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A B S T R A C T

Background and purpose: Hypoxia Positron-Emission-Tomography (PET) as well as Computed Tomography (CT)
radiomics have been shown to be prognostic for radiotherapy outcome. Here, we investigate the stratification
potential of CT-radiomics in head and neck cancer (HNC) patients and test if CT-radiomics is a surrogate pre-
dictor for hypoxia as identified by PET.
Materials and methods: Two independent cohorts of HNC patients were used for model development and vali-
dation, HN1 (n = 149) and HN2 (n = 47). The training set HN1 consisted of native planning CT data whereas
for the validation cohort HN2 also hypoxia PET/CT data was acquired using [18F]-Fluoromisonidazole (FMISO).
Machine learning algorithms including feature engineering and classifier selection were trained for two-year
loco-regional control (LRC) to create optimal CT-radiomics signatures.

Secondly, a pre-defined [18F]FMISO-PET tumour-to-muscle-ratio (TMRpeak ≥ 1.6) was used for LRC pre-
diction. Comparison between risk groups identified by CT-radiomics or [18F]FMISO-PET was performed using
area-under–the-curve (AUC) and Kaplan-Meier analysis including log-rank test.
Results: The best performing CT-radiomics signature included two features with nearest-neighbour classification
(AUC = 0.76 ± 0.09), whereas AUC was 0.59 for external validation. In contrast, [18F]FMISO TMRpeak reached
an AUC of 0.66 in HN2. Kaplan-Meier analysis of the independent validation cohort HN2 did not confirm the
prognostic value of CT-radiomics (p = 0.18), whereas for [18F]FMISO-PET significant differences were observed
(p = 0.02).
Conclusions: No direct correlation of patient stratification using [18F]FMISO-PET or CT-radiomics was found in
this study. Risk groups identified by CT-radiomics or hypoxia PET showed only poor overlap. Direct assessment
of tumour hypoxia using PET seems to be more powerful to stratify HNC patients.
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1. Introduction

Tumour hypoxia has been shown to be prognostic for poor outcome
after chemoradiotherapy (CRT) in head and neck squamous cell carci-
noma (HNSCC) by several studies [1–5]. In addition, also biological
heterogeneity as identified by radiomics analyses based on computed
tomography (CT) and others factors have also been linked to poor
outcome after chemoradiation therapy [6–8]. Hypoxia can be measured
invasively using probes, or assessed non-invasively using specific
radiotracers in positron emission tomography (PET) imaging [9]. In
clinical research, the most commonly used hypoxia PET tracer is [18F]
FMISO [10]. Tumour-to-muscle ratio (TMR) is a simple but very robust
metric that has been used in many studies to derive the hypoxic status
from PET data, though other methods exist as well [9–11]. Different
studies have shown that TMR assessed 2 to 4 h after tracer injection
enables differentiation between hypoxic and normoxic tumours based
on a threshold value (e.g. TMRpeak ≥ 1.4) [3,12], and consequently to
distinguish patients at increased risk of loco-regional failure (LRF) at
different time points of CRT [3–5].

Radiomics, which is a technique for quantitative analysis of medical
images, hypothesises that imaging features capture anatomical or
functional tumour heterogeneity in solid tumours without the need for
additional diagnostic interventions such as biopsies [6]. Different re-
search teams have shown not only a significant prognostic power of
radiomics features and signatures in the task of patient stratification for
LRF in patients after CRT but also correlations with gene expression in
different forms of cancer [7,13–17]. Therefore, some authors hy-
pothesised that CT radiomics captures tissue heterogeneity caused by
tumour hypoxia [6,7,18,19].

Consequently, CT radiomics might be able to identify similar risk
groups of patients compared to [18F]FMISO PET. Since hypoxia PET
requires non-standard tracers, long examination times and complex
data post-processing it is only available at a small number of academic
institutions. It might therefore by very attractive to identify high-risk
patient subgroups using CT radiomics instead of [18F]FMISO PET
imaging for patient stratification and outcome prediction after CRT.

Therefore, the hypothesis of the current study was that an in-
dependently trained CT radiomics model might serve as surrogate for
hypoxia PET imaging to stratify patients into risk groups according to
outcome after RCT of HNSCC. Ideally, a CT radiomics signature might
be able to capture similar risk profiles as hypoxia imaging using [18F]
FMISO PET. To investigate this hypothesis, the aim of this study was to
first develop a CT radiomics model based on n = 149 HNSCC and
subsequent validation with an independent, bi-institutional data set of
n = 47 patients for whom [18F]FMISO PET data were also available to
compare the potential of CT radiomics versus [18F]FMISO PET imaging
for patient stratification.

2. Material and methods

2.1. Patient data

The data set consisted of 196 patients in total with HNSCC in ad-
vanced stages scheduled for definitive CRT who had been recruited in a
period of 10 years (from 2005 to 2015) at the University Hospital
Tübingen (UHT, n = 171) and the University Hospital Dresden (UHD,
n = 25). This study represents a secondary analysis of data collected
within two different clinical trials, approved by the respective local
ethics committees (NCT00180180, NCT02552792).

The patient cohort consisted of two distinct groups: HN1 and HN2.
For HN1 (n = 149 all from UHT) only native radiotherapy (RT) plan-
ning CT data with delineations of gross tumour volumes (GTV) by an
experienced radiation oncologist were available. For HN2 (n = 47), in
addition to native planning CT images and GTV delineations also [18F]
FMISO PET/CT data were available at baseline before the start of
treatment [1,4]. At both hospitals, patients were treated with definitive

CRT with a radiation dose of 70 Gy, in addition to fluorouracil (5-FU)
and mitomycin (MMC) or concomitant weekly cisplatin. After the end
of CRT, follow-up examinations were done every six months. LRF was
defined as CT- or PET/CT-proven local recurrence. For the current
analysis, LRF two years after CRT was used as an endpoint. For further
patient details refer to table 1.

2.2. Imaging data

For all patients of HN1, native planning CT scans were acquired
using a Somatom Sensation Open (Siemens Healthineers, Erlangen,
Germany). In subgroup HN2, patients also received a planning CT. In
addition, [18F]FMISO PET/CT scans were acquired using a Siemens
Biograph 16 (UHD, UHT) or a Siemens Biograph mCT (UHT). PET data
were reconstructed using OSEM 3D (four iterations, eight subsets) with
a 5-mm 3D Gaussian filtering. The [18F]FMISO PET/CT acquisition
protocol consisted of static scans acquired four hours post injection
with injected activities of 250 – 444 MBq.

For further details of CT and PET image acquisition see Table 2.

2.3. CT radiomics

2.3.1. Imaging pre-processing and feature extraction
For the radiomics analysis, CT images were used without voxel re-

sizing, in order to avoid inclusion of artificial information that might
cause noise at the moment of feature calculations. In an internal pre-
liminary analysis (data not shown) radiomics feature calculations in
intensity, shape and texture families did not showed major difference
with or without voxel resizing. Only soft tissue voxels with values be-
tween −250 and 120 HU were considered in order to make sure that
only tissue regions were included into the analysis. Dental artefacts
[20] were present in both of the cohorts; however they were treated as
noise data in the feature pre-processing strategy described in the fol-
lowing section. A total of 64 bins were used to group voxel values for
texture feature calculations.

Feature definitions were obtained from the Imaging Biomarker
Standardisation Initiative (IBSI) [21], cf. Appendix 1. For the texture
features, we used the grey-level co-occurrence (GLCM), grey-level run
length (GRLM), neighbourhood grey tone difference (NGTDM), grey-
level size zone (GLZSM) and grey-level distance zone (GLDZM) matrix.
They were computed in three dimensions regardless of differences be-
tween in-plane and in-slice voxel dimensions. One level undecimated
wavelet features were obtained as follows. Firstly, the original images

Table 1
Patient characteristics.

HN1 HN2

Number of patients 149* 47†

Age (mean, range) 62 (39–87) years 58 (45–76) years
GTV volume (mean, range) 61.6 (1.4 – 326.7)

cm3
62.7 (10.4–238.8) cm3

Gender (female/male) 25/124 (16.8%/
83.2%)

7/40 (14.9%/85.1%)

Number of loco-regional failures 50 (34%) 15 (32%)
Median follow-up-time (median,

range)
12 (0–82) months 17 (1–75) months

Distant metastases 26 (17%) 7 (15%)
T-stage (Tis/T1/T2/T3/T4) 1/1/17/46/84 0/0/2/19/26
N-stage (N0/N1/N2a/N2b/N2c/

N3)
20/14/46/3/55/11 5/4/7/16/13/2

Radiation dose (mean, range) 70 (66–72) Gy 71 (69–72) Gy
Chemotherapy
5-FU/MMC 116 (77.8%) 25 (53.2%)
Cisplatin 16 (10.7%) 1 (2.1%)
Cisplatin/5-Fu 3 (2.0%) 21 (44.7%)
Other 14 (9.4%) 0

*from UHT only, †n = 23 from UHT and n = 25 from UHD.
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were filtered using high (H) or low-pass (L) “Coiflet 1” filter in every
image (x, y, z) direction. Different filter combinations resulted in eight
filtered images (cf. Appendix, fig A1). Subsequently, intensity and
texture features were computed for each filtered image [21]. In total,
we extracted 1150 radiomics features from GTV regions contoured in
the planning CT scans. All filtering and feature computations were
implemented in-house in Python 3.6.

2.3.2. Feature pre-processing
Several of the radiomics features described by the IBSI [21] are

highly correlated and therefore redundant. Hence, in the training
phase, we clustered correlated features (Pearson correlation coeffi-
cient > 95%), in order to optimise the feature selection process. To do
so, features were first scaled according to the interquartile range (IQR),
which ranges between the first quartile (25% quantile) and the third
quartile (75% quantile). Then, they were clustered hierarchically ac-
cording to Pearson correlation coefficient [22]. Finally, every cluster
was reduced to one single feature using principal component analysis
(PCA) to conserve the maximum possible variance inside the cluster
[23]. Moreover, all features with variance lower than 0.3 were ex-
cluded from the final feature set.

2.3.3. Feature selection and model tuning
According to Leger et al. [11] feature selection methods play a more

important role in predicting outcomes than the models themselves.
Therefore, a four-step feature selection method was implemented as
follows:

Step 1: The HN1 training cohort was randomly subsampled with
replacement in a balanced fashion so that each subsample contained 50
patients with and without LRF, respectively. This was repeated 100
times, thus creating a set of 100 subsamples.

Step 2:Within each subsample, variable importance was determined
using:

• correlation measures (Pearson [24], Kendall [25], Spearman [26]),
• mutual information (mutual information maximisation [27]),
• univariate significance test scores (Fischer, χ2 [28]),
• multivariate forward selection using classification models (decision

trees (DT), k-nearest neighbours (KNN), logistic regression (LogR),
random forest (RF), naïve-Bayes (GNB), support vector machines
(SVM) [29])

based on the model Area under the curve of the Receiver Operating
Characteristic Curve (AUC-ROC) score [30].

For all methods above, up to twenty most important features were

kept, and the remaining features were discarded. These feature subsets
were then aggregated across the different methods to form a final subset
of the five most commonly occurring features for each subsample.

Step 3: The features in the final subset of each of the 100 subsamples
were then aggregated and heuristically ranked using the following
scoring:

=
+µ

RS n
100

1
( 1)

a

r r (1)

The rank score RS favours the number of appearances na of a feature
in the 100 subsets, and penalises its mean rank μr together with the
standard deviation of its rank σr in the different subsets. The five most
highly ranked features were subsequently selected.

Step 4: Finally, we determined a CT radiomics signature for each of
the classifiers using a sequential forward feature selection method [31].
For this purpose, we performed 5-fold cross-validation using the HN1
data set. For each classifier, the set of features that produced the model
with the highest average AUC on the validation folds was used as a
signature.

After feature selection, model hyperparameters such as the number
of neighbours for KNN were optimised using grid search (cf. Table 4)
and 5-fold cross validation. All methods and algorithms were im-
plemented in-house in Python 3.6 using the packages Pandas, Scikit-
learn and mlxtend for machine learning. Fig. 2 presents a schematic
overview of the algorithmic workflow used in this study.

2.3.4. Model validation for CT radiomics signature
Finally, we tested the models created using the signature obtained

in our training cohort (HN1) for each classifier in the HN2 cohort.
Subsequently the model in our training phase was used to stratify pa-
tients into high and low risk groups at a 0.5 risk threshold probability
(cf. Supplementary Fig. S1 for a schematic overview).

2.4. [18F]FMISO PET/CT imaging

2.4.1. Tumour-to-muscle ratio extraction
TMRpeak values were extracted from [18F]FMISO PET/CT scans ac-

cording to:

=TMR
SUV

SUVpeak
peak

muscle (2)

Peak values of FMISO standardised uptake values (SUVpeak) in the
GTV were determined by averaging voxels represented in a 0.5 cm3

sphere of highest tumour uptake as described in previous studies
[3,4,12]. The mean muscle standardised intensity uptake value

Table 2
Details of CT and PET imaging parameters.

Modality Scanning parameters HN1 HN2

CT Scanners Siemens Somatom Sensation Open Siemens Biograph
(n = 36),
Siemens Biograph mCT (n = 11)

Slice thickness [43] 3 3 (n = 22), 5 (n = 25)
In-plane resolution [mm] 1.27 1.27 (n = 22), 1.38 (n = 25)
Tube Voltage [kVP] 120 120
Tube Current [mA] 40 40 (n = 22), 100 (n = 25)
Reconstruction Kernel Convolution kernel B40S filtered back projection Convolution kernel B40S filtered back projection

PET Scanners Siemens Biograph (n = 36),Siemens Biograph mCT (n = 11)
Slice thickness [mm] 5
In-plane resolution [mm] 1.38 (n = 25), 2.42 (n = 22)
Administrated [18F]FMISO activity [MBq] 250 – 300 (n = 25),

315 – 444 (n = 22)
Reconstruction kernel 5-mm Gaussian filter OSEM3D 4 integration 8 subsets
Scan duration time 15 min (n = 22),

12 min (n = 25)
Attenuation correction Based on CT
Standard Uptake Value (SUV) normalisation Body weight
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(SUVmuscle) was obtained from manually contoured regions of deep
neck muscles.

2.4.2. Model validation for TMRpeak
Model validation was performed in HN2 where the TMRpeak was

used to classify tumours into high and low risk groups based on the 1.6
threshold obtained in an earlier study [3,4].

2.5. Model comparison

In order to assess whether the patients at risk classified by the best
CT radiomics signature are similar to the classified patients at risk based
on TMRpeak, the following simple matching score (MS) was used:

= +MS TP TN
NT (3)

MS measures the ratio between the number of patients that both
models predict either as patients at high risk (true positives, TP) or as
low risk patients (true negatives, TN) divided by the total number of
patients (NT) in HN2. If MS equals 1, it means that both modalities
predict the same treatment outcome for a patient, whereas 0 indicates
complete disagreement.

2.6. Statistical analysis

Stratification of patients into risk groups for LRC was assessed using
Kaplan-Meier curves and the log-rank test. The endpoint of this study
was defined as a binary information about LRC as available at last
patient follow-up. All statistical analyses were performed using the
lifelines package implemented in Python 3.6. A p-value < 0.05 was
considered as significant.

3. Results

Following model training in the HN1 cohort, the six best models had
AUC-ROC values ranging between 0.70 ± 0.09 and 0.76 ± 0.09. The
best performing CT radiomics model was a 25-Nearest Neighbours
model based on two radiomics meta-features associated according to
the first principle component to ‘LLL Size Zone (SZ): Large Zone High
Grey Level Emphasis’ and ‘LHH Minimum histogram gradient’ (cf.
Table 3). However, in the external validation using the HN2 cohort the
AUC of the models decreased to a range between 0.52 and 0.59, using a
0.5 threshold for risk classification. Stratification of the validation co-
hort HN2 into high and low risk patients failed according to this CT
radiomics model, underlined by a p-value = 0.18 in the log-rank test
(cf. Fig. 1a).

On the contrary, in the same HN2 cohort, the [18F]FMISO PET
TMRpeak imaging marker resulted in an AUC score of 0.66 using the
threshold of 1.6, as identified earlier for an exploratory cohort.
Likewise, in the same cohort a better stratification was achieved by
TMRpeak using the log-rank test (p = 0.02, cf. Fig. 1a).

A matching score of MS = 55% was obtained between the two
models, which suggests that there is only a weak correlation between
the CT radiomics signature classification and the risk classification of
patients by [18F]FMISO TMRpeak (cf. Fig. 1b). Consequently, the CT
radiomics model does not perform better than TMRpeak in stratifying
the HN2 cohort according to LRF.

The most relevant CT radiomics features identified in this study are
associated with the quantification of pattern-variation-values with re-
spect to image heterogeneity in a LLL and LHH frequency filtered tu-
mour in a volumetric image. As an example, two patient image sets
representing low and high risk groups for LRF are visualized in Fig. 2. In
Fig. 2c-d a patient presenting with an irregular CT pattern-structure
variation distributed homogeneously across the tumour region of in-
terest (ROI) is shown, the probability for LRF estimated by the radio-
mics model is p = 0.18 confirmed by a low FMISO TMRpeak of 1.44. In

contrast, Fig. 2a-b visualizes an image data set of a patient with a low
pattern-structure variation, but equally distributed within the ROI,
leading to high risk of LRF predicted by the radiomics model
(p = 0.54). Similarly, for this patient high levels of tumour hypoxia
were identified (TMRpeak = 1.96).

4. Discussion

In this study, two features, out of 550 radiomics meta-features,
along with the KNN model were identified as the best-performing CT
radiomics signature from the training cohort (HN1), yielding an AUC
value of 0.76 ± 0.09. To validate this signature, an independent va-
lidation cohort was used with n = 47 data sets consisting not only of
planning CT data but also of FMISO PET images. Validation of the best
CT radiomics model resulted in an AUC of 0.59 (log rank p = n.s.),
whereas a previously trained simple FMISO TMRpeak threshold reached
an AUC-value of 0.66 yielding significant stratification potential
(p = 0.02). The matching score was 55% indicating only a low corre-
lation of the CT radiomics and the FMISO PET model, respectively. We
assumed the two most important radiomics features to be associated to
phenotypical expressions of heterogeneity in tumours, since these fea-
tures are defined to quantify pattern-variations of grey-levels in medical
images [7,16,21,32]. As we had a retrospective data set and therefore
could not access genetic information of the tumours, a direct proof of
this assumption is lacking.

The aim of the current study was to investigate if a CT radiomics
model stratified the same patient risk groups compared to hypoxia PET
information. This study design seems unconventional, but it was ex-
plicitly chosen because of the low number of patients with both, CT and
hypoxia PET images available. In contrast, other groups trained a
radiomics model to predict hypoxia information directly. This approach
is advantageous in terms of the desired model output, whereas is ap-
pears challenging with respect to the required number of imaging data
to get a robust model [33–35].

Several recent studies published CT radiomics models for predicting
local control or overall survival in HNC patients following CRT
[36–39]. Similar to our findings, those studies identified features re-
lated to CT value homogeneity as most relevant for outcome prognosis.
However, in our study the AUC value determined for the validation
cohort was still 0.59 but the significance of the CT radiomics model to
stratify patient risk groups could not be confirmed in this cohort in
contrast to other published studies [37–39]. In one study by Bogowicz
et al. [36] a CT radiomics model based on the primary tumour volume
could not be validated in contrast to a model, which was applied to
primary tumour and lymph node volumes. According to these findings,
the fact that in our study CT radiomics was assessed for the primary
tumour only whereas loco-regional failure was used as a prediction
variable might be a further limitation. There are a few other reasons
that may have led to the non-significant validation of out CT radiomics
model. As part of the validation data set was acquired in a different
centre, differences in this data set such as the different tube voltage
used for CT acquisition or the different slice thicknesses may have in-
troduced too large variation. Especially as we did not perform voxel
reformatting, this may be a major limitation of the study. Most previous
studies were single centre evaluations [36–39]. Furthermore, in our
study native CT data were used, whereas other studies often based their
model training of contrast-enhanced CT images [36,37,39].

As previously indicated [4,5], the results of our study show that pre-
treatment [18F]FMISO PET TMRpeak has a significant prognostic power
to discriminate between patients with high and low risk of LRF fol-
lowing CRT. This is aligned to the study of Zips et al. [4] which found a
significant prognostic power of the TMRmedian feature in the baseline
and at the second week after the start of the CRT treatment. The ap-
proach in our study is based on the results of Löck et al. [3]. A better
discriminative power of the TMRpeak threshold may however be
reached in second-week images after the start of CRT or by using
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dynamic [18F]FMISO PET data [5]. We did not explore time-de-
pendency, because we were limited by the data. This study was per-
formed retrospectively and we did not have neither dynamic data nor

weekly [18F]FMISO PET and CT scans for all patients. Also CT radio-
mics, features extracted from imaging during treatment have been
shown to result in a higher prognostic power compared to features

Table 3
Best performing CT radiomics signatures and models.

Feature selection
criteria

Model # of meta
features

Name of the associated features in
clusters

Hyperparameters AUC in training cohort
HN1

AUC in validation cohort
HN2

RF KNN 2 LLL SZ: LZHGLE
LHH Minimum Histogramm
Gradient

number of neighbors: 25
weights: distance

0.76 ± 0.09 0.59

RF RF 4 LLH Area under IVH curve

HHH RL: LGLRE

HHL Intensity histogram median
LLH SZ: LZLGLE

Class weight: {0: 0.5}
Criterion: Entropy
Max depth: 10
Number of estimators: 9

0.75 ± 0.07 0.56

DT RF 3 LLH NGTD: Busyness
NGTD: Busyness
LHL Median

Bootstrap: False
Class weight: None
Criterion: Gini
Max depth: None
Number of estimators: 10

0.75 ± 0.10 0.59

χ2 KNN 5 HLH Energy
LLH Energy
LLL SZ: LZHGLE
LLL SZ: LZE
LHH SZ: ZS non-uniformity

number of neighbors: 23
weights: distance

0.74 ± 0.10 0.52

KNN LR 4 LLL LZE
HHL Intensity histogram median
LLH Range
HLH Energy

C: 1000
Class weight: {0: 0.5}

0.71 ± 0.10 0.53

DT LR 3 HHL Intensity histogram median
LLL SZ: LZHGLE
LHL DZ: ZD non-uniformity

C: 1.0
Class weight: None

0.70 ± 0.09 0.52

Abbreviations for classifiers; Random Forest (RF), Decision Trees (DT), k-nearest neighbours (KNN), Logistic Regression (LR). Abbreviations for features obtained
after applying filters to CT scans in directions ×, y, z follow the rule of appearance in the direction of application, for instance LLL means the Low-pass filter was
applied in x-, y- and z-direction. For more details, please refer to the Supplementary Material.

Fig. 1. (a) Kaplan-Maier curves for loco-regional control stratified by TMRpeak > 1.6 (p = 0.02) in comparison to the best-performing CT radiomics signature using
the 0.5 threshold to stratify patients at risk (p = 0.18). (b) Patient classification according to CT radiomics signature (AUC = 0.59, x-axis) and TMRpeak (AUC = 0.66,
y-axis), yielding a matching score of 0.553.
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acquired before the start of CRT, as shown by Leger et al. [19].
In the publication of Löck et al. [3], TMRpeak was not found to be

significantly related to LRF for their exploratory cohort (n = 25).
However, in Mönnich et al. [12] TMRpeak was found significant for 22
patients out of the HN2 cohort. The two studies showed some metho-
dological differences. The first approach [3] might be a more robust
method because it used an exploratory cohort for assessing TBRpeak

thresholds at different time points during the course of CRT in addition
to an independent validation cohort for testing. Whereas in the study of
Mönnich et al. [12], the derivation of a TMRpeak threshold consisted of
the median-value in the exploratory cohort, which was not in-
dependently validated [40]. The AUC was lowered from 0.77 in
Mönnich et al. to 0.66 in this study. A possible explanation for these
results might be the lack of standardisation for the determination of
SUVmuscle and SUVpeak in 0.5 cm3 of tumour or muscle tissue, which
depends strongly on manual delineation procedures. Moreover, the
difference in AUC results may be an effect of the increased sample size.

Larger, more heterogeneous solid tumours often develop hypoxia
and have therefore increased risk of LRF [7,13,16,41]. The hypothesis
of this study was that CT radiomics, which is assumed to quantify

heterogeneity in tumours, could be used to provide a prognostic model
that significantly correlates with LRF after CRT and thus also up to a
significant extent with an imaging metric for hypoxia, such as TMRpeak.
However, hypoxia may not be the only cause of LRF. Different factors
such as patient characteristics, tumour biology and also treatment re-
lated issues contribute to the observed outcome which may not be
captured entirely by both approaches used in this study. A more robust
approach to test our hypothesis would be directly targeting hypoxia
gene expressions, hypoxia imaging biomarkers [42] or potentially
generate [18F]FMISO image distributions via a deep learning archi-
tecture such as a Convolutional Neural Network (CNN) based approach,
instead of targeting loco-regional outcomes of tumours. However, these
approaches were not possible in the context of the current study be-
cause of the small cohort size to train and test findings.

In this study, model training is performed using LRF data. The
binary nature of the response variable introduces limitations to this
study as censored events as well as the time to recurrence is neglected.
Other studies have presented radiomics models which include time-to-
event data [19] and might thus be considered more accurate in terms of
event modelling.

Fig. 2. Image (a) is a planning CT scan with (b) the [18F]FMISO PET scan after 4 h post injection and their ROIs of a patient who did not recur after CRT. [18F]FMISO
TMRpeak was determined as 1.44 and CT radiomics model probability for LRF was 0.18. Images (c) and (d) are the planning CT scan and the [18F]FMISO PET scan
with tumour ROIs of a patient who had a recurring tumour after CRT. Here, a TMRpeak of 1.96 and a radiomics model probability for recurrence of 0.54 were
observed.
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Another possible limitation of our study is the application of wa-
velet filters in the 3D image space. Voxel lengths were not interpolated
and thus no equal voxel spacing was used leading to larger voxel di-
mensions in slice direction compared to in-plane voxel spacing. This
may affect the generation of new filtered images and subsequently the
corresponding feature values. However, interpolation operations might
also introduce additional artefacts to the data. To date, it is unknown to
which extend this might affect the process of feature selection and
machine learning modelling.

The chosen CT radiomics signature is based on the best performing
signature inside the training phase. This is not always the safest choice
according to Leger et al. [11]. As a result, we tested the six best CT
radiomics signatures from the training phase in our validation cohort,
where similar results were obtained (cf. Table 3). We therefore did not
see any impediment to compare simply the best signature from our
training phase with the results obtained for TMRpeak as a matter of
consistency.

In this study, no direct correlation between [18F]FMISO PET
TMRpeak and the best performing CT radiomics model was found. This
finding might potentially also be compromised by the low sample size
in the validation data set (n = 47). Larger cohorts of coherently ac-
quired hypoxia PET data would be needed to assess this in more detail.
The basic processes leading to image formation in CT and hypoxia PET
are very different and therefore capture complementary biological
tissue characteristics. CT radiomics may pick tumour phenotypic het-
erogeneity from CT data which might be linked to tumour hypoxia, but
indirectly. However, direct assessment of tumour hypoxia with specific
imaging techniques and radiotracers is suggested to have a more
powerful prediction power.

Filter-based features
In this study we applied to the original image coiflet1 based filter to

original images and decomposed as shown in Fig. S2. In the eight final
images we computed the set of features from Table S1. For more details,
please refer to the IBSI collaboration publication [21].

Classifiers
In this study, different classifiers were used for model generation.

Details about the hyperparameters are summarized in Table S2.
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