya gel Resin from P. roxburghii Lowers the joint and bone pain associated with various
orthopedic ailments [119]

Pycnogenol® P. pinaster bark
Antimicrobial activity and treatment of asthma, Attention

Deficit Hyperactivity Disorder, chronic venous insufficiency,
diabetes, erectile disorders and osteoarthritis

[108]

Oligopin® P. pinaster bark
Cardiovascular and vein health, antioxidant, treatment of

male sexual disorders and ADHD (Attention Deficit
Hyperactivity Disorder)

[130]

PineXol® P. densiflora bark Anti-inflammatory agent, enhances blood circulation and
improves skin conditions [146]

Flavangenol® P. maritima bark

Lowers blood pressure and improves glycemic control,
plasma lipoprotein profile, body weight, antioxidative
capacity, level of anti-inflammatory markers and liver

function tests

[147]

Enzogenol® P. radiata bark Antioxidant, anti-inflammatory, neuroprotective and
anti-diabetic properties. [148]

Compounds extracted from the trees of the Pinus genus presented in many studies
exhibited different levels of antimicrobial activity against yeast, gram-positive and gram-
negative bacteria, which validates the traditional application of these substances [140].
Additionally, such extracts, oils and resins display the insecticidal, phytotoxic and antiox-
idant potential [141]. Therefore, it is necessary to conduct research aided by biological
studies with recovery, identification and testing of a single compound and/or multiple
compounds to determine its/their biological effects [142].
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8. Food Application of Pinus

There is an increasing demand for health-promoting plant products all over the
world [149]. Today, conifer shoots are virtually unused as a food ingredient, despite their
common availability in many parts of the world. An exception is a common juniper, whose
berry-like cones are a valued seasoning in Europe [150]. Pine shoot products, such as pine
shoot syrup, pine shoot-based beer and herbal teas are available on the market. Despite its
many potential applications, currently, the shoot products are not very popular [151].

To date, there has been little research on the use of pine tree elements in food products
(Table 9). However, current literature indicates a possible application of such ingredients
in beverages, dairy products, meat products or even bread. The addition of P. pinaster
extracts increases the antioxidant potential of juices and dairy products. With regard to
juices, polyphenols derived from pine extracts may also have a negative, inhibitory effect
on the microflora [151–154]. Moreover, in terms of sensory experience, kefir enriched with
pine bud syrup was assessed higher than the control sample, which indicates that it may
also serve as an ingredient providing flavour and aroma [151]. In the case of the addition
of pine extract to bread and meat, the substance acted as a shelf life extender by inhibiting
the growth of bacteria and oxidisation of fats [155,156]. Moreover, pine extracts can be
possibly applied in the future as additives and preservatives, as they are commercially
sold as dietary supplements. Many of these extracts are listed on the Everything Added to
Food in the United States (EAFUS) database that the Food and Drug Administration (FDA)
approved as food additives or affirmed as Generally Recognised as Safe (GRAS) [157].

Table 9. Application of Pinus in food products.

Food Application Material Used Application Result References

Fruit juices supplementation

P. pinaster Ait bark extract

Fresh fruit juices enriched with PBE exhibited the
highest inhibitory effect on the growth of

pathogenic intestinal bacteria, primarily E. coli and
Enterococcus faecalis. The in vitro digestion process

reduced the antibacterial effect of juices on the
majority of pathogenic bacteria by approx. 10%.

[152]

ROS production increased in the inflamed cells
exposed to digested commercial red fruit juice

(86.8 ± 1.3%) in comparison with the fresh juice
(77.4 ± 0.8%) and increased in the inflamed cells

exposed to digested enriched red fruit juice
(82.6 ± 1.6%) in comparison with the fresh

enriched juice (55.8 ± 6%)

[158]

Following the in vitro digestion, the level of
detectable phenolic compounds (expressed as

gallic acid equivalent) was higher in both
pineapple and red fruit juices enriched with

Pycnogenol than non-enriched commercial juices
(155.6 mg/100 mL vs 94.6 mg/100 mL and

478.5 mg/100 mL vs 406.9 mg/100 mL
respectively). Increased antioxidant activity

(measured by 2,2’-azino-bis
(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS)
and oxygen radical absorbance capacity (ORAC)

methods) was observed in digested enriched juices,
contrary to the same samples before digestion.

Undigested, enriched with Pycnogenol pineapple
juice displayed a higher antiproliferative effect

between the 24th and 72nd hour of incubation in
comparison with the non-enriched juice.

[153]
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Table 9. Cont.

Food Application Material Used Application Result References

P. brutia, P. pinea bark extracts,
Pycnogenol®.

The paper shows that juices enriched with pine
bark extracts exhibit higher antioxidant capacities
and ascorbic acid contents compared to the control
group, thereby providing improved functionality.

[154]

Yoghurt supplementation French marine bark extract

Addition of Pycnogenol neither significantly
affected the growth of microorganisms nor caused
any modifications in nutritional parameters during
the storage of yoghurt. Data indicate that neither

the content of total polyphenol nor selected
phenolic substances (catechin, epicatechins,

chlorogenic acid and caffeic acid) was affected
during the shelf life. In conclusion, these results
indicate Pycnogenol as a valuable ingredient for

the enrichment of yoghurt preparations.

[159]

P. nigra cones

This study used yoghurt samples to identify the
LAB strains generated by the pine cone addition

and determined the physicochemical properties of
these samples. The genotypic identification

revealed that in yoghurt samples, Streptococcus
thermophilus strains were the main force

conducting the fermentation process, while
Lactobacillus plantarum strains appeared in three
yoghurt samples as an adjunct culture. The time of

pine cones collection significantly affected the
physicochemical properties of yoghurt.

[160]

Kefir Pine bud syrup

The pine bud syrup used to enrich kefir contains a
lot of polyphenols and terpenes, as well as

exhibiting a high antioxidant activity. The addition
of pine bud syrup resulted in an increase in total
solids, as well as a decrease in the content of fat,

proteins and pH levels. The kefir sample
containing 10% pine bud syrup was the most
appreciated by the sensory panel. Its overall

acceptability score was higher (6.71 points) than
that of the regular kefir (5.57 points). The addition
of 10% pine bud syrup improved the texture and

consistency of regular kefir.

[151]

Meat Pine bark extract
(Pycnogenol)

The pine bark extract (Pycnogenol®) significantly
improved the oxidative stability of cooked beef
and reduced the hexanal content by 73% after 3

days of refrigerated storage.

[155]

Tea Pine needles

Supplementation of pine needle extract at 1, 2, 4
and 8% in the control diet and mixed groups
significantly decreased the weight gain and

visceral fat mass in comparison with the
corresponding values of the control group.

[34]
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Table 9. Cont.

Food Application Material Used Application Result References

Beer P. sylvestris needles

The addition of needles increases the beer
gustatory properties and decreases the methanol

content. The content of ascorbic acid in
ready-made drinks amounts to 3.52 mg/100 g. The

antioxidant activity of elaborated beer is
178.1 C/100 g and determines its high biological
value. In the study, the influence of beer enriched
with needle extract was evaluated concerning the

antioxidant system of organisms of biological
objects. Under acute pathological conditions, a
beer with needle extract decreases its oxidative

influence on brains of the biological objects.

[161]

Bread Fermented pine needle
extract syrup

Bread with a higher content of pine needle extract
syrup demonstrated a slower increase of bread

hardening during the storage period, suggesting a
slowdown of bread retrogradation. The addition
of pine needle extract syrup in bread dough also

inhibited the growth of aerobic bacteria and
moulds on the bread surface (by 0.8~24 in log
(CFU/g) during the 4-day storage). The use of

concentration higher than 11% initially gave the
bread a strong, fine needle flavour, which

disappeared after 2 days. Generally, the addition
of pine needle extract syrup had no negative effect

on the quality (including sensory) of bread.
Therefore, the addition of needle extract syrup
could improve storage stability and extend the

shelf life of bread.

[156]

Abbreviations: PBE—pine bark extract; ABTS—2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid; ORAC—oxygen radical absorbance
capacity; LAB—lactic acid bacteria; CFU—colony-forming unit.

9. Conclusions

Residues and by-products constitute an important source of industrially significant
biocomponents. Various species of pine tree contain different compositions of bioactive
compounds. However, even though the pine bark extracts are commercially available,
there is no universal method of extraction that is suitable for all phenols. Depending
on the ultimate goal of extraction, an individual examination should be performed to
ensure the most appropriate extraction procedure. Regardless of the solvent, method,
pine species and plant part used, all pine extracts contain a high number of polyphenols.
Nevertheless, individual compounds are characterised by different concentrations, types
and levels of their bioactivity. There are few studies on the identification and even fewer
studies presenting the quantitative determination of individual polyphenols contained in
pine extracts. Pine tree extracts exhibit several described biological activities that may be
beneficial to human health. The available examples of the application of pine elements in
food are promising. Pine tree extracts, syrups and other intermediates may be components
that impart functional properties, extend the shelf life and assign desirable qualities to food
products. Pine extracts and oils exhibit great potential as formulation ingredients for food,
cosmeceutical and pharmaceutical industries. The reuse of residual pine elements is still
limited compared to its potential. In this case, it is necessary to conduct more research to
find and develop new products and applications of pine residues and by-products.
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version of the manuscript.
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