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In conditions of acute illness, patients present with reduced plasma T3 concentrations without a
concomitant rise in TSH. In contrast, plasma concentrations of the inactive hormone rT3 increase,
whereas plasma concentrations of T4 remain low-normal. This constellation of changes, referred to as
nonthyroidal illness syndrome (NTIS), is present across all ages, from preterm neonates and over-term
critically ill infants and children to critically ill adults. Although the severity of illness strongly cor-
relates with the severity of the NTIS phenotype, the causality of this association remains debated, and
pathophysiological mechanisms remain incompletely understood. In the acute phase of illness, NTIS
appears to be caused predominantly by an increased peripheral inactivation of thyroid hormones, in
which reduced nutritional intake plays a role. Current evidence suggests that these acute peripheral
changes are part of a beneficial adaptation of the body to reduce expenditure of energy and to activate
the innate immune response, which is important for survival. In contrast, in more severely ill and
prolonged critically ill patients, an additional central suppression of the thyroid hormone axis alters and
further aggravates the NTIS phenotype. Recent studies suggest that this central suppression may not
be adaptive. Whether treatment of this central component of NTIS in prolonged critically ill patients,
with the use of hypothalamic releasing factors, improves outcome remains to be investigated in large
randomized control trials.
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1. Thyroid Axis Alterations in Response to Critical Illness

Thyroid hormones are important regulators of thermoregulation, energy expenditure, and
cellular metabolism, but they also directly affect the cardiovascular and immune systems [1,
2]. In healthy circumstances, the release of thyroid hormones by the thyroid gland is reg-
ulated by a classic neuroendocrine feedback loop. Whenever thyroid hormone levels are low,
the hypothalamus releases TRH, which stimulates the anterior pituitary to synthesize and
release TSH. TSH stimulates the thyroid gland to produce and release T4 and to a lesser
extent T3. The source of the active thyroid hormone T3 is predominantly peripheral deio-
dination of T4. Negative feedback of T4 and T3 on TRH and TSH secretion further controls
homeostasis of thyroid hormone activity. In conditions of acute illness, patients present with
reduced plasma T3 concentrations without a concomitant rise in TSH. In contrast, plasma
concentrations of the inactive hormone rT3 increase, whereas plasma concentrations of T4
remain low-normal [3–5]. This constellation of changes is referred to as nonthyroidal illness
syndrome (NTIS) (Fig. 1).

The aim of this review is to provide an update on the current knowledge of NTIS across the
ages. The review discusses NTIS in themost extensively studied population of adult critically

Abbreviations: ICU, intensive care unit; NTIS, nonthyroidal illness syndrome; PICU, pediatric intensive care unit; RCT, randomized
control trial; THOP, transient hypothyroxinemia of prematurity.
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ill patients and summarizes insights into NTIS in critically ill infants and children and in
premature newborns.

2. NTIS in Critically Ill Adults Treated in the Intensive Care Unit

Low plasma T3 and high rT3 concentrations are found in adults suffering from acute illnesses
(e.g., infectious diseases, metabolic disorders, cardiovascular, pulmonary diseases, or gas-
trointestinal diseases) and in adults suffering from burns, trauma, and major surgery [6–10].

Figure 1. Schematic diagram of the biphasic changes observed in NTIS present in response
to critical illness. Changes in the hypothalamus–pituitary–thyroid axis and in peripheral
thyroid hormone metabolism. D1, D2, and D3 are iodothyronine deiodinase type 1, type 2,
and type 3, respectively.
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The severity of the illness is reflected by themagnitude of the changes in serumT3 and rT3 [4,
8, 11]. Patients with mild to moderate NTIS usually have normal plasma T4 and TSH
concentrations, whereas patients with more severe and prolonged illness also display low
serum T4 and TSH, both of which are indicative of a poor prognosis [12].

Plasma TSH transiently rises only in the first hours of critical illness, followed by a
transient increase in plasma T4, whereas plasma T3 concentrations may already be low and
rT3 concentrations high due to acute changes in peripheral thyroid hormonemetabolism (Fig.
1) [9]. The expression of the inactivating outer-ring deiodinase D3, which is responsible for
conversion of T4 to inactive rT3, was found to be upregulated in liver and skeletal muscle
biopsies harvested from nonsurviving critically ill adults [13]. Also, within granulocytes,
critical illness upregulates D3 activity, which may contribute to the bacterial killing capacity
of these cells [14, 15]. However, increased D2 expression has also been reported in activated
macrophages. Activated macrophages can locally increase T3, which could activate phagocytosis
and the release of cytokines [16]. In contrast, hepatic activity of the activating inner-ring dei-
odinase D1 is suppressed by critical illness, which results in decreased deiodination of T4 into T3
[13, 17]. Cytokines and hypoxia are among the possible drivers of such peripherally altered
thyroid hormone metabolism [18, 19]. In addition, lowered levels of thyroid hormone–binding
globulin and albumin contribute to altered peripheral thyroid hormone availability at target
tissues [20, 21].

When patients require prolonged intensive care, plasma T3 concentrations remain sup-
pressed and accompanied by low plasma T4 and TSH concentrations (Fig. 2) [22]. This can be
explained by reduced hypothalamic TRH expression, as was observed in postmortem biopsies
harvested from prolonged critically ill patients [23]. Indeed, the low TRH mRNA correlated
with low plasma TSH and T3 concentrations [23]. At the onset of recovery from illness, a rise
in TSH and in total and free T4 has been observed, followed by normalization of circulating T4
and T3 levels [24, 25]. Such a rise in TSH preceding recovery suggests reversal of reduced
TRH stimulation of the thyrotropes during prolonged critical illness. In prolonged critical
illness, peripheral tissues appear to activate compensatory mechanisms to restore T3
availability, for example by upregulating D2 activity, as has been shown in skeletal muscle
biopsies [26]. Also, the thyroid hormone transporter monocarboxylate transporter 8 was
found to be upregulated in muscle and liver of prolonged critically ill patients [27].

Figure 2. Illustration of the biphasic response of TSH to critical illness. Representative
nocturnal TSH serum concentration profiles of a healthy volunteer and of two critically ill
patients are shown to illustrate the differences between the acute and chronic phases of
critical illness. [Adapted with permission from Van den Berghe G, de Zegher F, Bouillon R:
Clinical review 95: Acute and prolonged critical illness as different neuroendocrine
paradigms. J Clin Endocrinol Metab. 1998;83(6):1827-1834.]
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The changes within the thyroid axis are part of a broader neuroendocrine response to
illness that encompasses all major endocrine axes, which together alter the balance between
anabolism and catabolism [28]. Whereas the changes that occur acutely in response to critical
illness are considered beneficial, reflecting an attempt to provide energy and limit un-
necessary energy expenditure to promote survival, the changes that occur in prolonged
critical illness may be harmful, with potentially detrimental consequences such as wasting,
organ dysfunction, and impaired cognition. Such differences may explain the ongoing con-
troversy about whether patients with NTIS should be treated to improve the outcome of
critical illness. In patients undergoing cardiac surgery, treatment with T3 either did or did
not improve postoperative cardiac function [29–31], but patient-centered clinical outcomes
were never affected [31–34]. Furthermore, T3 treatment did not affect mortality in patients
suffering from acute burn injury [35]. T3 infusion in mechanically ventilated patients with
NTIS also did not affect respiratory muscle function [36]. In acutely ill patients with low
serum T4 levels, T4 treatment did not affect mortality [37] or even increased it [38]. However,
increasing circulating thyroid hormone levels in the acute phase of illness does not neces-
sarily normalize tissue levels [39]. Furthermore, the often supraphysiological doses of T3 or
T4 that were tested further suppressed circulating TSH levels, which could hamper the
recovery of the pituitary TSH secretion [37–39]. Interestingly, a small proof-of-concept study
of prolonged critically ill patients investigated the impact of a continuous infusion of TRH
combined with a growth hormone secretagogue and found not only normalized thyroid
hormone levels but also reduced catabolism and increased anabolism [40]. Larger studies
investigating clinical outcome are currently lacking.

Hypothyroidismduring critical illness can be very difficult to diagnose due to the superimposed
NTIS. High plasma TSH and low plasma T4 are indicative of hypothyroidism, but the absence of
elevated TSH does not exclude hypothyroidism in the context of critical illness [11]. It is generally
accepted that patients with premorbid hypothyroidism, which is present in ;7% of the elderly
population, should continue to receive thyroxine replacement while in the intensive care unit
(ICU) [41]. Hyperthyroidism is characterized by suppressed plasma TSH in the face of high
plasma free T4 andT3, but this constellation can be altered by superimposedNTIS during critical
illness [42, 43]. Physical examination for goiter and proptosis and screening for thyroid antibodies
can provide further information and help distinguish hyperthyroidism fromNTIS. Thyroid storm
can be lethal when untreated; however, its symptoms and signs, such as fever, supraventricular
tachycardia, gastrointestinal problems, and altered mentation, are atypical in the context of
critical illness [42, 43].

3. NTIS in Critically Ill Infants and Children Treated in the Pediatric ICU

In critically ill infants and in children, NTIS is also present with normal or low T4, low T3, high
rT3 plasma concentrations, and a lowT3/rT3 ratio in the absence of elevated TSH (Fig. 3).NTIS
in children has been described in pediatric ICU (PICU) populations with varying diagnostic
categories [44, 45], in patients undergoing cardiac surgery [46–49], in patients suffering from
sepsis or septic shock [50–53], and in those with oncological diseases [54, 55]. The critical
illness–induced rise in rT3 was found to be more pronounced in infants than in older children
and resulted in a lower T3/rT3 ratio [44]. As in adults, the severity of NTIS in children has been
associated with poor clinical outcomes of critical illnesses [44, 45, 50, 52, 56]. Lower T4 and
lower T3 have been associated with delayed discharge from PICU [45, 52] and with risk of
infections [44] and death [44, 50, 52, 56, 57]. Two small studies found higher TSH plasma
concentrations in nonsurvivors than in survivors [58, 59], but this could not be confirmed in two
large, more diverse PICU populations [44, 45]. Detailed studies documenting the time course
of NTIS—from the acute phase through the chronic phase of pediatric critical illness—are
currently lacking.

Whether treating critically ill children with thyroid hormone is beneficial or not remains
unclear. Thyroid hormone substitution has mainly been tested in acute critical illness after
cardiac surgery with cardiopulmonary bypass. In most studies, T3 treatment did not improve
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Figure 3. Impact of critical illness on thyroid hormone concentrations upon PICU admission
in infants and children. Infants are younger than 1 y old. Bars represent means, and
whiskers represent the SE. The black boxplots represent healthy children, and the light-gray
boxes represent critically ill patients. [Reproduced with permission from Jacobs A, Derese I,
Vander Perre S, van Puffelen E, Verstraete S, Pauwels L, Verbruggen S, Wouters P,
Langouche L, Garcia Guerra G et al: Non-thyroidal illness syndrome in critically ill children:
prognostic value and impact of nutritional management. Thyroid. 2019;29(4):480–492.]
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outcome [60–63]. In one randomized control trial (RCT), T3 infusion improved myocardial
function and reduced the need for postoperative intensive care [64]. One study of oral T3 also
reported shortened time to extubation [65]. No studies have investigated the impact of
treatment with thyroid hormone in the chronic phase of pediatric critical illness.

4. NTIS in Premature Newborns Treated in the Neonatal ICU

Premature infants with low birth weight represent a particular and separate subgroup of
patients treated in the neonatal intensive care environment. Preterm infants often present
with transient hypothyroxinemia of prematurity (THOP), which is characterized by low
circulating T4 and T3 without a concomitant rise in TSH [66, 67]. Although the changes
in T4, T3, and TSH are quite similar to what is observed in NTIS in adults, children,
and term infants, the underlying mechanisms are even more complex, given that the
hypothalamus–pituitary–thyroid axis matures until the end of full-term pregnancy. Hence,
thyroid axis immaturity likely contributes to the thyroid hormone alterations observed in
preterm newborns [66, 67]. The most immature newborns, who suffer from the highest
morbidity rates, also have the most pronounced THOP [68]. Also, in the preterm infant
population, studies on the impact of thyroxine supplementation did not provide sufficient
evidence in favor of thyroid hormone substitution. Indeed, supplementation of preterm in-
fants with levothyroxine during the first 48 hours of life did not improve morbidity or
mortality; nor did it improve longer-term neurodevelopment [69, 70]. A post hoc analysis of
one of these studies, however, showed a neurocognitive benefit among infants born at 25 to
26 weeks gestational age [70]. Levothyroxine treatment of preterm infants suffering from
THOP also did not improve acute outcome [71], whereas a neurodevelopmental benefit was
observed until a corrected age of 3 years [72].

5. Iatrogenic and Nutritional Factors Interfering With NTIS

Adult, pediatric, and neonatal critically ill patients often receive high doses of glucocorticoids,
which can lower serum TSH [73–75]. Moreover, endogenously elevated cortisol levels in
response to stress may exert a suppressive effect on TSH [76]. Also, dopamine infusion,
prescribed as an inotrope and/or vasopressor for critically ill patients, can severely suppress
TSH secretion in adults, children, and infants [77, 78]. Although dopamine is no longer a
preferred drug for adults, it is still extensively used in pediatric and neonatal ICUs. Less
commonly used drugs, such as antiepileptic medications [79–81], certain antiarrhythmic
drugs [82], and lithium, can also affect the hypothalamus–pituitary–thyroid axis. Iatrogenic
iodine intoxication [83], through the use of iodine-containing contrast fluids or antiseptic
dressings, can affect thyroid hormone availability [84].

Fasting in healthy individuals induces changes in the thyroid axis that are similar to those
in NTIS: plasma T3 decreases, whereas plasma rT3 concentrations rise; these changes
rapidly return to baseline upon refeeding [85]. Restricted nutrition during adult critical
illnesses appears to contribute to NTIS [86–88]. More recently, two large RCTs in adults and
in children demonstrated that tolerating a nutritional deficit during the first week of critical
illness as compared with the early administration of supplemental parenteral nutrition
resulted in fewer complications and accelerated recovery [89, 90]. Although restricting
macronutrient administration in the first week of critical illness reduced complications and
accelerated recovery of patients with NTIS, it aggravated the NTIS by further lowering TSH,
total T4, T3, and the T3/rT3 ratio (Fig. 4) [44, 88]. Importantly, the clinical benefit of not
forcefully feeding early was statistically in part explained by the early further suppression of
T3 and T3/rT3 ratio in both the adult and pediatric populations, suggesting that the acute
peripheral changes of NTIS likely represent a beneficial adaptation to illness [44, 88]. Such
an effect on the peripheral component of NTIS was also shown to be evoked by targeting
normal fasting blood glucose levels in critically ill children [45]. This further suppression of
T3 and T3/rT3 also in part explained themortality benefit of tight blood glucose control in this
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population [45, 91]. In prolonged critically ill adults, however, targeting fasting blood glucose
levels did not affect NTIS [8, 92]. The further aggravation of the central component of the
NTIS, with further suppression of TSH-induced T4 release, in critically ill adults and children
evoked by not forcefully feeding early appeared to counteract the outcome benefits of the
intervention [44, 88]. The central component of the NTIS may thus be a maladaptive re-
sponse, unlike the acute peripheral component. Whereas virtually all ill patients acutely
presentwith lowT3 and high rT3 levels, which is interpretable as an immediate adaptation to
stress, low T4 levels are especially pronounced in the more severely ill and prolonged
critically ill patients [93, 94]. Because current evidence suggests a potential beneficial pe-
ripheral component but a harmful central component of NTI, future RCTs should focus on

Figure 4. Effect of accepting a very low macronutrient intake, by omitting parenteral
nutrition (PN) until beyond the first week in ICU (Late-PN), as compared with early
provision of full feeding with PN (early-PN) on NTIS. Bars (mean – SE) represent the
changes (referred to as D) from the admission values to day 3 in the adult or pediatric ICU
(or to the last day for patients with shorter ICU stay) in serum TSH, T4, T3, rT3, and the
T3/rT3 ratio. The open and filled bars represent the patients randomized to the early-PN and
late-PN groups, respectively. [Reproduced with permission from Jacobs A, Derese I, Vander
Perre S, van Puffelen E, Verstraete S, Pauwels L, Verbruggen S, Wouters P, Langouche L,
Garcia Guerra G et al: Non-Thyroidal Illness Syndrome in Critically Ill Children: Prognostic
Value and Impact of Nutritional Management. Thyroid 2019, 29(4):480-492; and Langouche
L, Vander Perre S, Marques M, Boelen A, Wouters PJ, Casaer MP, Van den Berghe G:
Impact of early nutrient restriction during critical illness on the nonthyroidal illness
syndrome and its relation with outcome: a randomized, controlled clinical study. J Clin
Endocrinol Metab. 2013;98(3):1006-1013.]
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treatment of the central part of the thyroid axis in prolonged critically ill patients. Treatment
with hypothalamic releasing factors would theoretically also be a safer option than treatment
with T3 or T4 because the normal negative feedback exerted by thyroid hormones at the
pituitary level would be maintained and excessively elevated thyroid hormone levels could
hereby be avoided.

Conclusion

Acute critical illness causes low plasma T3 concentrations and increased rT3 plasma con-
centrations without a concomitant rise in TSH. This constellation, referred to as NTIS, is
present across all ages, from preterm neonates to term critically ill infants and children to
critically ill adults. Although the severity of illness strongly correlates with the severity of the
NTIS phenotype, causality of this association remains debated, and the pathophysiological
mechanisms remain incompletely understood. In the acute phase of illness, NTIS appears to be
caused predominantly by an increased peripheral inactivation of thyroid hormones in which
reduced nutritional intake plays a role. Current evidence suggests that these acute peripheral
changes are part of a beneficial adaptation of the body to reduce expenditure of scare energy
and to activate the innate immune response that is essential for survival. In contrast, in more
severely ill and prolonged critically ill patients, an additional central suppression of the thyroid
hormone axis alters and further aggravates the NTIS phenotype. Recent studies indicate that
this central suppression may not be adaptive. Whether treatment of this central component of
NTIS in prolonged critically ill patients, with use of hypothalamic releasing factors, improves
outcome remains to be investigated in large RCTs.

Search Strategy

We searched the PubMed database for articles published in English with different
combinations of the search terms “critically ill,” “intensive care,” “sepsis,” “paediatric,”
“neonatal,” “thyroid,” and “nonthyroidal illness.”
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