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The only reason for time is so that everything doesn’t happen 
at once.

—Albert Einstein

The regular 24-h environmental cycle generated 
by the planet’s rotation has driven the evolution of 
intrinsic biological timing mechanisms in virtually all 
life forms on the Earth. In mammals, circadian clocks 

orchestrate daily rhythms in biology and behavior, 
such that most physiological systems are regulated in 
a time-of-day-dependent manner (Dibner et al., 2010; 
West and Bechtold, 2015; Bass and Lazar, 2016). Please 
see Figure 1. for summary of pertinent critical care 
physiology regulated by circadian ‘clock’ genes.

The core cellular circadian pacemaker in mammals 
oscillates with a 24-h period and is driven by a tran-
scriptional-translational negative feedback loop, with 
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positive transcriptional regulators BMAL1/CLOCK 
promoting expression of repressors Period (Per1/2), 
Cryptochrome (Cry1/2), Nr1d1, and Nr1d2 (REV-
ERBα/β) (King et  al., 1997; Becker-Weimann et  al., 
2004; Brown and Doyle, 2020) and activators such as 
RORs (RORa, RORb, and RORys). The core clock 
transcription factors act through clock-controlled 
genes to regulate multiple aspects of cellular function 
in a cell- and tissue-specific manner.

Both energy metabolism and immunity are 
strongly regulated by the circadian clock, shaping 
physiological and immune responses based on the 
time of day. Because of the pervasive nature of the 
clock within our biology, altered circadian rhythmic-
ity has been recognized as a characteristic feature 
and/or contributing factor to numerous diseases 
states, with clear implications for diagnosis and treat-
ment (Allada and Bass, 2021).

The circadian clockwork regulates all major cell 
types and pathways in the immune system, from dif-
ferentiation, trafficking, and local cell-based responses 
(Scheiermann et al., 2018). Our group was the first to 
define the role of specific clock components in shap-
ing immune and inflammatory responses to chal-
lenges (Gibbs et al., 2012, 2014; Kitchen et al., 2020) 
and how inflammatory signals acutely re-set circa-
dian circuits via the rapid selective degradation of 
specific core proteins of the circadian clockwork 
(Pariollaud et al., 2018). In addition, energy metabo-
lism is profoundly affected by timed feeding and fast-
ing events, and also by the internal circadian 
machinery, affecting lipogenic and lipolytic cycles in 
the liver, and adipose, as one example (Hunter et al., 
2020). In the context of critical illness, the influence of 
the endogenous circadian clock, plus the altered, and 
typically circadian disruptive, intensive care environ-
ment act together to drive physiology and patho-
physiological responses. Here, we review why 
targeting circadian clock genes, for example, with the 
REVERB agonist SR9009 and others, may be of bene-
fit for patients in intensive care.

In the context of the stress imposed by critical ill-
ness, there are some additional considerations. These 
include the role of the circadian clock in driving 
cycles of mitochondrial fission and fusion, thereby 
determining the cellular bioenergetic status. Here, 
the cellular clock drives a circuit involving the mito-
chondrial master regulator PGC1a, through REVERBa 
(L. Sun et al., 2021). In addition, inflammation-driven 
HIF1a stabilization may affect circadian function 
through heterodimerization with the core clock pro-
tein BMAL1; HIF1, and BMAL1 are homologous as 
bHLH-PAS domain proteins (Peek et  al., 2017; 
Adamovich et  al., 2017). These connections suggest 
that critical illness may provide a rather specific cel-
lular environment to re-wire circadian regulatory 
networks, with therapeutic implications.

Intensive Care Environment

Intensive care is characterized by high nursing 
ratios and active support of organ failure using artifi-
cial scaffolds of tissue function—for example, ventila-
tors are used to facilitate gas exchange and blood 
filtration supports the poor renal function.

Whatever the reason for intensive care admissions, 
such as infection, major surgery, or trauma, admis-
sions are typically complicated by ongoing inflam-
mation, lack of homeostasis, metabolic derangement 
(Singer, 2017), and repeated nosocomial infection sec-
ondary to an acquired immune dysfunction (Ward 
et  al., 2008). The most basic cell functions—such as 
that of ATP generation (Singer, 2017) and pH regula-
tion—are lost (Al-Jaghbeer and Kellum, 2015), neces-
sitating artificial intervention, until such time normal 
tissue and cell function is resumed.

Throughout intensive care admission, the initial 
often hyperinflammatory human phenotype in sepsis 
or trauma is followed by immune paresis (Nakamori 
et al., 2021), classically mediated by programmed cell 
death of T cells via the programmed death ligand 
pathway (PD1), which has been extensively described 
in COVID-19 patients (Venet et  al., 2021). Although 
there are obvious ways to suppress inflammatory 
overactivity, such as the use of steroids, these do less 
for the immune paresis that often follows infection 
(Nakamori et  al., 2021). However, there are many 
ways to modulate immunity and the body uses them 
in vivo—one such pathway is regulation, and espe-
cially suppression, of cellular circadian clock proteins 
(Coiffard et  al., 2019). It has been shown in human 
patients in the intensive care unit that initial inflam-
matory insults—for example, bacterial infection—
cause an initial loss in the expression of clock-related 
genes (Lachmann et al., 2021) in circulating immune 
cells. One mechanism for this is described below.

Alarmins and antigens, such as lipopolysaccharide 
(LPS), cause a profound suppression of clock pro-
teins, for example, BMAL1 (Curtis et al., 2015; Diaz 
et al., 2020). This is mediated partly via upregulation 
of miRNA-155 (Curtis et al., 2015)—a small noncod-
ing RNA produced in response to DAMPS (damage-
associated molecular patterns), alarmins (molecules 
that signal cell “danger”), LPS, IL-6, and other toxins. 
This miRNA is well known to potentiate macrophage 
function and acts mechanistically to stabilize TNFa 
(Bala et al., 2011). However, it seems that human and 
murine BMAL1 transcripts both have binding sites 
for miRNA-155 and are inhibited by it (Curtis et al., 
2015). Thus, it seems an evolutionary adaptation to 
suppress BMAL1, and thereby other clock genes such 
as CRY and PER in the setting of cell stress—as it is 
seen in immune cells of septic (Lachmann et al., 2021) 
as well as heavily injured trauma patients (Coiffard 
et al., 2019). In mice, experimental BMAL1 knockout 
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provides a survival advantage in streptococcal pneu-
monia infection (Kitchen et  al., 2020), mediated by 
improved phagocytic activity and immune cell 
recruitment (Kitchen et  al., 2020), providing experi-
mental evidence that the regulation of clock compo-
nents has an effect on sepsis responses.

Urinary and serum melatonin and its precursors or 
metabolites have grossly abnormal circadian oscilla-
tions in human patients admitted to intensive care 
(Oldham et  al., 2016). Furthermore, physiological 
parameters such as core body temperature and the 
“normal” circadian architecture of blood pressure vari-
ation are shown to be disturbed in multiple analyses of 
human intensive care patients (Chan et al., 2012).

It is not surprising that in very sick individuals, cir-
cadian rhythms are disturbed. However, recovery of 
externally measured circadian factors such as body 
temperature, heart and respiratory rate, and blood 
pressure appears to coincide with recovery from the 
disease state itself (Davidson et al., 2021). What is less 
clear, as there are no longitudinal studies of circadian 
biomarkers or gene transcripts throughout human 
intensive care stays, is when the cell clock resumes 
normality, and whether this affects disease trajectory. 
So far there is just evidence that on admission to inten-
sive care, clock gene transcripts are much reduced in 
expression, and disordered in rhythm (Coiffard et al., 
2019; Lachmann et al., 2021; Lazreg et al., 2013) at least 
in sepsis and trauma. One study shows that in neuro-
logically injured patients (who may therefore have 
damage to the suprachiasmatic nucleus and other 
parts of the circadian system), clock genes are impaired 

for at least 1 week after admission (Diaz et al., 2020). 
What we do not know is whether clock gene regula-
tion remains disordered at discharge.

Investigation is complex, because the effects of 
the cell clock are often tissue-specific, and many of 
the output pathways are affected by the state of the 
patient and confounded by the environment. For 
example, melatonin production from the pineal gland 
is regulated both by the central clock in the suprachi-
asmatic nucleus, but also suppressed by light, and so 
ambient lighting in the intensive care unit can affect 
melatonin measurements.

Light-dark therapy has thus far had extremely lim-
ited success in RCTs (randomised control trials), and 
this disappointment probably represents the 
extremely deranged inner milieu of physiology and 
biochemistry in extremis, thus will not be discussed 
in detail. Several trials have been done and do not 
appear to reduce important outcomes like delirium 
(Simons et  al., 2016; Smonig et  al., 2019). It is also 
worth noting other environmental cues to circadian 
entrainments, such as feeding duration, in intensive 
care are often continuous (Stroud et al., 2003) rather 
than episodic, and thus anticipated to blunt circadian 
entrainment with the environment.

Circadian Disruption in Sepsis

Sepsis is defined as a dysregulated immune 
response to infection (Singer et al., 2016). It can lead 
to multiorgan failure (MOF) and a requirement for 

Figure 1.  Summary of points of control exerted by the circadian clock relevant to patient physiology in intensive care.



388  JOURNAL OF BIOLOGICAL RHYTHMS / August 2022

organ support. Mortality is as high as 50% (Bauer 
et al., 2020).

One of the features of septic shock is a high cyto-
kine burden (Osuchowski et  al., 2006); predictive of 
early mortality (Remick et al., 2005). Two such media-
tors, which also serve as useful biomarkers, are IL-6 
(Song et  al., 2019) and TNFa (Leon et  al., 1998; 
Osuchowski et al., 2006). Other influential cytokines 
in this setting are IL-1b (Danielski et al., 2020) (pro-
duced by the NLRP3 inflammasome), IFNγ (Miles 
et al., 1994), and IL-18 (Mierzchala-Pasierb et al., 2019).

The cytokine storm can be followed by immuno-
suppression in the form of a “compensatory anti-
inflammatory response” (Ward et al., 2008) coined as 
CARS (Osuchowski et al., 2006), predisposing to nos-
ocomial infection. There is evidence these proinflam-
matory cytokines are targets for circadian clock 
proteins; for example, REVERB represses TNFa 
expression levels in mice (Lewis et al., 2018), and IL6 
has been regarded as the most circadian cytokines, 
under REVERB control (Gibbs et al., 2012).

With respect to CARS—the immunosuppressive 
phase of sepsis, one pathway is mediated by TNFa 
(Zheng et al., 1995), and another by PD-1 (programmed 
death ligand), reviewed recently for immunotherapy 
(Liu and Li, 2017). Both of these cause T-cell death, con-
tributing to immune dysfunction (Liu and Li, 2017). 

There is now evidence from preclinical animal models 
that the circadian clock plays a role in the “checkpoint” 
regulating the PD1 (Deng et  al., 2018). In this animal 
model (Deng et al., 2018), BMAL1 deficiency increased 
lethality from sepsis; this was mediated by higher levels 
of lactate-induced PD-1 expression, which was linked to 
T-cell apoptosis and MOF. Lethality was abrogated in 
the presence of anti-PD-1 antibodies (Deng et al., 2018). 
Furthermore, lactate has emerged as a useful biomarker 
for the severity of septic shock (Singer et al., 2016; Lee 
and An, 2016). Also intriguingly in the above study 
(Deng et al., 2018) was the demonstration that BMAL1 
deficiency allowed increased PKM-2 glycolytic flux, 
leading to higher lactate. In the same study, inhibition of 
PKM-2 also reduced mortality and reduced PD-1 
expression. Moreover, PKM-2-induced glycolysis has 
been shown to directly affect the NLRP-3 inflamma-
some (Xie et al., 2016), which has been reviewed here 
(Danielski et al., 2020) as a driver of sepsis outcomes, 
further strengthening the mechanistic links.

Thus, the clock has a role to play in both reducing 
proinflammatory cytokines and reducing immune 
suppression in sepsis. This fits the trend noted in 
animals and human patients, that there is early and 
late death in sepsis (Xiao et al., 2006; Daviaud et al., 
2015), either from proinflammatory MOF or nosoco-
mial superinfection (Daviaud et al., 2015).

Figure 2.  Summary of circadian points of control over energy metabolism relevant to intensive care. The disruption to light and food 
entrainment mechanisms is central to the disruption in physiology seen. The precise coordination or lipid metabolism between the 
liver, muscle, and adipose, which is essential for health adaptation to rest and active periods, is both clock-regulated and also sub-
ject to direct regulation by inflammatory signaling in critical illness. Abbreviation: LPS = lipopolysaccharide FFA = Free Fatty Acid;  
TGs = Triglycerides; VLDL = Very Low Density Lipoprotein; HDL-C = High Density Lipoprotein Cholesterol; LDL-C = Low Density 
Lipoprotein Cholesterol.
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There are other interesting circadian features in 
sepsis; as early as 1960, Halberg et al (1960) appreci-
ated a time-of-day-dependent lethality to inhaled 
endotoxin. More recently, the Ray group showed that 
a mouse model BMAL1 knockout (Kitchen et  al., 
2020) had improved mortality in Streptococcal pneu-
monia, secondary to improved macrophage motility 
and phagocytic function. Since then, a further mouse 
model has demonstrated that there is a time-of-day-
responsive lethality to septic insult (Lang et al., 2019), 
irrespective of the myeloid clock being present, and 
mortality increased three times if kept in constant 
dark. This shows that there is more than one regula-
tory cue affecting this time-of-day response. Constant 
dark appears to be a mammalian cue for hibernation 
and stupor (Lee, 2007), promoting enzymes involved 
in the metabolism of fat (Zhang et al., 2006).

This would appear to be an unhelpful adaptation 
in the acute stages of sepsis, where it has been shown 
to increase the lethality of sepsis in a mouse model 
(Geiger et  al., 2021), perhaps as early responses are 
dominated by a glucose requirement, rather than the 
mobilization of lipids.

In summary, it would therefore appear the inter-
play of light, feeding, myeloid clocks, and inflamma-
tion is complicated and requires further elucidation. 
The use of clock-related pathways as targets appears 
promising in animal models and requires human 
phase 1 safety trials.

Circadian Disruption in Vascular 
Disease

Cardiovascular events are a common source of 
admission and cause of death in intensive care (Cook 
et al., 2021). Post cardiac arrest care takes place in the 
unit, and a period of cardiac “stunning” is common 
(Laurent et al., 2002). A comprehensive review of the 
pathophysiology of postresuscitation syndrome is 
here (Neumar et al., 2008), including ischemia-reper-
fusion mechanisms, metabolic reprogramming, and 
autonomic/adrenergic remodeling.

What we see in animal experiments of clock gene 
manipulation following cardiac arrest is that the pres-
ence of an intact clock process is protective in the set-
ting of cardiac ischemia (Hu et al., 2019)—BMAL1 is 
integral to the healthy fusion-fission maintenance of 
mitochondria (E. Li et al., 2020). Circadian clock gene 
knockout models predispose to dilated cardiomyopa-
thy (Ingle et  al., 2015) and accelerated age-related 
dilated cardiomyopathy (Young et al., 2014), not dis-
similar to the cardiomyopathy seen in other mito-
chondrial sources of cardiac pathology such as 
chemotherapy-induced, in which doxorubicin 
(Chatterjee et al., 2010) causes changes and damages 

mitochondria (Yin et  al., 2018), or hereditary 
(Friedreich’s ataxia) cardiomyopathy (Hanson et al., 
2019), a disease where mitochondria are directly 
damaged by dysfunctional frataxin and subject to 
enhanced oxidative stress.

Furthermore, there is a significant circadian asso-
ciation to autonomic regulation of cardiac rhythm, 
with sympathetic input shown to increase the morn-
ing risk of ventricular fibrillation (Hayter et al., 2021). 
Temporal changes in autonomic output are also 
responsible for a time-of-day susceptibility to 
QT-prolonging drugs such as the antibiotic levofloxa-
cin (Kervezee et al., 2016).

It has also been shown in vivo that BMAL1 knock-
out significantly increases micro and macrovascular 
risks by altering endothelial function and intimal 
hyperplasia (Bhatwadekar et  al., 2017). The pheno-
type seen is described as a mimic of diabetic vascular 
changes. Plaque remodeling in coronary artery dis-
ease was also recently shown to be influenced by 
BMAL1 activity (Zhu et al., 2018). In coronary artery 
disease, the ROS protective effects of active BMAL1 
conveyed protection. This is in contrast to the benefi-
cial effects seen with BMAL1 loss in Pneumococcal 
pneumonia, where the absence of BMAL1 allows aug-
mented inflammatory action.

There has been previous interest in time-of-day-
related outcomes in cardiac surgery, noted in aortic 
valve replacement in human patients (Montaigne et al., 
2018). Here, afternoon surgery improved both postop-
erative troponin release and other clinical outcomes. 
This does match the circadian pattern of inflammation 
in humans (peaking in the morning) (Smolensky et al., 
2015). A meta-analysis (Fudulu et al., 2021) in several 
thousands of patients failed to replicate this finding. 
However, it is worth noting that outcomes already vary 
by the individual center (Soppa et al., 2019) (the aortic 
valve study was in a single center), and also that an 
arbitrary afternoon cutoff of 12:00 may not capture the 
full circadian range of response. With respect to transla-
tional approaches, the REVERB agonist SR9009 when 
given early after ischemia, in mice, improved ischemia-
perfusion-related remodeling and cardiac function 
(Reitz et  al., 2019). In addition to REVERB agonists, 
attention is currently being applied to the development 
of RORa ligands for cardiovascular disease, for exam-
ple, they are overexpressed in acute myocardial infarc-
tion (Meng et al., 2021).

Clock Genes as Targets for Lung 
Injury

The lungs are a key tissue supported in intensive 
care; in the United Kingdom, invasive ventilation can 
only occur in the intensive care unit. Inflammation in 



390  JOURNAL OF BIOLOGICAL RHYTHMS / August 2022

the lungs is circadian (Nosal et al., 2020), as has been 
noted particularly in asthma (Durrington et al., 2014) 
and also in physiological circadian variation in 
myeloid trafficking (Druzd et al., 2014).

Ventilator-induced lung injury (Dreyfuss and 
Saumon, 1998) is a phenomenon in which invasive 
ventilation directly damages the lungs, irrespective 
of the underlying condition. There are few epidemio-
logical studies as it is difficult to differentiate from 
the primary condition (such as pneumonia or acute 
respiratory distress syndrome); however, in a study 
of 332 patients, 24% were seen to develop lung injury 
in the first 5 days of admission (Gajic et  al., 2004). 
Ventilator-associated lung injury (VALI) is known to 
be a cause of iatrogenic mortality because in a land-
mark RCT of the lung-protective ventilation strategy, 
mortality was reduced significantly in those with 
low tidal volumes (Acute Respiratory Distress 
Syndrome Network et al., 2000). Later studies have 
confirmed lower tidal volumes are associated with 
lower levels of cytokine release (Parsons et al., 2005), 
such as TNFa (Chiumello et  al., 1999) or IL-1b 
(Dolinay et  al., 2012). VALI consists of pressure 
(Kolobow et al., 1987), volume (Carlton et al., 1990), 
or hyperoxia (Helmerhorst et  al., 2017)-induced 
trauma to the integrity of lung architecture (Ware, 
2013) leading to edema (Carlton et al., 1990), tissue 
destruction (Ware, 2013), and thus impaired gas 
exchange. The release of alarmins and cytokines 
causes systemic inflammation (Parsons et  al., 2005) 
and contributes to MOF (Jaecklin et  al., 2010; 
Chiumello et al., 1999; Plötz et al., 2004). Strategies to 
reduce VALI are therefore of great interest. Some of 
the aforementioned pathways that mediate ventila-
tion-induced lung damage have been shown to be 
affected by clock gene agonists such as REVERB ago-
nists, for example, the NLRP3 inflammasome (Wang 
et al., 2018). Targeting REVERB may be an option to 
combat the inflammasome activation seen as part of 
ventilation-induced lung injury (Liu et  al., 2019; 
Dolinay et al., 2012).

Furthermore, TNFa is implicated in VALI with evi-
dence that the blockade of TNFa is protective 
(Proudfoot et al., 2018; Bertok et al., 2012). A phase II 
human trial of anti-TNFa was stopped due to being 
underpowered (Ryan et al., 2020); however, this was 
recent, and so far no further human trials have been 
published. TNFa mediates its actions mainly through 
the NFkB pathway (Liu et  al., 2000; Zhang et  al., 
2017), and REVERB agonists have been shown to tar-
get this intracellular cascade, for example by binding 
to p65 at its promoter in macrophages (Wang et al., 
2018). In addition, REVERB agonists were found to 
improve mortality and reduce cytokine levels in non-
alcoholic steatohepatitis, a disease process with 
prominent NFkB action (Griffett et al., 2020).

Hyperoxia can drive lung damage, an effect medi-
ated by activation of the JNK/ERK-3 pathway (Li 
et al., 2007). This pathway can be targeted by REVERB, 
by transcriptional repression through the NCoR-
HDAC3 repressor complex (Zhang et  al., 2002; Yin 
and Lazar, 2005).

A late effect of ventilator-induced lung injury and 
acute respiratory distress syndrome (ARDS) is pul-
monary fibrosis (Albert et  al., 2019; Marshall et  al., 
1998; Cabrera-Benítez et al., 2012, 2014). Mechanical 
trauma to lung tissue resulting from forced ventila-
tion in mice results in the epithelial-to-mesenchymal 
transition, through the actions of TGF (Cabrera-
Benítez et  al., 2012). Fibroblast changes cause 
increased collagen deposition (Tsukui et  al., 2020). 
Fibrosis directly contributes to mortality (Cabrera-
Benítez et  al., 2014). REVERB agonists have been 
shown to protect against fibrosis in an animal model 
of lung fibrosis (Cunningham et al., 2020). They are 
also protective with respect to the epithelial-to-
mesenchymal transition (Wang et  al., 2021), as an 
inflammatory response, and reduce morbidity, and 
mortality in an animal model of smoke-induced lung 
damage (Wang et al., 2021).

Further underlining the role of the clock genes in 
lung injury, murine experiments demonstrate that the 
severity of VALI is gated by BMAL1—high tidal vol-
umes are less traumatic in a BMAL1 knockout (Felten 
et  al., 2018) mouse. The loss of BMAL1 was associ-
ated with less neutrophil ROS production in response 
to ventilator injury.

In a rat model, the REVERB agonist SR9009 rescued 
many of the deleterious changes induced by high ven-
tilator tidal volumes (Li et al., 2014). The tidal volumes 
used in these experiments were vastly outside the 
clinical range, 10-40 mL/kg—in humans the “safe” 
range is 6-8 mL/kg (Acute Respiratory Distress 
Syndrome Network et al., 2000), so it is impressive to 
see this degree of reduction. Corresponding parame-
ters include reduced leukocyte egress and reduced 
TNFa (Li et al., 2014).

Furthermore, tissue susceptibility to stress in the 
lung has circadian regulation according to a study 
demonstrating that the oxidative stress response 
pathways NRF-2/glutathione affected the degree of 
lung fibrosis developed in response to bleomycin 
(Cunningham et  al., 2020). The authors found that 
the NRF-2 pathway caused the altered redox state/
glutathione reserves that affected the time-of-day 
response to bleomycin. BMAL1 is shown to bind to 
an important E-box on the NRF-2 gene (Q. Sun et al., 
2021). BMAL1, together with NRF-2, is a key coordi-
nator of oxidative responses in cells (Chhunchha 
et al., 2020).

Another factor in indirect injury in invasive ven-
tilation is the loss of intercostal and diaphragmatic 
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muscle mass, which affects weaning from the venti-
lator (Nakanishi et  al., 2019) and may reflect the 
wider myopathy that occurs in the critically ill (van 
Gassel et  al., 2020). REVERB agonists can affect 
skeletal muscle oxidative and functional capacity 
(Woldt et al., 2013; Amador et al., 2018) and so may 
find an application in this context. Indeed, REVERB 
doping has been proposed in elite sports (Davies 
et al., 2019). REVERB may prevent muscle atrophy, 
so preserving muscle mass (Mayeuf-Louchart et al., 
2017). This is an intriguing prospect for intensive 
care patients who suffer from profound muscle 
wasting (Koukourikos et al., 2014), despite calorie-
calculated feeding (Stroud et  al., 2003). Moreover, 
muscle biopsies in critically ill patients demonstrate 
“bioenergetic failure” in the sense there is a loss in 
ATP concentrations that correlates with the degree 
of protein loss (Puthucheary et al., 2018). This is a 
very important area in intensive care because in 
addition to ventilator weaning (Nakanishi et  al., 
2019), it affects survivors postdischarge (Owen 
et al., 2019).

Clock Genes as Targets in 
Subarachnoid Hemorrhage

Circadian pathways influence the extent of brain 
damage in subarachnoid hemorrhage. They also pre-
dict recovery (Davidson et  al., 2020). Furthermore, 
changes in circadian rhythm have been shown in 
neurocritical care to predict the development of an 
intracranial pressure spike 24 h in advance (Nogueira 
et  al., 2017). In addition, both cryptochromes 
(Nogueira et al., 2017) and heme oxygenase directly 
influence the degree of inflammation and neuronal 
survival in subarachnoid hemorrhage (Li et al., 2018). 
Heme oxygenase is mentioned given it is a key 
enzyme in the degradation of heme, is increased 
locally in hemorrhagic situations as erythrocytes 
leave the intravascular space, and is also circadian (Li 
et al., 2018).

Subarachnoid hemorrhage remains a desperate 
condition; one-third of patients die within 3 months, 
while over half never fully recover (Andersen et al., 
2019). Management is mainly limited to preventing 
further bleeding via intravascular coiling or neuro-
surgical clipping (Highton and Smith, 2013), the use 
of a calcium channel antagonist to limit vasospasm 
and further ischemia (Pickard et al., 1989) and sup-
portive care (Highton and Smith, 2013).

Following the initial bleed, calcium channel antag-
onists are used to reduce further cerebral ischemia 
(Pickard et  al., 1989)—defined as areas of cerebral 
infarction within 6 weeks of the initial bleed but not 

related to it directly (Vergouwen et al., 2010). There 
appears to be more than one mechanism of damage, 
for example, microthrombosis (Suzuki et al., 1990) in 
the symptomatic area, evident at autopsy in human 
patients, and endothelial dysfunction (Frijns et  al., 
2006), as well as toll-like receptor activation, which 
predicts the outcome in human patients (C. Ma et al., 
2015), inflammasome activation in murine models 
(Greenhalgh et al., 2012), neuronal and glial toxicity 
in cell culture and animal models (Regan and Panter, 
1993; Rosen and Frumin, 1979), and impaired mito-
chondrial function/mitophagy (Youn et al., 2021) evi-
dent in human CSF (cerebrospinal fluid) samples.

Following subarachnoid hemorrhage, one of the 
issues central to delayed cerebral ischemia is toxicity 
from hemoglobin (Suzuki et al., 2003); under physio-
logical conditions, it produces free radicals (Reeder 
et al., 2004) that oxidize and damage cell lipids, pro-
teins, and DNA (Marnett et  al., 2003). Moreover, it 
induces a form of cell death in neurons called ferrop-
tosis (Bai et  al., 2020), only recently described (J. Li 
et al., 2020), and free heme that is toxic to mitochon-
dria (Mercer et al., 2011).

The extent of bleeding in subarachnoid hemor-
rhage predicts mortality (van der Steen et al., 2020). 
In cell culture, heme directly induces cell death 
(Regan and Panter, 1993), recently confirmed as neu-
ronal ferroptosis (Bai et  al., 2020). Inhibition of fer-
roptosis reduces mortality in an animal model of 
subarachnoid hemorrhage (Li et  al., 2017). Injection 
of blood, or heme, into the subarachnoid space evokes 
focal epileptogenesis and symptoms of delayed cere-
bral ischemia (DCI) in animal models (Rosen and 
Frumin, 1979). Moreover, chelation of heme reduces 
DCI in rabbits (Arthur et  al., 1997) and primates 
(Horky et al., 1998), and higher levels of CSF ferritin 
(an endogenous iron-binding protein) are protective 
against DCI in human patients (Suzuki et al., 2003). 
Interestingly, haptoglobin genotype affected func-
tional outcomes in humans (Kantor et al., 2014) after 
subarachnoid hemorrhage (Kantor et al., 2014)—hap-
toglobins provide important CSF heme scavenging 
(Galea et  al., 2012). Chelation therapy failed in a 
phase II human trial for the main endpoint (outcome 
at 3 months) but was shown to be safe. One issue in 
the trial was that just 30% of patients received ther-
apy within 12 h—where the animal benefit had been 
seen to depend on an early window of administra-
tion. One issue in patients is time-to-treatment is 
delayed by diagnosis and presentation (when patients 
seek medical attention/or are found), time to scan, 
scan reporting, appropriate referral, surgical inter-
vention, and availability of research personnel for 
recruitment and administration of drug/placebo, yet 
cellular damage may occur before this intervention 
can take place.
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REVERB agonists have been shown to have pro-
tective effects on ferroptotic injury (Guo et al., 2021). 
Furthermore, they can assist in improved mitochon-
drial functional capacity (Woldt et al., 2013) and turn-
over (L. Sun et al., 2021). Therefore, targeting REVERB 
may prove an attractive option, in the event that 
higher potency, and more specific agents emerge 
from drug discovery programs. There are very few 
reports of REVERB therapies in neurological preclini-
cal or clinical studies; yet, recent interest in the circa-
dian regulation of disease is taking shape. Stroke 
infarct size has significant circadian variability and is 
now under great scrutiny for improving outcomes 
and secondary prevention of injury (Lo et al., 2021).

Clock pathways therefore represent a truly excit-
ing prospect for the management of critical care neu-
rological conditions. Pathways affected by clock 
genes are often redox/mitochondrial-related, unsur-
prising given their origin as phase mediators of UV 
light toxicity and energy metabolism.

Some impressive studies now suggest that the fail-
ure of translation of animal-to-human neuroprotec-
tive therapies is an inevitable consequence of 
administering the intervention to people at the wrong 
circadian phase, thereby leading to failure in clinical 
studies (Esposito et al., 2020).

Clock Genes as Targets in Acute 
Kidney Injury

Acute kidney injury (AKI) is a spectrum of renal 
disease defined by standardized criteria, based on 
creatinine changes and/or urine output (Makris and 
Spanou, 2016). Mortality in intensive care is high, 
exceeding 50% (Pickkers et al., 2021). In addition to 
this, organ support with renal replacement therapy is 
expensive, costing hundreds to thousands of dollars 
a day (Srisawat et  al., 2010). It requires 1:1 nursing 
and is therefore labor-intensive. It also requires inva-
sive venous access, which risks infection (Atilla et al., 
2016).

A recent review encapsulates the pathophysiology 
of AKI (Makris and Spanou, 2016). Of particular 
importance is the activation of immune receptors on 
the glomerular endothelium (Radi, 2018). This leads 
to local inflammation and also microthrombosis, the 
occlusion of capillaries by small clots (Chang, 2018)—
which reduces oxygen supply to tissues; renal tissue 
hypoxia is associated with AKI and can be measured 
directly in animals (Iguchi et al., 2019) and noninva-
sively in human patients. (Silverton et al., 2021)

In addition to these observations, metabolic defi-
cits have been seen in AKI, for example, abnormal fis-
sion and fusion of mitochondria (Brooks et al., 2009; 
Yan et  al., 2020). In particular, the abnormal fission 

may be driven by dynamin-related protein 1 (DRP-1) 
(Perry et al., 2018). Mitochondrial biogenesis is driven 
by PGC-1a (Goffart and Wiesner, 2003; Jornayvaz and 
Shulman, 2010), and PGC-1a dysregulation is seen in 
models of AKI development (Fontecha-Barriuso 
et  al., 2020), with increased expression improving 
outcomes (Tran et  al., 2011). Similarly, NAD+ defi-
ciency is seen in AKI (Poyan Mehr et  al., 2018). 
Supplementation of NAD+ is successful in improv-
ing creatinine levels in human phase 1 trials (Poyan 
Mehr et al., 2018). The protective effect of NAD+ on 
mitochondrial function is mediated by Sirtuin 3 
(Lombard et al., 2011; Fan et al., 2021).

Because the clock gene REVERB can affect mito-
chondrial dynamics via the NRF-2 pathway (Goffart 
and Wiesner, 2003; Eichenfield et  al., 2016; Li et  al., 
2021; L. Sun et al., 2021). It may be an attractive target 
either for renal protection (prior to a planned insult 
such as major surgery [Prowle et al., 2021], or contrast 
dye [Lei et al., 2018]) or for reducing the severity of 
AKI in intensive care. REVERB agonists increase 
mitochondrial oxidative capacity in skeletal muscle, 
but their role in the kidney has not been explored.

Therefore, this is a translational opportunity for a 
condition that currently requires time and expensive 
organ support where there are no published studies 
on REVERB agonists in the context of sepsis-induced 
AKI, or to reduce perioperative AKI.

Circadian Disruption and 
Immunometabolism

For a summary of the metabolic pathways regu-
lated by the circadian clock, please see Figure 2. Early 
in the systemic inflammatory response, there is a 
“glycolytic switch”—seen in initially activated neu-
trophils (Sadiku et al., 2021), macrophages (Yu et al., 
2020), B cells (Doughty et al., 2006), proinflammatory 
T cells (Chapman et al., 2020), and microglia (Cheng 
et al., 2021). Therefore, metabolic regulation of inflam-
mation is gaining traction (Soto-Heredero et  al., 
2020). Inhibiting glycolytic changes appears to 
modify mortality in mice with septic shock—medi-
ated via PMK-2 (Deng et  al., 2018). This is logical 
when considering the effects of glycolysis on prolif-
eration, cell activity, and the production of proinflam-
matory cytokines (Van Wyngene et al., 2018), which 
correlate with the severity of septic shock (Leon et al., 
1998; Song et al., 2019). The liver transcriptome and 
proteome are profoundly regulated by the circadian 
clock (Droin et  al., 2020; Weger et  al., 2021), with 
BMAL1 driving changes in carbohydrate (Ma et al., 
2016) and lipid metabolism (Zheng et  al., 2016). 
Circadian disruption, such as that produced by shift-
work (Sharma et  al., 2017) or continuous feeding 
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(Hutchison et  al., 2019) (ubiquitous in critical care), 
predisposes to impaired glucose tolerance. Glucose 
intolerance is a poor prognostic factor in sepsis 
(Bingham et al., 1980) and was noted as early as the 
1970s (Bingham et al., 1980) to be associated with a 
state of hyperglucagonemia, reflecting a “metabolic 
energy deficit.” Hyperglucagonemia and high glu-
cose cause inhibition of a number of intermediate cell 
pathways including sirtuins and PGC-1a (Vieira 
et  al., 2013). PGC-1a and the related mitochondrial 
regulator genes are prognostic factors for the out-
comes after intensive care admission (Huang et  al., 
2021), and are heavily involved in mitochondrial 
fission-fusion homeostasis (Jornayvaz and Shulman, 
2010), critical for the regulation of oxidative phos-
phorylation relevant for sepsis survival (Singer, 2017; 
Nedel et al., 2021). Interestingly, inhibition of aerobic 
metabolism is protective against sepsis-induced AKI 
in some animal models (Tan et al., 2021).

One of the other key developments in critical care 
is the acknowledgment that immune paresis is seen in 
patients (Ward et al., 2008), leading to nosocomial sec-
ondary infections, such as ventilator-associated pneu-
monia, intravenous line infections, and opportunistic 
infection (Ward et al., 2008). This immune paresis is 
related to the loss of T lymphocyte function (Kühlhorn 
et al., 2013), with enhanced T-cell apoptosis (Monneret 
et al., 2016) (secondary to TNFa (Zheng et al., 1995) 
and increased levels of programmed death ligand—
PD-1 (Liu and Li, 2017)]. Specific T lymphocyte sub-
sets, such as Treg cells, have a special role in sepsis 
recovery—sepsis is a biphasic disease, with either 
early or late mortality (Nedeva et al., 2019).

Early Treg cell metabolism is glycolytic (Chapman 
et  al., 2020)—the Warburg effect shunting substrate 
into advanced proliferation and cell division, with 
the GLUT 1 transporter prominently expressed 
(Macintyre et al., 2014). However, in the passage of 
days, metabolism begins to favor fatty acid/gluta-
mine substrate oxidation, and differentiation of pro-
resolution T lymphocytes (Kominsky et al., 2010; Arts 
et al., 2017).

This metabolic polarization matched to function is 
also reflected in the glycolytic inflammatory M1 mac-
rophage phenotype and the fatty acid-favoring anti-
inflammatory/tissue regenerating M2 macrophage 
(Arts et  al., 2017). Closely coordinated with these 
metabolic needs is the acute suppression of mito-
chondrial respiration in illness (Singer, 2014; Carré 
et al., 2010; Singer, 2017).

Moreover, a small number of case reports 
(Wischmeyer and San-Millan, 2015) have shown 
that the recovery of fatty acid beta-oxidation after 
critical illness matches quality-of-life outcomes, 
such as the ability to exercise. Other studies show 
that muscle quality and mitochondrial deficits per-

sist after intensive care which influences rehabilita-
tion (Owen et al., 2019).

The importance of fatty acid metabolism in sep-
sis became important when a seminal paper identi-
fied that defects in fatty acid beta-oxidation in 
children dictated survival from sepsis in pediatric 
critical care (Wong et al., 2009). There, gene varia-
tions in PGC-1a, a master regulator of PPAR, fatty 
acid oxidation, and mitochondrial biogenesis 
(mitochondria and fatty acid oxidation are twinned) 
underpinned survival.

Immunometabolic work has shown that fatty 
acid beta-oxidation is especially important in pro-
moting the M2 macrophage phenotype (Arts et al., 
2017), encouraging wound healing and tissue 
regeneration. It is also the favored pathway in 
slightly older (i.e. T cells that are several days post-
TCR activation) Treg cells (Kempkes et  al., 2019), 
which have an anti-inflammatory function. 
REVERB has been shown to affect cellular fatty 
acid metabolism in muscle (Amador et  al., 2018), 
but actions on energy substrate utilization in 
immune cells remain unexplored.

The metabolic and effector function changes 
underpin and explain the clinical picture seen in 
sepsis—acute hyperinflammation with early death 
(Daviaud et  al., 2015)—excessive innate immunity 
(being the immune response that does not require 
pre-exposure, requiring neutrophils, macrophages, 
etc., versus adaptive immunity, which is an acquired 
response directed by B and T), or protracted immune 
paresis/inappropriate tolerance, nosocomial infec-
tion, and late death (Daviaud et al., 2015). Clearly, 
the circadian control of energy metabolism and 
thereby regulation of effector function of immune 
cells represents an exciting breeding ground for 
novel therapeutic targets.

Briefly, cholesterol metabolism also influences 
immunity (Sharma et al., 2019), for example, a dra-
matic reduction in HDL is seen in sepsis (Morin 
et  al., 2015), with actions of bacterial products 
including LPS (Liu et al., 2015). Inhibition of a cho-
lesterol transporter significantly improves sepsis 
survival (Trinder et al., 2021) and is under clock con-
trol (D. Ma et al., 2015).

Conclusion

Spatiotemporal regulation of the transcriptome 
of the liver at least has been elegantly illustrated 
(Droin et al., 2020). The circadian clock helps pro-
vide a “metronome” for coordinating metabolism 
(Weger et  al., 2021), hypoxic/oxidative stress 
(Cunningham et  al., 2020; O’Connell et  al., 2020), 
and immune function (Guo et al., 2019), to provide 
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the best “setting” for response to external triggers 
(Lang et al., 2019).

Holistic coordination of the transcriptome at a 3D 
chromatin level has been missing from the manage-
ment of diseases in intensive care. These patients 
have dysregulated immune systems (Osuchowski 
et al., 2006), mitochondrial failure (Singer, 2017), and 
aggressive muscle loss (Nakanishi et  al., 2019). 
Immunomodulation in critical care has been contro-
versial (Young and Marsh, 2018), with only recently 
steroids and Tocilizumab being licensed for COVID-
19 (RECOVERY Collaborative Group et  al., 2021; 
Abani et al., 2021). However, steroids are associated 
with muscle atrophy (Hasselgren et al., 2010). There 
are no currently licensed treatments to improve 
mitochondrial function in intensive care (Kozlov 
et al., 2011).

REVERB manipulation and therapeutic target-
ing of other clock-related pathways represent a 
truly ground-breaking opportunity to improve 
multiple axes of illness, and further studies in this 
area may clarify why current light-related trials 
have failed to succeed (Simons et  al., 2016). 
Although REVERB targets have currently the most 
diverse usage in preclinical models, other clock-
related gene targets exist. For example, CRY stabi-
lizers prevent the degradation of CRY, and their 
use in Drosophila appears to be life-extending and 
beneficial under starvation conditions (Solovev 
et  al., 2021), although there are limited publica-
tions regarding studies in inflammatory illness. 
ROR modulators appear to have more preclinical 
usage than CRY stabilizers at present, especially 
in relation to autoimmune disease. They have 
been recently reviewed elegantly (Ladurner et al., 
2021). The RORs have different tissue expressions; 
RORa is present predominantly in organs, while 
RORy is lymphatic (Ladurner et  al., 2021); these 
different isoforms may provide nuanced targeting 
of cellular pathways. RORa has proven a target in 
LPS-associated septic shock in mice (Hams et al., 
2021), as well as surviving bacterial infection fol-
lowing severe burns injury, in rodents (Ito et  al., 
2018). RORs are heavily intertwined with lipid 
metabolism and homeostasis (Jetten et  al., 2018), 
which has made them a focus for diabetes for 
example, although the immediate critical care 
implications are unclear. They have also been 
recently reviewed in the treatment of myopathies 
(Welch and Flaveny, 2017), which is highly perti-
nent to the catabolic, cachexic state of seriously 
unwell patients as mentioned throughout this 
review.

The unlicensed use of these drugs as performance 
enhancers (Davies et al., 2019) raises the issue of how 
to enhance “performance” in the critically ill. The 

early phase of clinical trials of new, circadian clock 
therapeutics is now urgently needed.
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