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ABSTRACT

The increasing number of experimentally detected in-
teractions between proteins makes it difficult for re-
searchers to extract the interactions relevant for spe-
cific biological processes or diseases. This makes
it necessary to accompany the large-scale detec-
tion of protein–protein interactions (PPIs) with strate-
gies and tools to generate meaningful PPI subnet-
works. To this end, we generated the Human Inte-
grated Protein–Protein Interaction rEference or HIP-
PIE (http://cbdm.uni-mainz.de/hippie/). HIPPIE is a
one-stop resource for the generation and interpre-
tation of PPI networks relevant to a specific research
question. We provide means to generate highly re-
liable, context-specific PPI networks and to make
sense out of them. We just released the second ma-
jor update of HIPPIE, implementing various new fea-
tures. HIPPIE grew substantially over the last years
and now contains more than 270 000 confidence
scored and annotated PPIs. We integrated different
types of experimental information for the confidence
scoring and the construction of context-specific net-
works. We implemented basic graph algorithms that
highlight important proteins and interactions. HIP-
PIE’s graphical interface implements several ways
for wet lab and computational scientists alike to ac-
cess the PPI data.

INTRODUCTION

Protein–protein interactions (PPIs) are experimentally de-
tected at a large scale. Several databases exist that collect the
knowledge about human and model organism PPIs by man-
ual curation (1,2) and provide the community with invalu-
able resources on the functional organization of the cell.
Many studies use these PPI networks to identify commonal-
ities among a group of proteins (3), to infer novel functions

for a gene of interest (4) or for gene-disease association pre-
diction (5,6).

Despite these successful applications, there are several
fundamental problems with the way in which PPIs are ex-
perimentally determined: (i) PPI detection methods are as-
sociated with high error rates (both false positives and false
negative rates). Some genome-wide screens might be asso-
ciated with false positive rates exceeding 50% (7–10). (ii)
PPI detection methods typically do not reveal informa-
tion associated with the context in which PPIs are realized.
Even more, many of these methods measure PPIs under un-
physiological conditions (e.g. human proteins expressed in
yeast) and even when they do use physiological conditions,
it is uncertain whether the same PPI also occurs in differ-
ent tissues, cellular compartments or time points (e.g. the
adaptor protein GRB2 changes its interaction partners dra-
matically in response to different cellular stimuli (11)). (iii)
PPI detection methods do not reveal important qualities
of PPIs such as their directionality and effect (which ex-
ist for example in a signaling context for kinase–substrate
and phosphatase–substrate interactions). (iv) PPI detection
methods are associated with technical biases and the choice
of proteins tested for interaction partners introduces a study
bias (10,12–13). The noisy and biased nature of the PPI net-
works can severely impact the biological hypotheses gener-
ated from these data (14–16).

Standards and protocols have been developed that allow
the exchange and aggregation of these data (17), facilitating
the development of a number of databases that collect the
information from different curated sources (2). However,
the growing knowledge of interaction partners for most hu-
man proteins makes it difficult for researchers to extract the
relevant information when proteins are studied under spe-
cific cellular conditions. In this scenario, the objective be-
comes to retrieve a small set of high-confidence interaction
partners that are, for example, involved in disease progres-
sion, expressed in a certain body part or signaling substrates
of the protein of interest. This makes it necessary to accom-
pany the experimental detection of PPIs with bioinformat-
ics strategies to annotate PPIs with context information, to
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select meaningful subsets from the entire network and to
provide means to interpret them.

To this end, our web resource, the Human Integrated
Protein-Protein Interaction rEference or HIPPIE [http://
cbdm.uni-mainz.de/hippie/], aims to provide highly reliable,
context-specific PPI networks and guide their interpreta-
tion. This is achieved by stringent confidence scoring of
PPIs, integrating different types of experimental informa-
tion and offering basic graph algorithms that highlight im-
portant proteins. We implemented a versatile interface that
allows wet lab and computational scientists alike to access
the data. Visualization of the output facilitates the inspec-
tion of relevant parts of the human interactome. Integrating
and interfacing external tools allow to interpret the results
of HIPPIE queries and to pass them on for subsequent anal-
yses.

Since its first release in early 2011 (18), HIPPIE has grown
significantly both in size and functionality. It has been main-
tained by a team of biologists and developers and has estab-
lished itself as a one-stop resource for querying and analyz-
ing the human interactome. In its second version, we have
added a large amount of PPIs and implemented several new
features to facilitate the study of PPI networks.

MATERIALS AND METHODS

PPI retrieval

We use the PSICQUIC interface (19) to regularly update
our PPI repository. HIPPIE contains experimentally de-
tected PPIs from IntAct (20), MINT (21), BioGRID (1),
HPRD (22), DIP (23), BIND (24) and MIPS (25). In an-
nual cycles, we branch out major releases of HIPPIE, which
we provide for download in the HIPPIE tab-separated or
MITAB-format files (26).

We map all source database entries to gene names, Entrez
gene ids and UniProt ids or accessions, which are all valid
options for querying HIPPIE.

PPI annotation

PPIs in HIPPIE are context annotated using gene expres-
sion information, gene ontology (GO) terms and MeSH
disease headings. For the generation of tissue-specific net-
works, we retrieve gene expression data from 53 healthy
human tissues from GTEx (27). GTEx provides gene-
level expression quantifications (for the technical details
see their documentation: http://www.gtexportal.org/home/
documentationPage). We consider that a gene is expressed,
if its median expression over samples in a tissue exceeds a
stringent RPKM threshold of 1 (28). We apply a node re-
moval approach to generate tissue-specific PPI networks,
which means that nodes representing non-expressed genes
are excluded from the network.

The annotation of PPIs in HIPPIE with respect to gene
function and disease is achieved using GO biological pro-
cess and cellular compartment terms and MeSH disease
headings. This is done by taking into account the hierar-
chical structure of the GO and MeSH ontologies: We as-
sociate each PPI with the lowest common ancestor of each
pair of terms/headings annotating the two interaction part-

ners. Details of the annotation procedure are described else-
where (29).

We predict directionality using the shortest-path ap-
proach described in (29). We infer whether a PPI is ac-
tivating or repressing using phenotypic image data of a
genome-wide cellular RNAi knockdown screen (30). We
add expert-curated PPI directionality and effect informa-
tion from KEGG (31).

Enrichment analysis

Disease and functional enrichment analyses for the mem-
bers of the subnetwork resulting from a protein or network
query are carried out via the third-party tools Gene Set to
Diseases (32) and PANTHER (33), respectively. The former
associates genes with diseases based on biomedical litera-
ture, the latter considers GO terms. In both cases, the sta-
tistically over-represented diseases or terms associated with
sets of proteins are determined. In more detail, Gene Set to
Diseases uses associations of diseases to all human genes
based on the over-representation of disease MeSH terms
attached to the PubMed records related to each human
gene; each association disease:gene is evaluated by a P-value
(from a one-tailed Fisher’s exact test), a false discovery rate
(FDR; derived from the P-value using the Benjamini and
Hochberg method) and by the number of PubMed records
that associate the gene to the disease. In its current imple-
mentation, HIPPIE uses Gene Set to Diseases with a thresh-
old of at least three PubMed records and a FDR < 0.05, on
the disease:gene associations.

HIPPIE REST web services

HIPPIE v2.0 can be queried via its recently-implemented
REST web service. This means that the partners of a protein
of interest or the way in which a group of proteins interact
can be easily determined and integrated into bioinformatics
pipelines.

Detailed information about this service can be consulted
at http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/
information.php#api.

RESULTS

Selecting reliable and meaningful PPIs in HIPPIE v2.0

HIPPIE provides access to the manually curated set of hu-
man PPIs from several source databases (see Materials and
Methods). As our aim is to integrate only the most reliable
interactions, we do not include any predicted associations
between proteins but only experimentally determined ones.
In order to compute a confidence score, we use informa-
tion on the experiments performed to detect a PPI. This
score is half manual, half computationally optimized (18)
and weights the amount and quality of the experimental
evidence supporting each PPI. With this, users can select
the most reliable PPIs and dramatically reduce the amount
of false positives within the notoriously error-prone human
PPI network.

Our own work (29,34) and that of other groups (35–37)
demonstrated that the addition of functional and tissue-
expression data, in combination with basic graph algo-
rithms, enables the construction of PPI networks that are
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highly relevant to a specific research question. In particular,
we showed that when cellular signaling is studied in an in-
fectious or genetic disease context, combining both gene ex-
pression information from the tissue affected by the disease
and predicted network information flow, serves to highlight
important mediators of disease from the PPI hairball sur-
rounding the studied proteins (29). Indeed, disease-causing
proteins tend to form an increased number of tissue-specific
PPIs in the tissues that they affect (38).

We therefore annotate PPIs in HIPPIE using a controlled
vocabulary derived from annotations of the interacting pro-
teins. PPIs are annotated with respect to protein function,
disease-relevance and tissue expression (29). To this end,
HIPPIE integrates various types of experimental and pro-
tein annotation data (Figure 1A).

Additionally, we take advantage of network topological
properties and other complementary data to offer options
like adding edge directionality or activation/repression
properties to the networks; these predictions are done by
means of the shortest-path approach described in (29) and
using an algorithm based on phenotypic image data for
unannotated PPIs described in (30), respectively. In both
cases, we complement the predicted data with expert cu-
rated information retrieved from KEGG (31).

The PPI annotations are implemented as filters in HIP-
PIE: either single PPI annotations or combinations of them
can be selected by the user. Subsequently, a network is con-
structed around the query proteins consisting only of PPIs
annotated with the selected categories. Interaction direc-
tionality and effect can be visualized in the resulting net-
work. In this way, informative subnetworks of the entire hu-
man PPI network can be generated. As an example, Figure
1B illustrates the usefulness of HIPPIE’s unique capability
of combining different types of information to reconstruct
signaling flow.

Novel features in HIPPIE v2.0

HIPPIE has been growing since its first release in 2011, from
∼73 000 to now more than 273 900 experimentally deter-
mined interactions among 17 000 human proteins. We clas-
sify 42 600 of the PPIs as high confidence interactions (18).
For more than 15 000 of the proteins in HIPPIE, we have
expression or functional information, allowing us to an-
notate the interactions between them. We recently updated
HIPPIE’s expression data to GTEx RNA-Seq gene expres-
sion quantifications in 53 healthy human tissues from post-
mortem samples (27).

A bottleneck of querying HIPPIE has been the data-
intensive loading of the filters and the subsequent computa-
tion of subnetworks from heterogeneous data, which forced
us to previously limit queries to 100 proteins. In HIPPIE
v2.0 we were able to remarkably improve performance, al-
lowing us to relax previous upload limits and providing a
much faster subnetwork generation from input lists of hun-
dreds of proteins. At the same time, we enhanced the visual
appeal of the HIPPIE output by porting the network visu-
alization to Cytoscape.js (39) and added new visual control
features for a more precise network exploration.

We also updated the input interface so that the data
stored in HIPPIE can be accessed in several ways: (i) We

recently implemented a browsing option, which provides
a comprehensive view of the proteins for which PPI data
are available, together with network summary statistics like
number of interacting partners or protein ID mappings. (ii)
HIPPIE can be queried by either single proteins, groups
of proteins or even entire networks (Figure 2A–C visual-
izes the different input options). (iii) It is now possible to
test whether the subnetworks resulting from such queries
are significantly associated to certain human disorders, ac-
cording to the literature (Figure 2D) (32), or gene ontology
terms (Figure 2E) (33). (iv) The output of experimental PPI
screens can be directly uploaded in order to highlight al-
ready known PPIs and their HIPPIE confidence scores (Fig-
ure 2C). (v) It is now much easier to integrate HIPPIE into
bioinformatics pipelines, thanks to its newly implemented
REST web service (see the Materials and Methods for more
details).

Comparison with other PPI resources

HIPPIE differs from other PPI resources in that it enables
the simultaneous generation of highly reliable and mean-
ingful networks. There are other resources integrating PPIs
and gene functional interactions (40,41), and some of them
make it possible to generate tissue-specific (42,43) or more
general context-specific networks (44). For example, the GI-
ANT web server (45) predicts functional protein maps in
144 tissues by integrating thousands of expression and PPI
experiments. HIPPIE’s sources intendedly incorporate only
experimentally determined data (both for interactions and
expression) without inferred gene–gene or gene–tissue as-
sociations. In contrast, many other resources consider in-
ferred associations (which in some cases can be excluded
by the user (e.g. IID, STRING and MyProteinNet)). More-
over, HIPPIE provides means to score the amount and qual-
ity of experimental PPI evidence, providing a comprehen-
sive, computationally optimized score, which is, to the best
of our knowledge, the only PPI confidence score combin-
ing expert knowledge on experimental reliability with com-
putationally optimized parameters of the scoring formula
(18). In fact, HIPPIE’s scoring system has recently has been
shown to perform best among confidence scores incorporat-
ing only PPI experimental information (46). Our approach
integrates experimental information to score all known ex-
perimentally detected PPIs, without creating or deleting any
of them, but allowing the selection of well-grounded PPIs
under the solid assumption that coherent experimental in-
formation increases the reliability of PPI data [e.g. (10)].
Additionally, users can restrict the resulting networks to
PPIs from experiments reporting only direct physical bind-
ing events (such as Y2H) or include indirect associations
(e.g. co-purified members of the same protein complex).

HIPPIE’s scope stands out from other resources in that
it integrates heterogeneous data types with basic network
algorithms to not only highlight meaningful PPIs but also
set them in their appropriate functional-, tissue-, effect- or
even disease-specific context. This is achieved by filtering
networks with respect to PPI annotations and highlighting
important edges with inferred information flow. We previ-
ously demonstrated that our approach enriches the result-
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Figure 1. Data in Human Integrated Protein–Protein Interaction rEference (HIPPIE) and how it can be used to reconstruct signaling events. (A) HIPPIE
integrates heterogeneous data types: PPIs from expert-curated source databases are constantly updated and integrated into HIPPIE. Experimental meta-
information (e.g. on the experimental methods employed to detect PPIs and on their reproducibility) is extracted and used to compute a confidence score
for each interaction in HIPPIE. Gene expression, gene function and phenotypic data are aggregated and used to annotate the PPIs stored in HIPPIE and
to infer edge effect and directionality. (B) The reconstruction of central components of the MAPK pathway downstream of BRAF is shown as a HIPPIE
query example. The kinases BRAF, MEK1 (MAP2K1) and ERK1 (MAPK3) are members of the Mitogen-activated protein kinase (MAPK) signaling
cascade and activate each other in the stated order. BRAF is frequently mutated in several cancers, colon cancer among them, where BRAF mutations are
found in approximately 9% of all patients (51). Querying HIPPIE with the kinases BRAF, MEK1 and ERK1 and filtering for high confidence PPIs and
colon expression results in the depicted network. Displaying shortest paths between BRAF (‘source’, in green) and transcription factors (‘sinks’) correctly
reproduces the chain of signaling events (BRAF activates MEK1, which activates ERK1 in turn). All terminal nodes in pink (ELK1, MYC, JUN, TP53,
SREBF1/2) are known substrates of ERK1 (52).

ing networks in canonical signaling events and more reliable
PPIs (29).

DISCUSSION

The need for accurate PPI networks to generate biological
hypotheses has been widely recognized (47). Still, a prob-
lem that few databases simultaneously address is: which in-
teractions from the huge human PPI hairball network are

meaningful for a specific research question and which PPIs
can we trust. Here, we described the development and exten-
sion of HIPPIE, which aims at filling this gap. Over the last
years, HIPPIE has become a popular human PPI resource
in the research community and many users have taken ad-
vantage of its unique features to generate highly reliable and
meaningful PPI networks, centering around specific groups
of proteins and research questions.
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Figure 2. HIPPIE query types and result network interpretation. (A) When a single protein is used as an input in HIPPIE’s Protein Query Tab, it produces
a table with the interacting partners of that protein. The confidence score for each interaction is also listed and the interactors of each partner can be
easily queried with a single click. (B) If a list of proteins or interactions is used as an input in HIPPIE’s Network Query Tab, it produces a network of
interactions between these proteins. In this query type, it is possible to implement filters that put the list of interactions in a functional and cellular context
and the user can choose between different output types. In the example, HIPPIE was queried for high-confidence interactions between the core members of
the Wnt signaling pathway, showing predicted information flow (arrow direction) and interaction effects (activating interactions are indicated by triangle
arrowheads). (C) HIPPIE’s Screen Annotation Tab allows to check whether a list of measured interactions is present in the database and how reliable each
link is. In the example, a tab-separated file is uploaded to HIPPIE and it outputs a new file with the confidence score of each interaction or −1 if it is not
present. (D and E) The results of the Protein and Network Queries allow one to perform a disease or functional enrichment analysis for the members of
the resulting protein subnetwork. These analyses are carried out via the tools Gene Set to Diseases (32) and PANTHER (33), respectively.

HIPPIE can be used at different levels. First, it is a re-
source integrating experimental PPIs from different manu-
ally curated sources. Its confidence scoring allows to eas-
ily distinguish high-confidence interactions from possible
false positive measurements. On the other hand, we imple-
mented PPI annotation and subnetwork generation algo-
rithms that allow to perform more sophisticated queries,
addressing particular research questions under more phys-
iological conditions. When implementing HIPPIE, we put
an emphasis on usability and, over the last years, reacted to
numerous user requests to improve its documentation and
interface. For example, the HIPPIE webpage now contains
a step-by-step manual to reproduce the biological pathway
reconstruction depicted in Figure 1B and to guide new users
through the process of performing more complex analyses
in the resource. Also, the possibility to upload experimental
data, which then get scanned for known PPIs and annotated

with basic summary information, was implemented upon
request from wet lab scientists performing the experimen-
tal screening of protein interactions and is one of HIPPIE’s
most commonly used features.

Thanks to the implementation of the annotation of PPIs
with disease terms, HIPPIE is particularly useful in a
biomedical context. But even without explicitly consider-
ing known gene–disease associations in HIPPIE queries, we
demonstrated here and in previous studies (29,30) the power
of HIPPIE to reveal disease mechanisms by integrating het-
erogeneous types of experimental data.

Gene expression changes over tissues are an important
modulator of cell type-specific signaling (48,49) and disease
(50). Therefore, projecting accurate estimates of gene abun-
dance onto PPI networks will provide more physiological
insights into the functional organization of the cell under
healthy and disease conditions. With GTEx, we incorpo-
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rated one of the most extensive and accurate catalogs of
gene expression in human tissues.

Future developments of HIPPIE will include, for exam-
ple, developing ways to deal with the inherent study bias in
PPI data sets to generate bias-reduced networks (14), and
improving our method to annotate PPIs based on GO terms
(see Materials and Methods) by taking into account fre-
quencies of GO terms.

In summary, HIPPIE makes an important step in the di-
rection of extracting meaningful and reliable PPI subnet-
works from the growing amount of human PPI data and
of guiding the development of biological hypotheses from
network data.
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