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Abstract
The clinical approval of immune checkpoint inhibitors is an important advancement in the field of cancer immunotherapy. 
However, the percentage of beneficiaries is still limited and it is becoming clear that combination therapies are required to 
further enhance the treatment efficacy. The potential of strategies targeting the immunoregulatory network by “hitting the 
gas pedal” as opposed to “blocking the brakes” is being recognized and intensively investigated. Hence, next to immune 
checkpoint inhibitors, agonists of co-stimulatory receptors of the tumor necrosis factor superfamily (TNF-SF) are emerging 
as promising options to expand the immunomodulatory toolbox. In this review the development of different categories of 
recombinant antibody and ligand-based agonists of 4-1BB, OX40, and GITR is summarized and discussed in the context 
of the challenges presented by the structural and mechanistical features of the TNFR-SF. An overview of current formats, 
trends, and clinical studies is provided.

Key Points 

Targeting the co-stimulatory receptors 4-1BB, OX40, 
and GITR of the TNF superfamily holds potential for 
cancer immunotherapy.

Current developments of agonists focus on effective 
receptor clustering, site-specific activity, and reduced 
toxicity.

A variety of mono- and bispecific antibodies as well 
as antibody-ligand fusion proteins has been generated, 
which are now being evaluated in clinical trials.

1 Introduction

Interfering with the regulatory network of the immune sys-
tem holds great potential for cancer immunotherapy. This 
has been impressively demonstrated by the successful clini-
cal development of many immune checkpoint inhibitors 
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that act by enhancing an antitumor immune response block-
ing coinhibitory receptors (e.g. CTLA-4, PD-1). However, 
treatment responses are still limited to a small percentage 
of patients [1]. Thus, current efforts focus on also exploring 
the opposite regulatory approach, i.e. enhancing an antitu-
mor immune response by activating co-stimulatory recep-
tors. Members of the tumor necrosis factor receptor super-
family (TNFR-SF), in particular 4-1BB, OX40, and GITR, 
have emerged here as promising targets [2]. However, the 
translation of the concept has been challenged by their par-
ticular structural and mechanistic features. Their influence 
and impact on the development of therapeutic reagents are 
discussed in this review.

2  Costimulatory Receptors of the Tumor 
Necrosis Factor Superfamily (TNF‑SF)

4-1BB (CD137/TNFRSF9), OX40 (CD134/TNFRSF4), and 
GITR (CD357, TNFRSF18) are amongst the most intensively 
investigated co-stimulatory members of the TNFR-SF for can-
cer therapy so far. They are mainly expressed on activated T 
cells and NK cells, enhancing the processes of proliferation, 
differentiation, survival, and effector functions (for reviews, 
see [3, 4]). Accordingly, treatment effects of 4-1BB agonists in 
several preclinical mouse models were demonstrated to impact 
and depend on CD8+ T cells and NK cells [5, 6]. Importantly, 
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upregulation of 4-1BB on antigen-primed T cells in the tumor 
allowed to identify and target tumor-specific T cells on site 
[7]. The expression of 4-1BB was shown to be enhanced by 
the hypoxic conditions of the tumor microenvironment [8]. 
Treatment with 4-1BB agonists induced expansion of tumor 
infiltrating CD8+ T cells [9, 10], prevention of activation-
induced cell death (AICD) [11], and restoration of exhausted 
tumor infiltrating lymphocyte (TIL) function [12]. Further-
more, intratumoral persistence [13], reversion of anergy [14], 
and an increase in effector memory CD8+ T cells [15] was 
reported. In addition, the expression of 4-1BB on tumor micro-
vessels was shown to be involved in enhancing the recruitment 
of activated T cells [16]. Early co-stimulatory studies indi-
cated a more prominent effect of 4-1BB on CD8+ T cells and 
OX40 on CD4+ T cells, respectively [17, 18]. Indeed, OX40 
signaling was shown to enhance the cooperation between 
CD4+ T cells and CD8+ T cells for antitumor activity [19], 
and both subpopulations were shown to participate in agonist-
mediated tumor regression in preclinical mouse models [20]. 
Also, enhanced infiltration and function of tumor-specific 
CD8+ T cells and the generation of tumor-specific memory 
was reported [21, 22]. In the case of GITR, co-stimulation by 
agonistic antibodies was shown to promote antitumor response 
by enhancing both CD8+ and CD4+ effector T-cell activity 
and in particular reducing the number and activity of tumor-
infiltrating Tregs [23, 24]. Although GITR, OX40, and 4-1BB 
appear to have the potential to drive the proliferation of Tregs, 
they also seem to be implicated in antagonizing Treg genera-
tion and Treg-mediated suppression (for review, see [25, 26]). 
Thus, the co-stimulatory impact on Tregs and the implication 
for cancer treatment still remain unclear. Importantly, agonists 
of 4-1BB, OX40, and GITR have shown great potential for 
combination therapies, for example, with each other, immune 
checkpoint inhibitors, and conventional strategies (for review, 
see [26, 27]).

2.1  Mechanism of Activation

In general, co-stimulatory TNFRs are expressed on immune 
cells and interact with their respective ligands expressed on 
antigen presenting cells (APC). Consequently, under physio-
logical conditions, co-stimulation takes place in a local man-
ner via cell-cell interaction. From a structural point of view, 
TNF-SF receptors are characterized by repeats of a cysteine-
rich domain (CRD) in their ectodomain that can promote 
diverse degree of receptor self-assembly. Thus, prior to their 
activation the receptors present in monomeric, dimeric or 
trimeric state. TNF-SF ligands on the other side are char-
acterized by an external TNF homology domain (THD) 
that usually leads to stable homotrimeric ligand assemblies 
[28]. X-ray crystal structures showed that receptor-ligand 
binding takes place in a symmetric ligand trimer-receptor 
trimer configuration, involving the typical THD and CRD 

domains [29]. According to the prevalent two-step model, 
further clustering of this trimeric receptor-ligand complex 
is required to achieve efficient signaling pathway activa-
tion [30]. This step is supported by the given alignment, 
restricted mobility, and high local density of the ligand in 
its transmembrane form. In fact, many TNF-SF ligands can 
bind in soluble form with high affinity to their receptors, but 
fail to activate them efficiently, unless additional oligomeri-
zation is induced. Most of the co-stimulatory members of 
the TNFR-SF, including 4-1BB, OX40, and GITR, fall into 
this category. Thus, the induction of receptor clustering is 
considered essential for the efficacy of agonistic reagents. 
This insight has ultimately guided the development of ago-
nists, leading to diverse antibody and ligand-based formats 
(Fig. 1), many of them now entering clinical trials (Tables 1, 
2 and 3).

2.2  Agonistic Monospecific Antibodies

In principle, the bivalency of a classical monoclonal IgG 
antibody entails the potential for cross-linking and agonis-
tic cluster induction, whereupon the position of the epitope 
rather than high affinity is critical [31, 32]. However, it is 
actually the Fc region that plays a dominant role in modulat-
ing this process. It was shown that FcγR-mediated cell sur-
face binding of the targeted antibody can become crucial for 
the efficacy of co-stimulatory TNFR-SF clustering and acti-
vation [33]. Unfortunately, this makes the approach depend-
ent on the presence of FcγR-expressing immune cells and 
prone to unreliable factors like FcγR expression levels and 
competition with serum IgG. Furthermore, isotype-depend-
ent binding to particular FcγR types impacts the therapeutic 
outcome. For instance, in preclinical studies with 4-1BB 
agonistic antibodies of different isotypes it was shown, that 
binding to inhibitory FcγRIIB was required for anti-tumor 
efficacy, while binding to the activating FcγRIII reduced 
tumor effects due to T cell depletion by antibody-dependent 
cellular cytotoxicity (ADCC). However, an isotype with low 
activating/inhibitory FcγR binding ratio (reduced ADCC) 
was only combinable with a weak intrinsic agonist. In com-
bination with a strong intrinsic agonist liver toxicity was 
observed [34]. Thus, intrinsic cross-linking capacity, isotype 
and availability and distribution of FcγR types determine not 
only the treatment efficacy, but also the side effect profile. 
Consequently, the development of monospecific antibodies 
has been challenged by these factors.

By now several 4-1BB-directed agonistic monoclonal 
antibodies have entered clinical trials (Table 1). Initial lead-
ing molecules were Urelumab (BMS-663513) [35] and 
Utolimumab (PF-05082566) [36]. Urelumab is a non-ligand-
blocking fully human IgG4 antibody with a hinge mutation 
(S228P) for improved stability that showed clinical activ-
ity, but also dose-limiting hepatotoxicity (doses ≥ 1mg/kg) 
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[37, 38]. Utolimumab on the other hand is a ligand-block-
ing humanized IgG2 antibody that has shown a favorable 
safety profile, but was less effective relative to Urelumab 
[31, 39]. Structural analysis revealed that the epitope posi-
tion of Urelumab in comparison to Utolimumab enabled 
stronger 4-1BB cross-linking through the bivalent binding 
of the IgG, enhancing its intrinsic agonistic strength. In addi-
tion, both isotypes presented reduced ADCC capacity and 
enabled FcγRIIB-mediated cross-linking [31], whereupon 
affinity for FcγRIIB is 10-fold higher for IgG4 than for IgG2 
[40]. Looking into optimizing the cross-linking balance of 
agonistic strength and FcγR affinity led to the development 
of LVGN6051 that combines weak intrinsic 4-1BB ago-
nism, i.e. FcγR cross-linking requirement, with engineered 
FcγRIIB selectivity. Preclinical mouse studies showed effec-
tive antitumor activity without signs of concomitant liver 
toxicity [34]. Mutations in isotypes of immunostimulatory 
antibodies are reviewed in detail by Boulard et al. [41]. Most 
clinical studies with co-stimulatory agonists include the 
evaluation of combinatory treatments with immune check-
point inhibitors (Table 1).

Further developments focus on enhancing the intrinsic 
agonistic efficacy. Here, a consistent strategy to improve the 
cross-linking property of an antibody is the generation of 
recombinant antibody formats with increased multivalency. 
This included fusing small binding units, e.g. three OX40-
directed single-domain antibodies (sdAb), in a row to an Fc 

part, leading to hexavalent antibodies with enhanced avidity 
and therefore cross-linking capacity (ES102/INBRX-106). 
Also, a tetravalent hinge-stabilized IgG4 molecule target-
ing GITR (ASP1951), has been reported [42]. Both formats 
are currently listed in clinical trials (Table 1). Moreover, in 
preclinical studies the design of tetravalent and in addition 
biepitopic antibodies was shown to retrieve robust OX40 
agonists, independent of extrinsic crosslinking [43].

Other approaches address in particular the reduction of 
immune-related adverse events. Thus, to avoid systemic 
toxicity, local treatment and local activation of monoclo-
nal antibodies is being investigated. Local treatment by 
low-dose intratumoral injections with a 4-1BB agonistic 
antibody in mice was shown to result in antitumor effects 
without liver inflammation [8]. A clinical phase I/II study 
with intratumoral urelumab treatment in combination with 
systemic applied nivolumab in patients with solid tumors 
has been announced (NCT03792724). Local activation is 
the strategy of the Probody-approach with a 4-1BB ago-
nist antibody prodrug. Here, a peptide fused via a protease-
cleavable linker to the N-terminus of the light chain, masks 
the antigen-binding site in solution. Once arrived at the 
tumor microenvironment (TME) the peptide is cleaved by 
tumor-associated proteases, enabling co-stimulatory recep-
tor binding, i.e. agonistic activity at the tumor site. Thus, 
in syngeneic mouse models the antitumor efficacy of the 
original antibody was preserved while liver inflammation 

Fig. 1  Schematic overview of agonists for co-stimulatory tumor 
necrosis factor superfamily (TNF-SF) receptors. (A) monospecific 
antibodies, (B) bispecific antibodies, (C) TNF-SF ligand fusion pro-
teins, (D) antibody-TNF-SF ligand fusion proteins. Target specificity: 

red/orange, costimulatory receptor; blue, TAA; green, PD-1/PD-L1; 
yellow, human serum albumin. sdAb single-domain antibody, TNF-SF 
extracellular domain of costimulatory TNF super family ligand, kih 
knob-into-hole, Dk duokine, sc single-chain
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was reduced [44]. Next to the efforts to improve monospe-
cific antibodies, the introduction of bispecific antibodies is 
on the rise in the field.

2.3  Bispecific Antibodies

Bispecific antibodies targeting a co-stimulatory receptor 
and a tumor-associated antigen (TAA) have the potential 

to localize the agonistic activity at the tumor site. Bind-
ing to the co-stimulatory receptor on the immune cell is in 
general not sufficient for an effective activation, but tether-
ing the antibody by its TAA-specificity to the tumor cell 
surface, i.e., adopting a transmembrane-like form, enables 
the dynamic of efficient receptor clustering and therefore 
target-dependent activation. Thus, the strategy seeks for 
high local co-stimulatory efficacy and reduced peripheric 

Table 2  Tumor necrosis factor super family (TNF-SF) agonistic bi- and trispecific antibodies in clinical studies (www. clini caltr ials. gov)

Adv advanced, NSCLC non-small cell lung cancer

Targets Name Format Tumor type Combination Phase Status Clinical ID Information by

Her2 x 
4-1BB

PRS-343 (αHer2) 
IgG4mut-
(α4-1BB) 
Anticalin

Her2-positive 
adv. or met-
astatic solid 
tumors

– I Completed
(10/2021)

NCT03330561 Pieris Phar-
maceuticals, 
Inc.

Adv. or 
metastatic 
Her2-pos-
itive solid 
tumors

Atezolizumab (αPD-L1) I Active NCT03650348 Pieris Phar-
maceuticals, 
Inc.

Her2-positive 
gastric 
cancer

Ramucirumab 
(αVEGFR2)/Pacli-
taxel/Tucatinib

II Active NCT05190445 Pieris Phar-
maceuticals, 
Inc.

PD-L1 x 
4-1BB

PRS-344/
S095012

(αPD-L1) 
IgG4mut-
(α4-1BB) 
Anticalin

Solid tumors – I/II Recruiting NCT05159388 Pieris Phar-
maceuticals, 
Inc.

GEN1046 DuoBody® Solid tumors – I Recruiting NCT04937153 Genmab
Metastatic 

NSCLC
Pembrolizumab(αPD-1) II Recruiting NCT05117242 Genmab

ABL503 (αPD-L1) 
IgG1mut-
(α4-1BB) 
scFv

Adv. solid 
tumors

– I Recruiting NCT04762641 ABL Bio, Inc.

INBRX-105 (αPD-L1) 
sdAb-(α4-
1BB) sdAb-
Fcmut

Solid tumors Pembrolizumab (αPD-1) I Recruiting NCT03809624 Inhibrx, Inc.

FS222 mAb2 Advanced 
cancers

– I Recruiting NCT04740424 F-star 
Therapeutics 
Limited

OX40 x 
4-1BB

FS120 mAb2 Adv./
metastatic 
cancer

– I Recruiting NCT04648202 F-star 
Therapeutics 
Limited

PD-L1 x 
OX40

EMB-09 FIT-Ig® Adv. solid 
tumors

– I Not yet 
recruiting

NCT05263180 Shanghai 
EpimAb 
Biotherapeu-
tics Co., Ltd.

4-1BB x 
PD-L1 x 
HSA

NM21-1480 scMATCH™3 Adv. solid 
tumors/
NSCLC

– I/II Recruiting NCT04442126 Numab Thera-
peutics AG

PSMA x 
4-1BB x 
HSA

CB307 Humabody® Adv. and/or 
metastatic 
PSMA-pos-
itive solid 
tumors

– I Recruiting NCT04839991 Crescendo 
Biologics 
Ltd.

http://www.clinicaltrials.gov
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toxicity. Furthermore, the tumor-directed antibody unit can 
also contribute to diversify the mode of action, for example, 
by blocking a target receptor (TAA). Most advanced devel-
opments include a variety of monovalent/bivalent bispecific 
antibodies with a silenced Fc part or a human serum albu-
min (HSA) binding unit (Fig.1B, Table 2). PRS-343 was 
the first bispecific 4-1BB agonist to enter clinical trials. It 
is a Her-2 specific IgG4 variant of trastuzumab, fused at 
the C-terminus to a 4-1BB-directed, non-ligand-blocking, 
anticalin molecule. The Fc region is engineered (S228P, 
F234A, L235A) to avoid half-antibody exchange and FcγR-
binding (i.e., excluding ADCC and targeting-independent 
cross-linking), without interfering with FcRn-binding (i.e., 
prolonged plasma half-life). It was shown that the co-stim-
ulatory activity of PRS-343 was related to the Her-2 expres-
sion levels in vitro and induced localized immune effects 
and antitumor efficacy in preclinical in vivo studies [45]. 
The first clinical phase I trial as monotherapy was recently 
completed (NCT03330561). PRS-343 was well tolerated 
and showed clinical benefit, associated with increased 
CD8+T cell numbers and proliferation index [46]. A sec-
ond phase I trial of PRS-343 in combination with atezoli-
zumab (NCT03650348) and a phase II trial of PRS-343 in 
combination with ramucirumab and paclitaxel or tucatinib 
(NCT05190445) is ongoing. Another important target on 
the rise is PD-L1. The ligand forms part of the PD-L1/PD-1 
checkpoint inhibitor axis and is overexpressed in many solid 
tumors [47]. Bispecific antibodies targeting PD-L1 and a 
co-stimulatory receptor seem a particular promising strat-
egy, because combination of localized checkpoint inhibition 
and co-stimulation is expected to synergize in enhancing 
T-cell and NK-cell function, increasing treatment response 

rate and durability. Bispecific antibodies in development 
seek to translate this concept mostly by targeting PD-L1 
and 4-1BB. 4-1BB is prominently expressed on PD-1 high 
positive CD8+ TILs, and PD-1 blockade can further upregu-
late the 4-1BB expression [48], thus supporting a combined 
action. Formats entering clinical trials include IgGs fused at 
the C-terminus to an Anticalin [46] or scFv [49], DuoBody® 
[50],  mAb2 [51], and sdAbs fused to either a Fc region or 
an HSA-specific sdAb [52] (Fig.1B, Table 2). Preclinical 
studies confirmed blocking of checkpoint inhibition and 
targeting-dependent co-stimulatory activity. Furthermore, 
bispecific antibodies were able to outperform the combi-
nation of respective monoclonal antibodies in vitro and 
showed superior antitumor effects in comparison with the 
treatment with immune checkpoint inhibitor only in divers 
tumor mouse models [46, 49–51]. Mechanistic studies with 
NM21-1480, a monovalent trispecific antibody (single-chain 
of three λcap™-stabilized Fvs) targeting PD-L1, 4-1BB, and 
HSA, respectively, addressed the issues of target density, 
epitope position and antibody affinities. Targeting-medi-
ated co-stimulation was demonstrated at a broad range of 
PD-L1 expression levels, whereupon the co-stimulatory 
strength correlated with the target density. For this antibody 
format, 4-1BB clustering resulted more effectively from 
binding a membrane distal epitope than a proximal one. 
Furthermore, increasing the affinity to PD-L1 significantly 
over 4-1BB converged the dosing for maximal dual activ-
ity [53]. Hence, target density, epitope position, and affin-
ity need to be concerted adequately to deliver the strategy. 
PD-L1x4-1BB bispecifics were in general well tolerated in 
toxicity studies in cynomolgus monkeys without signs of 
liver inflammation [49–51, 53]. First results of a phase I 

Table 3  Agonistic tumor necrosis factor super family (TNF-SF) ligand-fusion proteins in clinical studies (www. clini caltr ials. gov)

TD trimerization domain, adv. advanced

Targets Name Format Tumor type Combination Phase Status Clinical ID Information by

OX40 MEDI6383 Fcγ4(S228P)-TD-
OX40L

Adv. solid 
tumors

+/– Durvalumab 
(αPD-L1)

I Completed 
(07/2017)

NCT02221960 MedImmune 
LLC

GITR MEDI1873 Fcγ1-TD-
GITRL(N161D)

Adv. solid 
tumors

– I Completed 
(12/2018)

NCT02583165 MedImmune 
LLC

FAP x 4-1BB RO7122290 (αFAP) Fab-
Fcγ1mut-CH1/
CL-4-1BBL

Metastatic colo-
rectal cancer

Cibisatamab 
(αCEAxCD3) /
Obinutuzumab 
(αCD20)

I/II Recruiting NCT04826003 Hoffmann-La 
Roche

CD19 x 4-1BB RO7227166 (αCD19) Fab-
Fcγ1mut-CH1/
CL-4-1BBL

Lymphoma, 
non-Hodgkin

Obinutuzumab 
(αCD20)/
Glofitamab 
(αCD20xCD3)/
Tozilizumab 
(αIL-6R)

I Recruiting NCT04077723 Hoffmann-La 
Roche

PDL-1 x OX40 SL-279252 PD1-Fcγ4-OX40L Adv. solid 
tumors or 
lymphomas

– I Recruiting NCT03894618 Shattuck Labs, 
Inc.

http://www.clinicaltrials.gov
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trial of the PD-L1x4-1BB DuoBody GEN1046 in heavily 
pretreated patients with advanced refractory solid tumors 
(NCT03917381) showed a manageable safety profile and 
disease control in 65.6% of the patients mostly in the form 
of stable disease [50].

Other developments focus on the combination of small 
antibody or antibody-like units without including an Fc-
part. In the trimer body format, a 4-1BB-directed scFv is 
connected to an EGFR-directed  VHH by a linker with the 
murine collagen XVIII homotrimerization domain. Conse-
quently, the molecule assembled into a homotrimer with the 
binding units presented in a hexagonal conformation. Tar-
geting-enhanced co-stimulation was confirmed in vitro and 
antitumor effects demonstrated in CDX and PDX humanized 
mouse models [54]. No signs of systemic or liver toxicity 
were observed for respective surrogates in corresponding 
syngeneic mouse models [55, 56]. The principle of target-
ing-mediated co-stimulation is also pursued by bispecific 
antibody-mimetics composed of designed ankyrin repeat 
proteins (DARPins). MP0310, a bispecific DARPin® drug 
candidate directed against the fibroblast activation protein 
(FAP) and 4-1BB, is currently being evaluated in a clini-
cal phase I trial in patients with advanced solid tumors 
(NCT04049903).

2.4  Costimulatory TNF‑SF Ligands

Naturally, co-stimulatory receptors of the TNFR-SF can also 
be activated by recombinant forms of their respective ligands 
(Fig. 1C, Table 3). The basic functional unit is usually a 
self-assembling, non-covalently linked homotrimer of the 
extracellular domain (ECD) of the ligand, which requires 
further oligomerization to induce effective receptor cluster-
ing. This can be facilitated for example by fusing the ECD of 
the ligand to an Fc region and enforcing ligand trimerization 
by introducing an isoleucine zipper coiled coil domain in 
the linker. Thus, a Fc-mediated covalently linked hexameric 
ligand form was generated that showed co-stimulatory prop-
erties for Fc-GITRL and Fc-OX40L in preclinical in vitro 
and in vivo studies [57, 58]. Similar to the situation observed 
with agonistic monoclonal antibodies, cross-linking via Fc/
FcγR interactions were shown to play an important role 
in the activity of these molecules. Both fusion proteins 
entered clinical phase I studies with patients with advanced 
solid tumors (NCT02221960, NCT02583165) (Table 3). 
Fc-GITRL (MEDI1873) was reported to show an overall 
acceptable safety profile and prolonged stable disease in 
some patients. However, the lack of tumor response discour-
aged the company from further clinical development [59].

Other developments include the generation of recom-
binant ligands in the single-chain format, i.e. connecting 
three ECDs with short linkers, thus enforcing intramolecu-
lar trimerization rather than intermolecular trimerization. 

Concomitant fusion to the N-terminus of a silenced Fcγ1 
region retrieves a covalently linked homodimer with a hexa-
valent ligand configuration. scGITRL-Fc showed co-stimu-
latory activity and antitumor effects that were independent 
of FcγR-mediated cross-linking [60]. This property was also 
confirmed for scCD40L-Fc and scCD27L-Fc [61, 62].

Another approach conceives the generation of Duokines 
(Dk), i.e. fusion proteins composed of two different co-
stimulatory TNF-SF ligands (e.g., combinations of 4-1BBL, 
OX40L, CD27L, and CD40L). Here, the respective ECDs 
are connected by a 15-20 amino acid linker, leading to a 
bifunctional homotrimer formation. Alternatively, ligand 
units in the single-chain format are fused, generating 
scDuokines (scDk) [63]. Receptor clustering is here facili-
tated by simultaneous receptor binding in cis or trans. Thus, 
dual-targeting translates into combined co-stimulatory activ-
ity. Following the same principle, further developments to 
increase the plasma half-life included scDk-Fc fusion pro-
teins utilizing a silenced, heterodimeric (knob-into-hole) Fc 
design [64]. Both formats, scDk and scDk-Fc, showed simi-
lar co-stimulatory properties and the potential to enhance 
the antitumor effect of a T-cell bispecific antibody (TAA × 
CD3) in a syngeneic tumor mouse model [63, 64].

2.5  Antibody‑Fusion Proteins with Co‑Stimulatory 
TNF‑SF Ligands

Antibody-fusion proteins composed of a tumor-directed anti-
body and the ECD of a co-stimulatory TNF-SF ligand  con-
stitute  another approach to achieve tumor-localized co-stim-
ulation. Antibody-mediated binding to a tumor-associated 
antigen leads to the cell surface presentation of the co-stimu-
latory ligand, mimicking its physiological active membrane-
bound form. Targeting-dependent activity was demonstrated 
for antibody fusion proteins with different TNF-SF members 
(e.g., 4-1BBL, OX40L, GITRL, LIGHT), target specifici-
ties (e.g., FAP, EGFR, Endoglin, EDA, CD19), and for-
mats [65–70] (Fig. 1D, Table 3). To translate this concept, 
initially scFv-TNF-SF were created by fusing a scFv anti-
body to the N-terminus of the TNF-SF ligand (ECD). Due 
to the trimerization property of the ligand, homotrimeric 
molecules with three antibody units and a trimeric ligand 
unit were generated [65–68]. Advanced design introduced 
the ligand in the single-chain format, creating a monomeric 
scFv-scTNF-SF variant with only one antibody unit and one 
trimeric ligand unit, showing improved activity and stabil-
ity. Importantly, targeting a ligand trimer to the cell surface 
was shown to be sufficient for the induction of an effec-
tive receptor stimulation in vitro and to enhance antitumor 
effects in mice [71]. Furthermore, the single-chain design of 
the TNF-SF ligand enabled single-site fusion of the ligand 
trimer and consequently the incorporation into fusion pro-
tein formats of higher complexity [72]. Currently, the most 
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advanced and in clinical studies is an IgG-like format com-
posed of a FAP or CD19-directed Fab fragment, a heter-
odimeric Fcγ1 region, and a 4-1BBL trimer (RO7122290/
RO7227166). The ligand trimer assembles from two ECDs 
fused as single-chain to the CL(RK) domain connected to 
the CH2-CH3 of the Fc region and a single ECD fused to a 
CH1(EE) domain forming a complementary light chain-like 
arm. The heterodimeric (knob-into-hole) Fc region is modi-
fied to inhibit FcγR binding without interfering with FcRn 
binding. Thus, tumor target-dependent, but FcγR-cross-
linking independent, co-stimulatory activity was combined 
with a prolonged serum half-life [70]. Preclinical studies 
in xenograft-humanized mouse models showed FAP- and 
CD19-directed antibody-4-1BBL fusion proteins to increase 
the accumulation and activation of intratumoral CD8+ T 
cell and enhance the antitumor effects of T-cell bispecific 
CEA × CD3 and CD20 × CD3 antibodies, respectively. No 
accumulation of immune cells in the liver was observed [70]. 
Clinical phase I studies with patients with metastatic colo-
rectal cancer (NCT04826003) and non-Hodgkin lymphoma 
(NCT04077723) have been initiated (Table 3).

Recently, a format for the blockade of PD-1 checkpoint 
inhibition in combination with GITR agonism has been pro-
posed. The corresponding antibody-fusion protein is com-
posed of an anti-PD-1 IgG1 antibody fused at the C-termi-
nus of the silenced Fc to scGITRL. Taking advantage of the 
co-expression and cross-regulation of PD-1 and GITR on 
activated T cells, PD-1 targeting-mediated GITR-clustering 
in cis was shown to induce effective tumor growth inhibi-
tion in diverse syngeneic, genetically engineered, and xeno-
graft-humanized mouse tumor models [73]. Instead of using 
an antibody, targeting and blocking of PD-L1 can also be 
achieved by introducing the ECD of PD-1. In the design of 
PD-1-Fc-OX40L, the ECD of PD-1 and OX40L were fused 
to the N- and C-terminus of a silenced Fc region, respec-
tively. Indeed, the stimulatory activity on activated T cells 
and the antitumor responses in mice appeared to be superior 
to the treatment effect obtained by the combination of cor-
responding monoclonal antibodies [74]. Currently, a clinical 
phase I study is recruiting participants (NCT03894618).

In the current treatment strategies co-stimulatory agonists 
and immune checkpoint inhibitors are usually combined 
simultaneously, either in the form of a single molecule or as 
co-applied separate molecules. Preclinical studies in mice 
showed for the combination of an OX40 agonist and a PD-1 
checkpoint inhibitor that the sequential administration and 
the order of application were crucial to improve the antitu-
mor efficacy and obtain effects superior to the concurrent 
combination therapy [75]. Thus, accounting the dynamic of 
a natural immune response, exploring the potential of dif-
ferent timing should be of interest to further improve dosing 
and treatment efficacy of co-stimulatory agonists in com-
binatory approaches. Considering their mode of action as 

enhancer molecules, their therapeutic efficacy will always be 
intrinsically dependent on the presence of a natural underly-
ing or an artificially induced antitumor immune response. 
Thus, in order to tune the antitumor immune response ade-
quately and minimize immune-related adverse events, their 
application will have to be carefully adjusted for each par-
ticular combination strategy.

3  Conclusions

Agonists of co-stimulatory TNF-SF receptors are required 
to induce effective receptor clustering. The application of 
conventional monoclonal antibodies has been shown to be 
complicated by the dependence on FcγR-mediated cross-
linking. Thus, current drug developments focus mainly 
on enhancing the cross-linking capacity of antibodies and 
ligands in an FcγR-independent manner. Next to the gen-
eration of multivalent antibody and oligomeric ligand mol-
ecules, the design of bispecific antibodies and bifunctional 
antibody-ligand fusion proteins driving receptor complex 
clustering by cell-cell interactions is emerging as a prom-
ising option to enhance and localize the co-stimulatory 
activity in the tumor. Site-directed activity in combination 
with immune checkpoint inhibition is expected to further 
increase the therapeutic efficacy. Currently, multiple co-
stimulatory TNF-SF agonists have entered clinical trials. In 
the near future upcoming results of toxicity and treatment 
efficacy will define the potential of the optimized formats 
and concepts. It will be interesting to see which candidates 
will come out on top and take the lead.
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