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A B S T R A C T   

Background: Major depressive disorder (MDD) is a severe, unpredictable, ill-cured, relapsing 
neuropsychiatric disorder. A recently identified type of death called cuproptosis has been linked 
to a number of illnesses. However, the influence of cuproptosis-related genes in MDD has not been 
comprehensively assessed in prior study. 
Aim: This investigation intends to shed light on the predictive value of cuproptosis-related genes 
for MDD and the immunological microenvironment. 
Methods: GSE38206, GSE76826, GSE9653 databases were used to analyze cuproptosis regulators 
and immune characteristics. To find the genes that were differently expressed, weighted gene co- 
expression network analysis was employed. We calculated the effectiveness of the random forest 
model, generalized linear model, and limit gradient lifting to arrive at the best machine prediction 
model. Nomogram, calibration curve, and decision curve analysis were used to show the antic-
ipated MDD’s accuracy. 
Results: This study found that there were activated immune responses and cuproptosis-related 
genes that were dysregulated in people with MDD compared to healthy controls. Considering 
the test performance of the learned model and validation on subsequent datasets, the RF model 
(including OSBPL8, VBP1, MTM1, ELK3, and SLC39A6) was considered to have the best 
discriminative performance. (AUC = 0.875). 
Conclusion: Our study constructed a prediction model to predict MDD risk and clarified the po-
tential connection between cuproptosis and MDD.   

1. Introduction 

A recurrent depressive condition with severe physical and psychological symptoms is known as major depressive disorder (MDD) 
[1]. Major depressive disorder was identified using the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) as follows: 5 
or more near-daily bouts of any symptom for two weeks on the premise of at least one underlying condition [2]. The World Health 
Organization surveyed 14 countries or regions and found that while methodological differences can lead to significant differences in 
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Fig. 1. The flow chart of this study.  
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national estimates of lifetime prevalence and disease duration, the high risk of chronic relapses from MDD is clear [3]. An epide-
miological study on the prevalence of major depressive illness among people in the United States was carried out by Deborah S. 
Hasin et al. They discovered that the lifetime prevalence of MDD was 20.6% and the 12-month prevalence was 10.4%, elucidating 
the true incidence of MDD and addressing the gap in the MDD literature caused by the lack of US national databases [4]. Highly 
heterogeneous, multifactorial, and high incidence characteristics make diagnosing or treating major depressive disorder chal-
lenging. The underlying mechanisms of major depression have been advanced, but no perfect mechanism can satisfactorily explain 
all aspects of the disease due to the variable duration, frequency, and pattern of episodes. Therefore, discovering mechanisms 
derived from the biological underpinnings provided directly by clinical studies is crucial to identifying new diagnostic indicators 
and therapeutic targets for patients. 

Copper, an essential element in the human body, is critical for maintaining the stability of the physical microenvironment. As an 
essential micronutrient, copper is required for various physiological processes in almost all cell types. Although copper is an 
important enzyme cofactor, slightly abnormal intracellular concentrations can be toxic and lead to cell death. Therefore, the body 
strictly regulates the uptake, distribution, and elimination of copper and maintains a dynamic balance. Any factor leading to copper 
accumulation in the human body can cause serious and potentially life-threatening pathological conditions. Since intracellular 
copper accumulation causes oxidative stress and disrupts cellular functions, leading to non-apoptotic programmed cell death by 
binding to small molecule chaperones, this copper ion-induced cell death group is non-apoptotic, non-ferrous, and non-necrotic [5, 
6]. This new form of copper-dependent cell death is called cuproptosis. The onset of copper toxicity depends on TCA’s fatty acid 
polymerization protein circulating in active cells and the subsequent acute proteotoxic stress that disrupts mitochondrial meta-
bolism. Excessive copper concentrations are associated with the development of MDD. Recent studies have also found that abnormal 
concentrations of copper induce cell death and disrupt synaptic function or neural metabolism, leading to memory impairment in 
depressed patients [7,8]. These studies imply a role in cuproptosis in MDD, yet direct evidence is still lacking. We used bioinfor-
matics techniques to elucidate the potential association of cuproptosis with MDD through existing datasets. In addition, MDD still 
lacks a valid predictive model, and we also attempted to build reliable predictive models. Thus, elucidating the underlying 
mechanisms of major depressive disorder by exploring physiological and pathological activities is crucial for early diagnosis and 
effective therapeutic targets. 

This study explored immune signatures and CRGs (cuproptosis-related genes) between normal and MDD individuals according to 
three GEO datasets. The expression patterns of 19 CRGs were used to assess the differences in immune cell penetration between the 
two cuproptosis-related clusters after the construction of two of them. The WGCNA-identified cluster-specific DEGs were then used 
in a matching functional analysis. While this is happening, a patient prediction model is created by contrasting several machine 
learning techniques. The flowchart of this study is shown in Fig. 1. 

2. Methods 

2.1. Data processing and download of the MDD dataset 

Datasets GSE38206, GSE76826, and GSE39653’s gene expression profiles were retrieved from the GEO database at https:// 
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38206, GSE76826, and GSE39653, respectively. These data were detected by 
the platforms Agilent-028004 SurePrint G3 Human GE 8 × 60K Microarray (Feature Number version), Agilent-039494 SurePrint G3 
Human GE v2 8 × 60K Microarray 039381 (Probe Name version), and Illumina HumanHT-12 V4.0 expression beadchip, respec-
tively. The GSE38206 dataset was selected for further analysis, containing the mRNA expression data of PBMCs from 18 normal 
individual samples and 18 MDD samples. The GSE76826 dataset comprises the PBMCs mRNA expression data of 12 normal indi-
vidual samples and 20 MDD samples. The GSE39653 dataset comprises the whole blood mRNA expression data of 24 normal in-
dividual samples and 21 MDD samples, both of which were selected for validation analysis. Specific information is shown in Table 1. 
Data mining and statistical analysis depend on R software (version 3.6.1) and Bioconductor Packages (version 3.10) [9]. These 
differential expression genes (DEGs) were recognized with the limma package in R [10]. We used the R programs “ggplot2″ and 
“pheatmap” to create heatmaps and volcano plots from the data, respectively. Because only published data was used in this study, no 
ethical approval was required. 

Table 1 
The summary of GEO datasets used in the present study.  

GEO accession Platform Samples Patients subgroup Sample source 

GSE38206 GPL13607 36 18 control samples and 18 MDD samples PBMC 
GSE76826 GPL17077 32 12 control samples and 20 MDD samples blood 
GSE39653 GPL10558 53 24 control samples, 21 MDD samples and 8 BD samples PBMC 

GEO: Gene Expression Omnibus data base, MDD: major depressive disorder, PBMC: Peripheral blood mononuclear cell, BD: bipolar disorder. 
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Fig. 2. 19 CRGs (cuproptosis-related genes) express themselves differently in people with MDD and healthy people. (A)The boxplots showed the expression of 19 CRGs. (B)Heatmap differential level is 
reflected by CRGs with differential expressions.(C)The locations of each chromosome’s 19 associated CRGs. (D,E)Diagram of the gene connection network and correlation study of nine CRGs with varied 
levels of expression. Positive and negative correlations are represented by the colors red and green, respectively. (F)The differences in immunological infiltration between MDD and healthy individual 
controls were displayed in boxplots. (G) Investigation of the relationships between infiltrating immune cells and 12 differentially expressed CRGs. *p < 0.05, ***p < 0.001, ****p < 0.0001. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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2.2. Analysis of correlation and evaluation of immune cell infiltration 

Using the CIBERSORT algorithm and the LM22 feature matrix based on gene expression data, the relative abundances of the 22 
immune cell types in the sample were calculated. P-value <0.05 is the criterion for an accurate immune cell composition. By adding 
the fraction of 22 immune cells in each sample to one, accuracy validation was assessed. The “corrplot” R software and the Spearman 
correlation coefficient (p-value< 0.05 indicated a significant link) showed an association between CRG and immune cell features 
related to MDD [11]. 

2.3. Unsupervised clustering of MDD patients 

Conveniently, nineteen genes related to cuproptosis were obtained from the published literature [5,12]. MDD samples were 
classified into different clusters by applying unsupervised cluster analysis and k-means algorithm. First, we followed Yongxing Lai 
et al. [13] and picked the highest amount of subtypes possible, k (k = 9) [13]. The optimum amount of clusters (>0.9) was 
determined by combining consensus cluster scores, consensus matrices, and composite cumulative distribution function curves. 

2.4. Gene set variation analysis (GSVA) analysis 

The R package “GSVA” was used to perform GSVA analysis on the route differences of CRGs clusters. The biological functions and 
pathways with differential expression were found using the “limma” R tool. A statistically significant change has a t-value greater 
than 2. 

2.5. Analysis of the weighted gene co-expression network (WGCNA) 

WGCNA algorithm was performed to analyze the co-expression networks in DEGs between MDD and controls [14]. A weighted 
adjacency matrix was then created after calculating a sufficient soft threshold β using a weighted correlation adjacency matrix and 
cluster analysis. The topological overlap matrix (TOM) of the resulting matrix was transformed to provide the equivalent dissim-
ilarity (1-TOM). Hierarchical clustering of genes and subsequent dendrogram visualization derived from dissimilarity TOM. Re-
lationships between clinical traits and module eigengenes were assessed with Pearson’s r correlation. 

2.6. Construction of suitable predictive models 

Three machine learning models dubbed Random Forest (RF), Extreme Gradient Boosting (XGB), and Generalized Linear Model 
(GLM) were developed by “caret” R packages to further evaluate the two distinct CRG clusters. These models’ parameters are 
automatically adjusted for grid search during training using the caret package. With default settings, these models were run and 
cross-validated for evaluation. The models were thoroughly evaluated using the “DALEX” package, which also served to display the 
performance variations, residual distributions, and feature weights of several prediction models. In the end, the most effective 
machine learning model and significant predictor genes were discovered. 

2.7. Construction and verification of nomogram 

The “rms” R package was utilized to create a nomogram model to evaluate the occurrence of MDD clusters. Each predicted gene 
has a visualized score and calculates the total score. Calibration curves and DCA were used to the GSE76826 and GSE39653 datasets 
in order to better demonstrate the nomogram model’s predictive ability. 

3. Results 

3.1. Cuproptosis gene expression and immune cell infiltration in MDD patients 

We compared the expression of 19 CRGs between healthy individual controls and MDD using the GSE38206 dataset, illuminating 
the biological role of the cuproptosis-related genes in the onset and progression of MDD. We discovered nine cuproptosis genes that 
were differently expressed in accordance with the flowchart in Fig. 1. As shown in Fig. 2A–C, the expression levels of the genes 
ATP7B, SLC31A1, DLD, and DLAT were higher in the MDD group, whereas those of ATP7A, LIAS, PDHA1, MTF1, and DBT were 
lower. We conducted a correlation analysis on these differentially expressed CRGs to examine the critical role of the cuproptosis 
regulators in MDD. These findings revealed that various cuproptosis modulators, including ATP7A and DLAT (coefficient = 0.86), 
LIAS and DLAT (coefficient = 0.38), had synergistic or antagonistic effects. DLAT and ATP7A were found to be significantly related 
with other regulators after analysis of these CRG association patterns, and gene-relation network plots (Fig. 2D and E) were used to 
demonstrate the degree of association. 
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Fig. 3. Molecular and immunological traits that distinguish the two cuproptosis clusters. (A)The heatmap displayed the expression of the two cuproptosis clusters. (B)The differential level in the 
boxplots is reflected in CRGs with differential expressions. (C)22 immune cells that infiltrate between the two cuproptosis clusters in according to their abundance. (D)The variations in immune 
infiltration between the two cuproptosis clusters were displayed using boxplots. (E,F)Pathway variations across several CRGs clusters were analyzed using Gene Set Variation Analysis (GSVA). *p < 0.05, 
***p < 0.001, ****p < 0.0001. 
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Fig. 4. Using WCGNA (weighted gene co-expression network analysis), gene modules were screened and co-expression networks were built in two clusters associated with cuproptosis and MDD. The 
choice of soft threshold power is in (A,E). (B,F) Co-expression module cluster tree dendrogram. Different hues stand for various co-expression modules. (C,G) A heatmap showing the correlations 
between the 10 modules. (D,H) Analysis of the correlation between the clinical status and the module eigengenes. Each column denotes a clinical status, whereas each row denotes a module. 
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Fig. 5. Building and assessing RF, GLM, and XGB machine models. (A) The intersection of the MDD module-related genes and the cuproptosis 
cluster is depicted in a Venn diagram using data from the GSE38206 dataset. (B)A list of significant eigengenes for the RF, GLM, and XGB machine 
models. (C) Boxplots are used to display residuals for each machine learning model. The root mean square error (RMSE) of the residuals is rep-
resented by the red dots. (D) Three machine learning models’ ROC analyses. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

D. Lei et al.                                                                                                                                                                                                              



Heliyon9(2023)e18497

9

Fig. 6. Validation of the RF model based on five genes. (A) Building a nomogram based on the 5-gene RF model to estimate the risk of MDD clusters. (B,C) Building a calibration curve (B) and 
performing a decision curve analysis (DCA) (C) to determine how well the nomogram model predicts the future. 5-fold cross-validation was used to analyze the receiver operating characteristic curve 
(ROC) of the 5-gene-based RF model in the datasets GSE39653 (D) and GSE76826 (E). 
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The CIBERSORT algorithm was used to conduct the immune infiltration analysis in order to clarify the immune system variations 
between MDD and healthy controls. According to the findings, patients with MDD had higher levels of Treg infiltration and 
monocytes and lower levels of plasma cell infiltration, T cell CD4 memory activation, NK cell activation, and NK cell activation 
(Fig. 2F). According to correlation analysis, cuproptosis regulators were linked to B cell memory, activated master cells, and 
monocytes (Fig. 2G). The molecular and immune infiltration status in MDD patients may be significantly influenced by CRGs. 

3.2. Identification of cuproptosis clusters in MDD 

In order to clarify the expression patterns connected to cuproptosis in MDD, we used a consensus clustering algorithm. We 
discovered that for k = 2, the number of clusters was the most stable, and the fluctuations in the CDF curves were the least 
(Figure S1A–C). Additionally, when k = 2 (Figure S1D), the concordance for each subtype was highest. Finally, it is separated into 
clusters 1 (n = 8) and 2 (n = 10) using the consensus matrix’s heatmap. PCA was also used to determine the significant difference 
between the two clusters (Figure S1E). 

3.3. Differences in cuproptosis regulators and immune infiltration signatures in cuproptosis clusters 

By evaluating the expression differences of nine CRGs between Cluster1 and Cluster2, molecular signatures were observed in 
the two cuproptosis patterns (Fig. 3A). These results showed that ATP7A, SLC31A1, DLD, DLAT, PDHA1, and MTF1 were highly 
expressed in cuproptosis Cluster1, while LIAS was highly expressed in cuproptosis cluster2 (Fig. 3B). As shown in Fig. 3C and D, 
Cluster1 presented lower levels of B cell memory, T cell naive, and higher levels of macrophages. After 19 CRGs between Cluster1 
and Cluster2 were used to gene set enrichment analysis, we found that Cluster1 was prominently associated with immune -related 
stress response, such as P53 signal pathway, renin-angiotensin system, calcium signal pathway, graft versus host diseases and 
endocytosis while Cluster2 was strengthened by the import of RNA into mitochondria, localization of proteins to the Golgi 
apparatus, lateral part of the cell, protein localization, and protein localization. (Fig. 3E). 

3.4. Gene modules screening and co-expression network construction 

To find important gene modules linked to MDD, the WGCNA algorithm constructs co-expression networks and modules. We 
discovered that co-expressed gene modules could be identified when the soft power value was 6 and the scale-free R2 was equal to 
0.9 after selecting the top 25% of the genes in GSE38206 with the highest variance for further analysis (Fig. 4A). The topological 
overlap matrix (TOM) heatmap, which was produced by the dynamic cutting technique, displays 13 different co-expression modules 
in various hues (Fig. 4B and C). Based on the similarity and adjacency of co-expression of clinical features within the gene analysis 
module, the pink module with 323 genes revealed the most significant relationship to MDD (Fig. 4D). The cuproptosis cluster’s 
important gene modules were also subjected to the same approach. With = 6 and R2 = 0.9, the scale-free network was built 
(Fig. 4E). Fig. 4F and G shows a heatmap of the TOM of 13 modules encompassing 6861 genes. The turquoise module (1457 genes) 
and the MDD cluster had the strongest connection (Fig. 4H). 

3.5. Construction and assessment of machine learning models 

Three validated machine learning models (RF, GLM, XGB) were developed based on the expression profiles of 34 in the 
cuproptosis cluster and the MDD cluster to find subtype-specific genes with high diagnostic values (Fig. 5A). The top 10 significant 
feature variables were determined using the root means square error (RMSE) (Fig. 5B). According to the residuals distribution 
derived from the “DALEX” software, the RF and GLM machine learning models have comparatively low residuals (Fig. 5C). 
Furthermore, receiver operating characteristic (ROC) curve calculations were used to assess the discriminative effectiveness of the 
four machine learning algorithms. The highest area under the ROC curve (AUC) was shown by the machine learning models RF, 
GLM, and SVM (RF, AUC = 0.875; GLM, AUC = 0.750; XGB, AUC = 0.844, Fig. 5D). The final findings demonstrated that the RF 
model was the most effective and chose the top five significant variables (OSBPL8, VBP1, MTM1, ELK3, and SLC39A6) as predictor 
genes. 

To calculate the likelihood of cuproptosis clusters in MDD patients, we created a nomogram (Fig. 6A). The prediction effec-
tiveness of the nomogram model was evaluated using calibration curves and decision curve analysis (DCA). A nomogram with 
high accuracy can serve as a foundation for clinical decisions because it was discovered that the difference between the actual 
MDD cluster risk and the anticipated risk was minuscule (Fig. 6B and C). We then verified two outside datasets. The results 
indicated that our diagnostic model successfully separates people with MDD from healthy individuals, with an AUC value of 0.875 
in the GSE39653 dataset and 0.800 in the GSE76826 dataset (Fig. 6D and E). 
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4. Discussion 

Major depressive disorder, a common mental illness, has become a global health challenge. It affects 350 million people 
worldwide and exposes them to the risk of disability. Although doctors provide a variety of psychological and medication 
treatments, the identification and cure rates for major depressive disorder remain unsatisfactory [15,16]. The high degree of 
heterogeneity and multifactorial nature makes the existing pathological mechanisms inadequate to fully explain MDD, which also 
increases the difficulty in finding good drug targets. Recent studies have shown that copper ions may be one of the key trace 
elements in the neurobiological mechanisms of depression, as it is involved in many aspects of neurobiology and the biochemical 
mechanisms of antidepressants [7,17]. The major depressive disorder has been linked to high levels of copper, particularly 
cognitive decline and anhedonia in patients with the major depressive disorder [7]. Although copper is the essential element that 
sustains the body’s vital activities, excessive accumulation of copper in cells can still lead to cell death, which may also be one of 
the triggers for depression [5,18]. Tsvetkov et al. have named a copper-dependent form of cell death “copper proptosis” that 
disrupts mitochondrial respiration through the accumulation of lipid mitochondrial enzymes [5]. However, the specific mecha-
nisms of cuproptosis and its regulatory role in MDD have not been well studied, so we sought to elucidate the particular role of 
cuproptosis-related genes in MDD phenotype and immune microenvironment. Additionally, we attempted to find gene signatures 
associated with cuproptosis that could be used to predict MDD subtypes. 

We speculated that MDD was related to copper poisoning and that genes associated with cuproptosis may benefit clinicians in 
the early diagnosis and prediction of MDD. To test this conjecture, we initially comprehensively examined the expression profiles 
of cuproptosis regulators in the brain tissue of normal individuals and MDD patients. The analysis showed that significantly more 
dysregulated CRGs were found in MDD patients than in normal individuals, suggesting that CRGs may be involved in the 
occurrence of MDD and play an unknown role. To reveal the underlying correlations, we found significant synergistic or 
antagonistic effects among cuproptosis regulators such as ATP7A, SLC31A1, DLD, DLAT, PDHA1, MTF1, and LIAS by calculating 
the correlation between CRG based on data from normal individuals and MDD patients. Additional calculations also found that 
patients with MDD exhibited lower plasma cell infiltration, T cell CD4 memory activation, NK cell activation, and higher levels of 
Tregs infiltration, monocytes, as confirmed by previous studies validated in blood or brain tissue [19–22]. In addition, we clas-
sified two cuproptosis -related clusters based on different cuproptosis-dependent regulatory patterns in the CRG expression 
profiles of MDD patients for further analysis of the effects on immune cell infiltration and related pathways. The two groups of 
cuproptosis-related clusters showed differences in B-cell memory, master cell activation, and monocytes, suggesting that changes 
in the immune environment were involved. We chose to discard the GSE76826 and GSE39653 data set as the training set because 
the careful consideration of subsequent model predictions is to obtain more accurate prediction results rather than these data set is 
not important. 

Although the high incidence and heterogeneity of MDD are responsible for the difficulty in predicting prevalence, previous 
studies have still attempted to build practical and rigorous predictive models for accurate prediction [23–26]. As described in the 
review by Jie Tan et al. this results in lower model error rates and more reliable results, even though the relationships between 
variables are considered when building multivariate analysis models. Unfortunately, only one study has been externally validated 
[23]. To establish an accurate prediction model, we compared the prediction performance of machine learning methods (RF, GLM, 
and XGB). We combined multiple external validation datasets to define the RF machine prediction model (AUC = 0.875), which 
shows that RF based machine learning performs satisfactorily in predicting MDD. Of course, the effectiveness of the SVM and GLM 
prediction models in the test cohort is similar to the results of the RF prediction model, but for the prediction effect of the 
validation set predictions, the RF prediction model performs better. The RF model consists mainly of five essential variables, 
including OSBPL8, VBP1, MTM1, ELK3, and SLC39A6. Von Hippel-Lindau binding protein 1 (VBP1), a subunit of the folded 
protein complex, participates in the protein degradation pathway by targeting the α subunit of the hypoxia-inducible factor with 
VHL for proteasome-mediated degradation [27]. In addition, it activates NF-KB signaling, which may also be a potential mech-
anism for MDD exacerbation through monocyte-induced inflammatory signaling [28]. As an endocytic GAG receptor associated 
with nervous system development, FIBCD1 may be a potential target for the treatment of MDD [29]. Myotubulin (MTM1) 1 plays 
an important role in intracellular membrane trafficking and regulates autophagy by regulating PtdIns3P levels, an important 
substrate in the initiation phase of phagocytes [30]. Alleviating MDD by alleviating the autophagy pathway is a viable potential 
therapeutic approach [31]. ELK3 is a transcription factor containing an ETS domain, which regulates the expression of various 
genes by forming a ternary complex transcription factor (TCF) and binding to a specific DNA sequence. ELK3 is a transcription 
factor containing an ETS domain, which regulates the expression of various genes by forming a ternary complex transcription 
factor (TCF) and binding to a specific DNA sequence, and participates in depression by regulating the Wnt/β-Catenin signaling 
pathway [32]. Validation of the 5-gene-based RF model on two external validation datasets showed that the model is able to 
predict MDD accurately and successfully constructed a nomogram model for MDD diagnosis. 
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Some limitations of the study should not be overlooked. Our current study used bioinformatics analyses such as DEGs, WGCNA, 
and machine learning methods. Although different datasets were used for the validation analysis, on the one hand, we used small 
sample sizes, which may be somewhat biased, and on the other hand, additional clinical or experimental evaluations for validation 
are also indispensable. Furthermore, our results are only based on published data, and more detailed clinical characteristics are 
needed to confirm the predictive model’s performance. 

5. Conclusion 

Overall, we have explored the association of CRGs with MDD patients and immune percolation in a multifaceted manner through 
various bioinformatics approaches. Based on the above results, we find that the RF model can more accurately predict the occur-
rence of MDD and explain the possible underlying mechanisms of MDD. Therefore, an appropriate cuproptosis score may have 
clinical benefits for the early identification of MDD, but more clinical studies are needed to verify this. 
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Figure S1. Identification of cuproptosis-related molecular clusters in CRDs. (A) Consensus clustering matrix when k = 2.(B)Representative cumulative distribution function (CDF) curves ,(C) CDF delta 
area curves , (D)the score of consensus clustering,(E) difference between the two clusters was determined by PCA(Principal Component Analysis).  
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