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Abstract

Motivation: High-throughput sequencing has transformed the study of gene expression levels

through RNA-seq, a technique that is now routinely used by various fields, such as genetic

research or diagnostics. The advent of third generation sequencing technologies providing signifi-

cantly longer reads opens up new possibilities. However, the high error rates common to these

technologies set new bioinformatics challenges for the gapped alignment of reads to their genomic

origin. In this study, we have explored how currently available RNA-seq splice-aware alignment

tools cope with increased read lengths and error rates. All tested tools were initially developed for

short NGS reads, but some have claimed support for long Pacific Biosciences (PacBio) or even

Oxford Nanopore Technologies (ONT) MinION reads.

Results: The tools were tested on synthetic and real datasets from two technologies (PacBio and

ONT MinION). Alignment quality and resource usage were compared across different aligners. The

effect of error correction of long reads was explored, both using self-correction and correction with

an external short reads dataset. A tool was developed for evaluating RNA-seq alignment results. This

tool can be used to compare the alignment of simulated reads to their genomic origin, or to compare

the alignment of real reads to a set of annotated transcripts. Our tests show that while some RNA-

seq aligners were unable to cope with long error-prone reads, others produced overall good results.

We further show that alignment accuracy can be improved using error-corrected reads.

Availability and implementation: https://github.com/kkrizanovic/RNAseqEval, https://figshare.com/

projects/RNAseq_benchmark/24391

Contact: mile.sikic@fer.hr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past 10 years, the use of next generation sequencing (NGS)

platforms, in particular Illumina, has expanded to dominate the

genome and transcriptome sequencing market. Their sequencing-by-

synthesis approach is indeed much cheaper and faster than the

previously used Sanger sequencing. Recently, two new sequencing

technologies—the so-called ‘third generation sequencing technolo-

gies’—have emerged, that produce longer reads and hold numerous

promises for genomic and transcriptomic studies.
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First, the single-molecule sequencing technology unveiled in

2010 by Pacific Biosciences (PacBio), produces reads up to a few

tens of thousands of base pairs long. However, raw reads (‘sub-

reads’) display significantly higher error rate (�10–20%) than reads

from the Illumina technology (�1%) (Schirmer et al., 2015; Ross

et al., 2013; Glenn, 2011). To reduce error rates, circularized frag-

ments are sequenced multiple times and the subreads produced can

be reconciled to produce higher-quality consensus ‘Reads of Insert’

(ROIs, previously called Circular Consensus Reads). However, there

is a trade-off between the ROIs length and accuracy because longer

fragments accumulate fewer sequencing passes.

Second, the portable MinION sequencer presented in 2014 by

Oxford Nanopore Technologies (ONT), produces even longer reads

(up to a few hundreds of thousand base pairs long), but with even

higher error rates. Using the R7.3 chemistry, raw reads (‘1 D’ reads)

had an error-rate of >25%, while consensus ‘2 D’ reads (where

template and complement of double-stranded fragments are succes-

sively sequenced and reconciled) displayed 12–20% error rate

(Laver et al., 2015; Sovi�c et al., 2016). It is likely that improvement

in the chemistries (notably the recently released R9 and R9.4) has

reduced error rates (http://lab.loman.net/2016/07/30/nanopore-r9-

data-release).

For transcriptomic studies, long reads of these third generation

sequencing technologies should be very helpful in the challenging

task of identifying isoforms, and estimating reliably and precisely

their abundances (Garber et al., 2011; Łabaj et al., 2011). It is

unclear though whether high error rates will allow precise identifica-

tion of exon-exon junctions required for proper discrimination of

isoforms that are very similar in sequence (e.g. NAGNAG splicing).

The aim of this work was to determine whether currently avail-

able RNA-seq splice-aware aligners could handle third generation

sequencing data, namely much longer read length and significantly

higher error rate. Such a benchmark of RNA-seq alignment tools

and pipelines, previously performed on both real and synthetic

Illumina reads (Engström et al., 2013) proved to be very helpful for

the community of end-users. Another benchmark of RNA-seq align-

ment tools was performed on synthetic data of varying error rate

and complexity (Baruzzo et al., 2017). However, to the best of our

knowledge, no tests were performed on third generation sequencing

data.

Splice-aware RNA-seq alignment tools can be divided into two

groups. First, guided splice-aware aligners, use the genome sequence

and known gene annotations to calculate gene or transcript abun-

dance, but cannot be used to identify new splice junctions. Second,

de novo splice-aware aligners can align RNA-seq reads to a refer-

ence genomic sequence without prior information on gene

annotations.

BBMap is to our knowledge the only tool explicitly claiming sup-

port of both PacBio and ONT reads (Bushnell et al., 2014). It uses

short k-mers to align reads directly to the genome, spanning introns

to find novel isoforms. It uses a custom affine-transform matrix to

generate alignment scores.

A tutorial, developed by the PacBio team (available at https://

github.com/PacificBiosciences/cDNA_primer/wiki/Aligner-tutorial:-

GMAP,-STAR,-BLAT,-and-BLASR) recommends modified sets of

parameters for the alignment of PacBio reads with STAR and

GMAP, based on in-house testing. STAR (Dobin et al., 2013)

employs sequential maximum mappable seed search in uncom-

pressed suffix arrays followed by seed clustering and stitching proce-

dure. It detects novel canonical, non-canonical splices junctions and

chimeric-fusion sequences. GMAP (Wu et al., 2016) is a part of

GMAP/GSNAP package and uses diagonalization to find exon

regions, oligomer chaining of short k-mers to refine them, and

dynamic programming at the nucleotide level to resolve mismatches,

indels and intron boundaries.

In our tests we included TopHat2 (Kim et al., 2013), the most

popular aligner for Illumina reads. TopHat2 implements a two-step

approach where initial read alignments are first analyzed to discover

exon-exon junctions, which are then used in the second step to

determine the final alignment. HISAT2, the successor of Tophat2,

was also included. It uses a global FM-index, as well as a large set of

small FM-indexes (called local indexes) that collectively cover the

whole genome. This strategy enables effective alignment of RNA-

seq reads spanning multiple exons (Kim et al., 2015).

In the event that aligners are unable to cope with high error rates

in the reads, we tested if the addition of an error-correction step

before the mapping step could be useful. Recent tools have been

developed that allow error correction of reads from third generation

sequencing technologies, taking advantage of the redundancy within

each dataset, or combining them with second generation sequencing

datasets (Bradley et al., 2012). The latter (so-called ‘hybrid’)

approach has already been used to obtain a comprehensive charac-

terization of the transcriptome of the human embryonic stem cell

(Au et al., 2013). In this study, we applied both approaches and

quickly discuss their merits.

2 Materials and methods

Since the actual origin of reads in real datasets is unknown and can

only be estimated through the alignment process, real datasets are

not best suited to assess the performance of alignment tools. The

accuracy and precision of aligners can be assessed on synthetic data,

but in return simulators fail to mimic every aspect of real-life data-

sets, potentially biasing the benchmark results. In this study, we thus

decided to use both simulated and real datasets.

All real datasets consist of RNA converted to cDNA and ampli-

fied prior to sequencing. For simulation, we have used the PacBio

reads simulator PBSIM (Ono et al., 2013). Several datasets were

simulated with different parameters, and using the annotated tran-

scriptome of different organisms (the baker’s yeast Saccharomyces

cerevisiae, the fruit fly Drosophila melanogaster, and human chro-

mosome 19; see Supplementary Material).

To more precisely explore subpar performance of some mappers

tested in this study, we simulated a dataset with long reads contain-

ing very few errors. This allows us to estimate whether a mapper

performs poorly because of longer reads or because of higher error

rate.

The focus in our tests was on PacBio technology, for which we

had a large amount of real data and a dedicated simulator (PBSIM).

However, we also included one real ONT dataset. For comparison,

one ONT MinION dataset was also simulated on Drosophila mela-

nogaster using PBSIM, setting the parameters according to the statis-

tics of ONT MinION R9 real data. While a PacBio simulator is not

entirely appropriate for ONT MinION data, we felt that mimicking

their read length and error profile (frequency of insertions, deletions

and mismatches) should provide some useful insight. At the time of

our simulation experiments, we were unaware of a dedicated

MinION reads simulator. Since then, we became aware of NanoSim

(Yang et al., 2017), but due to time constraints decided not include

it in our benchmark.

Additional synthetic ONT MinION dataset was simulated

using human chromosome 19. Results are like those achieved on the
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first ONT MinION simulated dataset and are presented in

Supplementary Note S4.

In order to explore the effect of read error correction on align-

ment, the highest quality real PacBio dataset was error corrected using

the recent consensus tool Racon (Vaser et al., 2017). Both correction

using external Illumina reads and self-correction were explored.

The description of simulated datasets generation can be found in the

Supplementary Material. Table 1 shows relevant statistics of test data-

sets. As can be seen from the table, datasets vary in size and complexity.

For example, datasets 2 and 4 have similar size because they were gener-

ated using the same approximation of the gene coverage histogram,

however, since MinION ONT reads are on average longer than PacBio

reads, dataset 2 contains more reads than dataset 4.

All the data used to create test datasets (and the datasets them-

selves) is available through FigShare (https://figshare.com/projects/

RNAseq_benchmark/24391).

2.1 Datasets
To generate simulated datasets, we used PBSIM version 1.0.3,

downloaded from https://code.google.com/archive/p/pbsim/.

Synthetic datasets were created from the following organisms:

• Saccharomyces cerevisiae S288 (baker’s yeast)
• Drosophila melanogaster r6 (fruit fly)
• Homo Sapiens GRCh38.p7 (human)

Reference genomes for all organisms were downloaded from http://

www.ncbi.nlm.nih.gov.

PBSIM is intended to be used as a genomic reads simulator, tak-

ing as input a reference sequence and a set of simulation parameters

(e.g. coverage, read length, error profile). To generate RNA-seq

reads, PBSIM was applied to a set of transcripts generated from a

particular genome using the gene annotations downloaded from

https://genome.ucsc.edu/cgi-bin/hgTables. To make the datasets as

realistic as possible, real datasets were analyzed and used to deter-

mine simulation parameters. Real gene expression datasets were

used to select a set of transcripts for simulation (downloaded from

http://bowtie-bio.sourceforge.net/recount/; core (human), naga-

lakshmi (yeast) and modencodefly (fruit fly) datasets were used)

(Frazee et al., 2011).

A detailed description of the whole process used to simulate syn-

thetic data is given in Supplementary Note S1.

Real RNA-seq datasets used in this benchmark were generated

from D. melanogaster. Technical replicates of the same sample were

sequenced with three different technologies: Illumina HiSeq, PacBio

RSII and ONT MinION. Illumina data were used for baseline com-

parison of all tested tools and for error correction of PacBio reads.

PacBio and MinION data were used to assess the aligners’

performances and to determine error profiles that were then used

for simulation of synthetic data. In total, we used:

• 1GB of Illumina reads, subsampled randomly from a larger size

dataset. Reads were of size 101 bp. Illumina data was included

just as a baseline, to show that all tools work rather well on

Illumina, and to use them for error correction. Because of that,

we used Illumina reads without paired-end information.
• Over 5GB of PacBio subreads, sequenced from three different

size fractions of transcripts (1–2 kb, 2–3 kb and 3–7 kb, 2

SMRT-cells sequenced for each size fraction). This corresponded

to about 2GB of Reads of Insert extracted from the subreads.
• 350MB of ONT MinION reads using the R9 chemistry. Because

of the very low quality of 1 D reads, only 2 D reads were used in

this benchmark.

2.2 Error correction
To test if the alignment results could be improved using error correc-

tion, the highest quality PacBio dataset (containing ROIs) was cor-

rected. Error correction was performed using Racon (Vaser et al.,

2017). Correction using Illumina reads, and self-correction were

tested. Since self-corrected dataset proved to have better error pro-

file, only this dataset was retained for the benchmark (Dataset statis-

tics is given in Supplementary Table S1).

Supplementary Table S1 displays error rate and read length sta-

tistics for all real datasets, including all datasets obtained using error

correction.

2.3 Evaluated RNA-seq tools
We tested five RNA-seq alignment tools that have been updated

recently reflecting that they are still being maintained.

Table 1. Test dataset statistics

Data set Type Organism Technology Size No. genes No. reads % AS genes

A Real D. melanogaster Illumina 1 GB NA 4,000,000 NA

B Synthetic D. melanogaster Long read low error 1.4 GB 7,000 410,000 10

1 Synthetic S. cerevisiae PacBio ROI 400 MB 6,000 185,000 0

2 Synthetic D. melanogaster PacBio ROI 1.4 GB 7,000 412,000 10

3 Synthetic Homo sapiens, chr. 19 PacBio ROI 200 MB 1,520 84,000 60

4 Synthetic D. melanogaster ONT R9 2D 1.4 GB 7,000 342,000 10

5 Real D. melanogaster PacBio ROI 1 GB NA 192,000 NA

6 Real D. melanogaster PacBio ROI error-corrected 500 MB NA 192,000 NA

7 Real D. melanogaster PacBio Subreads 1 GB NA 243,000 NA

8 Real D. melanogaster ONT R9 2D 120 MB NA 40,000 NA

Table 2. Percentage of reads aligned over all aligners and datasets

Data

set

Aligner Tophat2

(%)

Hisat2

(%)

STAR

(%)

BBMap

(%)

GMAP

(%)No. reads

A 4M 85.2 94.8 96.8 97.6 96.7%

B 410K 0 0 84.9 97.3 99.9

1 185K 0.7 6.77 48.9 91.4 89.2

2 412K 0 0 33.3 84.5 92.0

3 84K 0 0 32.3 64.3 88.3

4 342K 0 0 5.5 43.0 98.8

5 192K 0 0 46.1 74.5 85.4

6 192K 0 0.4 67.2 82.8 88.5

7 243K 0 0% 0.1 72.8 89.7

8 40K 0 0% 16.7 88.0 98.3

Note: Bold values present the best scoring result for a particular measured value.
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2.3.1 STAR

Downloaded from https://github.com/alexdobin/STAR. Version

2.5.2b was used. On Illumina dataset STAR was run using regular

script STAR, while on long read datasets STAR was run using

the STARlong script with parameters suggested at Bioinfx

study: Optimizing STAR aligner for Iso-Seq data from PacBio

GitHub pages (https://github.com/PacificBiosciences/cDNA_primer/

wiki/Bioinfx-study:-Optimizing-STAR-aligner-for-Iso-Seq-data).

2.3.2 Tophat2

Binaries were downloaded from https://ccb.jhu.edu/software/tophat/

index.shtml and used with Bowtie2. Version 2.1.1 was used, with

default parameters for alignment. SAMTools version 1.2 were used

to convert Tophat output from BAM to SAM format.

2.3.3 Hisat2

Binaries were downloaded from https://ccb.jhu.edu/software/hisat2/

index.shtml. Version 2.0.4 was used, with default parameters for

alignment.

2.3.4 BBMap

Downloaded from https://sourceforge.net/projects/bbmap/. The

script mapPacBio.sh was used. BBMap version 35.92 was used.

Reads were first converted to FASTA format (originally in FASTQ

format) using samscripts tool (https://github.com/isovic/samscripts).

The program was then run with the option fastareadlen set to a

value appropriate for each dataset.

2.3.5 GMAP/GSNAP

Source code was downloaded from http://research-pub.gene.com/

gmap/. Version 2016-11-07 was used. GMAP was used with default

parameters, as recommended in the tutorial for using GMAP with

PacBio data (https://github.com/PacificBiosciences/cDNA_primer/

wiki/Aligner-tutorial%3A-GMAP%2C-STAR%2C-BLAT%2C-

and-BLASR).

We also ran GSNAP on Illumina dataset (since it is tailored for

short reads), but with default parameters and without paired-end

information it mapped slightly less reads then GMAP and we

decided not to use it.

Exact commands used to run each tool can be found in

Supplementary Note S2.

2.4 RNAseqEval tool
Three of the five RNA-seq aligners were evaluated on resource usage

and alignment quality. CPU and memory consumption were eval-

uated using a fork of the Cgmemtime tool (https://github.com/

isovic/cgmemtime.git).

To evaluate the quality of each aligner, we developed

RNAseqEval (https://github.com/kkrizanovic/RNAseqEval), meant

to be a general tool for evaluating RNA-seq alignments. It is written

in Python and contains two main scripts, one for evaluating data

simulated using PBSIM and the other for evaluating real data or

data whose origin is unknown. Both scripts require aligner output in

SAM format which they compare to gene annotations and, in case

of simulated data, alignment files in MAF format describing the ori-

gin of each simulated read.

2.4.1 Evaluating synthetic data

The script for evaluating synthetic or simulated data currently works

only on data simulated with PBSIM, but could be expanded in the

future to support other simulators. Aside from aligner output in

SAM format and gene annotations in GTF or BED format, the script

takes a folder containing files generated by PBSIM. The folder

containing PBSIM data needs to have a specific structure and

follow a specific naming convention, as described in the program

documentation.

For each read from aligner output, the script will use PBSIM gen-

erated MAF files and gene annotations to find its origin on the refer-

ence genome and will compare it to the alignment calculated by the

aligner. The start and end position of an alignment and of read ori-

gin are compared, and an error of five nucleotides is tolerated. The

script outputs summary information on how many reads were accu-

rately aligned to their chromosome, strand and position of origin.

2.4.2 Evaluating real data

The script for evaluating real data takes only aligner output in SAM

format and gene annotation in GTF or BED format as its input.

Because the origin of a read is unknown, the script will check anno-

tations for genes with which the read overlaps, and then evaluate

how well a read alignment matches exons and introns of that gene.

When matching beginning and end of an alignment to each exon

in an annotation, an error of five nucleotides is tolerated. Similarly,

an overlap between an alignment and an exon annotation needs to

be at least five base-pairs to be considered valid. We tested different

values for allowed error (and minimum overlap) and increasing it

above five base-pairs did not noticeably improve the results.

3 Results

3.1 Baseline comparison
We first examined how alignment tools performed on the Illumina

‘baseline’ dataset A (Table 2). We found that all aligners managed

to align a large fraction of Illumina reads.

On datasets that include longer and more erroneous reads how-

ever (dataset 1 to dataset 8), there were large discrepancies across

tools. In particular, Tophat2 and Hisat2, with default parameters,

aligned <7% of the reads for all long-read datasets. To be fair, it

has to be stated they do not claim to work with long-reads and were

included in the test for the sake of completeness. Therefore, we did

not consider these two tools in further analyses, and we focused on

the remaining three aligners: BBMap, GMAP and STAR.

If we look at the results dataset B (long reads with low error), we

can see that Tophat2 and Hisat2 fail to align almost any reads using

default parameters (the number in the table are rounded down). We

can conclude that Tophat2 and Hisat2 are tailored for short NGS

reads and are not able to handle longer read lengths.

Based on the percentage of reads aligned, the best results were

achieved by GMAP, which aligned >85% of reads across the all

tested datasets.

BBMap performed slightly better on Illumina (dataset A) and on

synthetic S. cerevisiae PacBio dataset (dataset 1, which contains very

few multi-exon transcripts), but the fraction of reads aligned fell

behind GMAP on more complex synthetic datasets and on real data-

sets (e.g. only 43% of the synthetic H. sapiens PacBio reads of data-

set 4 were aligned).

STAR managed to align a large percentage of Illumina reads

(96.8%), but its performance was uneven across third generation

sequencing datasets, aligning from 0.1% to 67.2% of the reads, and

often aligning less than half of the reads. STAR was seemingly

affected by increased complexity of the datasets, as well as by

increased error rates (Illumina and error-corrected PacBio datasets
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achieving the best performance). Since STAR managed to align a sig-

nificant portion of dataset B (long reads low error), we can conclude

that it can handle long reads, but has trouble with higher error rates

especially on more complex datasets.

Across all tools, error correction improved alignment rates, as

can be seen from the comparison of dataset 5 and dataset 7.

In summary, for some aligners the percentage of alignment for

third generation sequencing technologies reads was similar to what

is achieved for Illumina reads. However, looking only at the number

of the reads each tool managed to align to a genome is not a reliable

measure of general alignment quality. For example, a tool could

align most of the reads, but only on only a portion of their length, or

it could align them at incorrect location on the genome.

3.2 Synthetic datasets
To get more insights into the quality of the alignments, we evaluated

the aligners on four synthetic datasets generated from transcrip-

tomes of varying complexity using the PBSIM tool (Materials and

methods), and supposed to reflect characteristics of the PacBio

(datasets 1–3) and ONT MinION technologies (dataset 4). In these

datasets, the precise origin of each read is known, allowing to assess

the alignment quality by examining how well the alignment location

matches the origin location in the genome. The alignment results for

those datasets were evaluated using the RNAseqEval tool, as sum-

marized in Figure 1.

All results are displayed as the percentage of all reads in the data-

set. The percentages of reads that were aligned is shown (without

assessing the accuracy), the match rate of aligned reads, percentage

of reads for which the beginning, the end and inner exon boundaries

are accurately placed within five base-pairs (Correct), percentage of

reads that overlap all exons of the read origin (Hit all) and percent-

age of reads that overlap at least one exon of the read origin (Hit

one). Match rate is calculated as a percentage of aligned bases that

are equal to the corresponding bases on the reference. Overlaps of

hit one and hit all statistics need to be at least five bases.

Results of the evaluation on all synthetic reads are shown in Table

3. The evaluation on the subset of split reads (i.e. reads aligned to

multiple non-contiguous locations on the reference genome) is also

shown. Split reads, if aligned correctly, should overlap at least one

exon-exon junction in the transcript of origin, and thus cover two or

more exons. Percentages of reads shown in Table 3 are relative to the

number of reads in input; the percentage relative to the number of

aligned reads are shown in Supplementary Table S2.

Overall, the most accurate alignments were given by GMAP, fol-

lowed by BBMap and with STAR being worse than the other two.

The exception is dataset 1, on which BBMap proved slightly better

than GMAP. On datasets 2, 3 and 4 GMAP surpasses other two

tools in both mapping reads to correct general genomic location

(Hit all and Hit one) and in correctly determining their exact posi-

tion of origin (Correct).

Reads aligned by STAR mostly aligned to correct general

genomic locations (hit all and hit one), and displayed very good

match rates, however, the low fraction of reads overall aligned

(Tables 3 and 4) did not allow this tool to compare favorably to

GMAP and BBmap. Moreover, STAR did not perform particularly

well at correctly aligning the beginning and end of reads.

Datasets 2, 3 and 4 contain a significant number of split reads.

Focusing on split read statistics on those datasets, BBMap performed

significantly worse than GMAP and sometimes than STAR: on data-

set 3 it managed to overlap all exons from a read origin (Split hit all)

less precisely than STAR (10.2% versus 19.4%). For STAR, results

for split reads were in line with its overall results, but the overall num-

ber of aligned reads being so low, STAR cannot be recommended for

the alignment of third generation sequencing RNA-seq reads.

Overall, BBMap outperformed GMAP in alignment precision on

dataset 1 with lower complexity (less multi-exon genes), but lagged

behind in general alignment efficiency, sometimes by a large margin,

on more complex datasets. This indicates that BBMap should be

used with caution to align split RNA-seq reads. In this setting,

GMAP shows the best performance and should be preferred,

although the results on dataset 1 indicate that it still has some room

for improvement in dealing with high error rates of third generation

sequencing data.

3.3 Real datasets
For real data, the origin of each read is not known, thus aligners

were evaluated by comparing the read alignment locations to a given

set of gene annotations. Some other relevant statistics, such as align-

ment match rate and number of expressed genes, were also extracted

(Table 4). Percentages of reads shown in Table 4 are relative to the

number of reads in input. Supplementary Table S3 also shows per-

centages of reads relative to the number of reads aligned.

The table shows percentage of reads that were aligned (without

assessing the accuracy), percentage of reads that overlap at least one

exon (exon hit) and percentage of reads that overlap one or more

exons in a sequence, corresponding to a gene annotation (contiguous

exon alignment). All values are displayed as the percentage of all

reads in the dataset. The table also shows the number of expressed

genes and average match rate of aligned reads. Match rate is calcu-

lated as a percentage of aligned bases that are equal to the corre-

sponding bases on the reference. Overlaps for exon hit statistics

need to be at least five bases.

All real datasets consisted of technical replicates of RNA-seq on

the same D. melanogaster sample sequenced on different platforms.

Interestingly, these datasets were characterized by different error

profiles (Supplementary Table S1).

As expected from previous tests, GMAP showed the best results,

followed closely by BBMap. GMAP was slightly better at aligning

reads to annotated exonic locations in the genome. The match rate of

aligned reads was roughly equal to the determined error profile for

each dataset (Shown in Supplementary Table S1) thus suggesting that

the reads are aligned to correct positions. GMAP was even able to

align ONT MinION data with a reasonable accuracy. It is interesting

to note that by some criteria GMAP shows better results on lesser

quality dataset 7 (consisting of subreads) compared to higher quality

dataset 5 (consisting of ROI) and dataset 6 (error corrected ROI).

Both BBMap and GMAP reported a large percentage of ONT

MinION reads aligned, however, match rate and exon hit

Fig. 1. Evaluation of synthetic datasets
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percentage were lower than for PacBio datasets, indicating that a

larger percentage of those alignments were at an incorrect position.

STAR showed the worst alignment results. Reads successfully

aligned displayed a high match rate, which might reflect the fact

that STAR is unable to align reads with highest error rates, or that

alignment settings are very conservative.

Supplementary Table S1 shows that error correction somewhat

improved the error profile, increasing average match rate by 2–3%.

However, even that slight improvement resulted in visibly better

alignment results on dataset 6 for all aligners: more reads reported

as aligned, more exons hit, more genes expressed and higher match

rate. As shown in Table 4, STAR benefits the most from error cor-

rection, BBMap somewhat less and GMAP benefits the least. The

conclusion that can be drawn from this is that GMAP is the most

tolerant to errors, followed by BBMap with STAR being the least

tolerant. This is supported by the results on ‘long read low error’

dataset B shown in Table 2.

Finally, we examined what fraction of the read length was aligned

(Fig. 2). The results are consistent with other measures of mapping

quality, with STAR on average managing to align reads on a slightly

larger portion of their length compared to GMAP. BBMap results are

not displayed because in the tested settings, all alignments are made

on the whole length of the reads (global alignments). This makes the

violin plots in Figure 2 for BBMap useless because each read is aligned

along 100% of its length. This behavior has some implication in the

reported results, as the alignment on both ends of the reads is some-

times incorrect, resulting in lower match rates. It could be a good idea

to clip alignments resulting from BBMap, for example using the

‘local’ flag, which converts global alignments into local alignments by

clipping them if that results in higher scores.

3.4 Resource usage
To estimate the efficiency of each RNA aligner, CPU time and

Maximum memory usage (Resident set size - RSS) were measured.

All tools were run in a multithreaded environment, on 12 threads

where possible, and total CPU time was measured. The results are

shown in Supplementary Figure S1. Illumina data (dataset A) and

long read low error data (dataset B) were omitted from this analysis

because the focus of the paper is on third generation sequencing

data.

Table 4. Aligner evaluation on real datasets

Dataset STAR BBMap GMAP

5 Aligned (%) 46.1 74.5 85.4

Match rate (%) 92 71 88

No. expressed genes 8884 9536 11034

Exon hit (%) 45.7 73.4 83.3

Contiguous alignment (%) 33.1 48.4 54.2

6 Aligned (%) 67.2 82.8 88.5

Match rate (%) 93 72 92

No. expressed genes 8515 9724 10641

Exon hit (%) 65.1 81.8 87.0

Contiguous alignment (%) 35.0 55.6 65.1

7 Aligned (%) 0.1 72.8 90.1

Match rate (%) 81 68 82

No. expressed genes 183 9013 11046

Exon hit (%) 0.1 72.4 86.0

Contiguous alignment (%) 0.0 35.7 41.6

8 Aligned (%) 16.8 88.0 98.3

Match rate (%) 83 67 81

No. expressed genes 2344 6578 7224

Exon hit (%) 11.0 62.3 68.8

Contiguous alignment (%) 4.8 26.8 30.5

Note: Bold values present the best scoring result for a particular measured

value.

Fig. 2. Aligned read percentage violin plots for GMAP and STAR

Table 3. Aligner evaluation on synthetic datasets

Dataset STAR (%) BBMap (%) GMAP (%)

1 Aligned 48.9 91.4 89.2

Match rate 93.7 92.5 92.3

Correct 22.1 48.2 41.8

Hit all 46.5 87.0 84.3

Hit one 47.1 88.1 85.4

Split reads 1.89 3.46 3.3

Correct, split 0.55 1.1 0.95

Split hit all 1.2 2.2 2.05

Split hit one 1.8 3.3 3.1

2 Aligned 33.3 84.5 92.0

Match rate 94.0 89.9 92.0

Correct 10.4 24.9 30.3

Hit all 27.7 54.4 73.1

Hit one 30.7 78.4 85.4

Split reads 23.9 64.8 72.8

Correct, split 6.3 14.2 21.6

Split hit all 19.3 36.7 56.1

Split hit one 22.3 60.7 68.5

3 Aligned 32.3 64.3 88.3

Match rate 94.3 86.2 91.8

Correct 11.4 15.3 28.0

Hit all 27.5 26.8 70.0

Hit one 30.5 61.2 83.7

Split reads 23.1 46.0 70.0

Correct, split 7.5 4.3 19.9

Split hit all 19.4 10.2 54.1

Split hit one 22.4 44.5 68.0

4 Aligned 5.5 43.0 98.8

Match rate 89.6 88.4 90.5

Correct 1.2 7.9 22.8

Hit all 5.0 26.8 87.1

Hit one 5.3 42.1 97.1

Split reads 3.2 34.2 80.7

Correct, split 0.5 4.1 16.2

Split hit all 2.9 18.7 70.0

Split hit one 3.2 33.8 79.8

Note: Bold values present the best scoring result for a particular measured

value.
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Running time seemed to depend on dataset size. In all settings,

GMAP used the least amount of memory and ran the fastest. STAR

was the slowest and consistently used 60–80 GB of RAM. BBMap

memory footprint was also consistently around 10–15 GB of RAM.

4 Conclusion

In recent years, third generation sequencing devices have been stead-

ily establishing themselves in genomic research. These technologies

promise to solve problems caused by the short read length of the

NGS. Regarding RNA-seq analysis, longer reads should notably

improve transcript identification. However, third generation

sequencing technologies also introduce new bioinformatics chal-

lenges, mostly due to their high error rate.

In this study, we attempted to assess the ability of currently available

RNA-seq alignment tools to work with third generation sequencing

data. Five alignment tools were tested using real and synthetic datasets.

Hisat2 and Tophat2 were unable to align almost any read. STAR

displayed only passable results on the least erroneous datasets, but

failed almost completely on highly error-prone ONT MinION data.

BBMap, performed quite well, especially on PacBio ROI reads

(which have lower error rates) and on simpler organisms with less

multi-exonic genes. This seems to indicate that although it is a

splice-aware aligner, BBMap best performance is achieved on con-

tiguous alignments (e.g. coming from DNA-seq), and might not be

best suited for RNA-seq data.

Finally, GMAP showed the best alignment results. It ran the fast-

est, used the least memory and usually produced the highest align-

ment rates, especially on complex datasets. BBMap outperformed

GMAP only on low complexity simulated dataset which contained

very few split reads, which could indicate that although GMAP out-

performed other aligners by a significant margin, it still has some

room for improvement.

GMAP particularly stands out on dataset 4 containing simulated

ONT MinION reads based on wine fly genome. GMAP maps over

97% to an approximately correct position overlapping at least one

exon from the read origin, while second best aligner (BBMap), man-

ages to map <50%. The difference in mapping quality is much

smaller on real ONT MinION dataset (dataset 8) and on ONT

MinION dataset simulated on human chromosome 19 given in

Supplementary Note S4.

Overall, aligning third generation sequencing RNA reads is cur-

rently viable with some available tools (namely GMAP and

BBMap), but we were surprised by the low precision on alignment

location. Apart from dataset 1, containing predominately single-

exon reads, the best aligner (GMAP) attributed between 20% and

31% of reads to their correct position of origin (65 bases). It is not

clear if this result is inherent to the high error rates of the technolo-

gies, or if it is due to alignment algorithms that were not originally

developed for these types of data, or to the specific parameters used

in this benchmark. For example it would be interesting to test the

effects of clipping BBMap alignments on its overall performance.

There is probably large room for improvement, by developing

new more sophisticated and more sensitive algorithms, or by incor-

porating an error-correction step in bioinformatics pipeline before

read alignment, since in our tests this visibly improved the alignment

results.
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