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The diffusion of Neolithic technology together with the Holocene Climatic
Optimum fostered the spread of human settlements and pastoral activities
in North Africa, resulting in profound and enduring consequences for the
dynamics of species, communities and landscapes. Here, we investigate
the demographic history of the African wolf (Canis lupaster), a recently recog-
nized canid species, to understand if demographic trends of this generalist
and opportunistic carnivore reflect the increase in food availability that
emerged after the arrival of the Neolithic economy in North Africa. We
screened nuclear and mitochondrial DNA in samples collected throughout
Algeria and Tunisia, and implemented coalescent approaches to estimate
the variation of effective population sizes from present to ancestral time.
We have found consistent evidence supporting the hypothesis that the Afri-
can wolf population experienced a meaningful expansion concurring with a
period of rapid population expansion of domesticates linked to the advent of
agricultural practices.
1. Introduction
The Neolithic innovations following the domestication of plants and animals
have dramatically changed the Mediterranean landscape. The beginning of
this impact dates back to approximately 12 000 years BP in the eastern Mediter-
ranean, from where it expanded westwards during the following millennia [1].
The advent of a productive economy, based on farming and the use of domesti-
cated resources, provided the framework for an increase in food availability
resulting in rapid human population growth [2,3]. In North Africa, the diffusion
of earlier Neolithic technology arrived approximately 9000–7000 years BP [1,4],
during the Holocene Climatic Optimum, when a marked climatic shift changed
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arid desert conditions into savannah-like environments,
fostering the establishment of human settlements and the
regional development of pastoral activities [5]. The combi-
nation of human-induced changes and climate dynamics in
North Africa had profound and enduring consequences for
the distribution and dynamics of species, communities and
landscapes. Notwithstanding negative impacts on biodiver-
sity [6–9], the presence of humans may create advantages
for species with the ability to exploit anthropogenic habitats.
Several mammal carnivores, for instance, tend to live at
higher densities in humanized habitats than in natural ones
[10,11]. A variety of opportunities, particularly related to
food availability, make human-dominated areas an attractive
habitat for opportunistic carnivores. It is thus expected that
the Neolithic human population growth had a positive
impact on opportunistic wild carnivores that show a
propensity for living in cultural landscapes.

The African wolf (Canis lupaster), recently recognized as a
distinct species of canid [12], is widely distributed across
Northern and Eastern Africa [13–15]. Owing to its habitat
plasticity and opportunistic feeding habits it occurs in a
wide variety of habitats from forest to arid ecosystems,
including the vicinity of urban areas [16–19]. Positive
relationships between African wolf and anthropogenic areas
have been observed [20], including feeding on both wild
prey and livestock, and consuming organic waste [16,17].
We thus hypothesized that the ability of this species to exploit
human-dominated landscapes has been an advantage during
the Neolithic revolution.

Little is still known about basic biological and ecological
aspects of the African wolf because of its previous misidenti-
fication as a golden jackal (Canis aureus). Recent phylogenetic
studies conducted on the species identified two main popu-
lations in Northwestern and in Eastern Africa [12–15,21,22].
The demographic history of the species, however, remains
unknown to date. Here, we collected genetic information of
the Northwestern African wolf population to investigate its
demographic history, and to understand if demographic
trends of this generalist and opportunistic carnivore reflect
the increase in availability of food and other human-related
opportunities that have emerged since the arrival of the
Neolithic economy in North Africa. We thus expect to find
evidence for (i) historic population expansion of the African
wolf during this period and (ii) a high level of genetic diver-
sity and shallow population structure as signs of a large,
interconnected population.
2. Material and methods
(a) Sampling and DNA extraction
Sampling was carried out in Algeria across different ecosystems
between 2014 and 2016. DNA extraction followed specific protocols
for different sample types (for sampling andDNAextraction details,
see electronic supplementary material, appendix S1 and table S1).

(b) Mitochondrial DNA amplification and sequencing
Mitochondrial (mtDNA) control region was amplified using pri-
mers DLH and ThrH [23]. Amplifications were performed in a
BioRad T100 Thermal Cycler (electronic supplementary material,
table S2). PCR products were purified using ExoSap IT® (Affy-
metrix) and sequenced using DLH primer using the Big-Dye
Terminator v. 3.1 Cycle Sequencing protocol (Applied
Biosystems). Electropherograms were checked and aligned
using GENEIOUS v. 7.1.5 (https://www.geneious.com).
(c) Microsatellites genotyping
A set of 47 microsatellite loci was amplified in five multiplex
reactions for tissue samples following [24] and [25] (electronic
supplementary material, table S3). For scat samples, we geno-
typed a subset of 13 microsatellites previously optimized in
three pools following [26]. Four PCR replicas of each marker
were accomplished per non-invasive sample. Amplifications
were performed in a BioRad T100 Thermal Cycler (for methodo-
logical details, see electronic supplementary material, appendix
S1). Amplification products were separated on the ABI 3130xl
Genetic Analyser (AB Applied Biosystems) and alleles were
scored by comparison to the GeneScan™ 500 LIZ size standard
using GENEMAPPER v. 4.1 (Applied Biosystems), and manually
checked to control automatic binning.
(d) Diversity and genetic structure
Mitochondrial diversity was assessed using sequences generated
in this study (n = 22), and then together with 46 sequences from
Algeria and Tunisia retrieved from previous works [14,26].
Diversity indices were assessed using DnaSP 5 [27]. Intraspecific
genetic distances were estimated in MEGA 7 [28] using the p-dis-
tance model. Phylogeographic relationships among the different
mtDNA haplotypes were estimated using the median-joining
(MJ) network algorithm [29] implemented in PopART [30].

The 47 microsatellite dataset was evaluated for deviations
from Hardy–Weinberg (HW) equilibrium using GENALEX v.
6.5 [31], and loci with significant departure from expectations
after Bonferroni correction were excluded from the subsequent
analysis. Genetic diversity was estimated separately for the data-
set of Algeria (n = 18), and for the subset of 13 microsatellites in
Algeria (n = 18 + 2 genotypes from non-invasive samples) and
Tunisia (n = 27), the latter previously generated in our laboratory
[26]. Diversity measures were calculated using GENALEX v. 6.5
[31]. Population structure was tested using the Bayesian cluster-
ing approach implemented in STRUCTURE 2.3.4 [32] (for
details, see electronic supplementary material, appendix S1)
and a principal component analysis (PCA) implemented in the
adegenet package [33].

Isolation by distance (IBD) was evaluated through Mantel
tests implemented in GENALEX v. 6.5 for both molecular mar-
kers. The same software was used to test population structure
between the two sampling areas (Algeria and Tunisia) through
an analysis of molecular variance.
(e) Demographic analysis
Demographic history of the African wolf was inferred using
mitochondrial and microsatellite loci separately, compiling data
from Algeria and Tunisia in a single dataset.

For mtDNA, we estimated mismatch distributions and Har-
pending’s raggedness statistics [34], and tested deviation from
neutrality through Tajima’s D [35] and Fu’s Fs [36] statistics,
using DnaSP 5 [27]. Smooth and unimodal mismatch distri-
butions, non-significant Harpending’s raggedness statistics [34],
and significant negative values ( p-value < 0.05) of Tajima’s D
and Fu’s Fs were taken as evidencing a scenario of demographic
expansion. Past population dynamic trend was inferred using
Extended Bayesian Skyline Plot (EBSP) implemented in BEAST
v. 2.3.2 [37]. We used the strict clock, an evolutionary rate of
5.48% per million years estimated for canids [38] and previously
used in the African wolf [14], and HKI +G as the best model
of nucleotide substitution as selected in MrModeltest2.3 [39]
(electronic supplementary material, appendix S1).
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Figure 1. (a) Distribution of African wolf samples. (b) MJ network based on mtDNA control region, depicting relationships of African wolf haplotypes from Algeria
and Tunisia. Dashes in the branches correspond to nucleotide substitutions. (c) Principal components analysis (PCA) using 47 African wolf individuals from the
Northwestern population analysed for 13 microsatellites; ovals are 95% inertia ellipses for Algerian and Tunisian sampling sites.
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For microsatellite loci, we estimated the variation of effective
population sizes (Ne) from present to ancestral time with a
coalescent approach using the method VarEff [40] implemented
in an R package. The method uses an approximate likelihood of
the distribution of distance frequencies between alleles in a
Monte Carlo Markov Chain framework [40] (electronic sup-
plementary material, appendix S1). To rule out any possibility of
population structure affecting demographic inference [41–43], we
additionally performed analyses for Algerian and Tunisian data-
sets separately (electronic supplementary material, appendix S1).

3. Results
(a) Genetic diversity and structure
A 369 bp fragment of the mtDNA was obtained for 22 Afri-
can wolves in Algeria, yielding a total of 12 haplotypes
with nine segregating sites and high haplotype (Hd) and
nucleotide (π) diversities (electronic supplementary material,
table S4). After merging our dataset with 46 available
sequences from Algeria and Tunisia and trimming the
fragment to 223 bp, we observed 26 haplotypes with 21
segregating sites (electronic supplementary material, table
S4–S5). Ten haplotypes were found for the first time in our
study. Two haplotypes (H6 and H13) were shared among
Algeria and Tunisia (figure 1). Average intraspecific genetic
distance was low (1.7 ± 0.3% sequence divergence). The MJ
network exhibits a star-like configuration with a central
haplotype (H6) shared between countries. No obvious
geographical structure of genetic diversity is revealed by
the MJ network (figure 1).

Thirty-eight microsatellite loci [44] showed no deviations
from HW expectations in Algeria and were used for the
diversity assessment. The African wolf in Algeria exhibited
high levels of diversity for all measured indices (electronic
supplementary material, table S4). No signal of population
structuring was uncovered in African wolves for the different
analyses performed (figure 1; electronic supplementary
material, figure S1 and S2 and table S6).

We found no correlation between genetic and geographical
distances for mtDNA (R = 0.075, p = 0.09), but a positive corre-
lation was observed for the microsatellite dataset (R = 0.149,
p = 0.004) suggesting some degree of IBD, which is expected
in a panmictic population with a very wide range and limited
dispersal (electronic supplementary material, table S7). This is
also partially evidenced in the PCA (PC2 = 33.6%, figure 1c).

(b) Demographic history
We found evidence for a population expansion both in mtDNA
andmicrosatellites. For mtDNA, mismatch distribution showed
a smooth and unimodal curve (electronic supplementary
material, figure S3), and the observed raggedness value was
not significantlydifferent fromthat expected inexpandingpopu-
lations (r = 0.022, p-value = 0.06). Both tests of neutrality showed
negative values, indicating deviations from the expectations
under the mutation–drift equilibrium. Tajima’s D indicated
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Figure 2. Demographic analysis of the Northwestern African wolf population inferred in BEAST2 and VarEff showing a clear signature of demographic expansion. (a)
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negative but non-significant deviations (D =−0.878, p-value >
0.10), while the Fu’s Fs value was negative and significant
(Fs =−15.6, p-value = 0.0), supporting population expansion.
The EBSP supported a population increase to the present, as
indicated by the slope of themedian effective female population
size and the posterior density favouring one population change
at ca 50 kya (figure 2; electronic supplementary material, figure
S3). However, constant population size and two population
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changes across time were not excluded either (electronic
supplementary material, figure S3).

The coalescent approach used to estimate variation in
effective population size based on microsatellites detected a
pronounced signature of population expansion with non-
overlapping distributions of present and past Ne (figure 2).
The expansion happened between 960 and 1680 generations
in the past, corresponding to the time interval between
3840 and 6720 years BP (figure 2; electronic supplementary
material, table S8). The same expansion event was also
revealed when Algerian and Tunisian datasets were analysed
separately, supporting that this demographic signature is
not a result of population sub-structuring (electronic
supplementary material, figure S4).
 ol.Lett.16:20190560
4. Discussion
We found consistent evidence supporting our hypothesis that
the Northwestern African wolf population experienced a
meaningful expansion concurring with a period of rapid
population expansion of cattle and other domesticates
linked to the advent of agricultural practices during the
Neolithic revolution [45,46]. The star-like configuration of
MJ network, unimodal mismatch distribution and significant
negative neutrality test (Fu’s Fs) in mtDNA fit the historical
population expansion model. However, further demographic
inference using EBSP in mtDNA was equivocal. Although
favouring one population change at ca 50 kya, constant popu-
lation size and two population changes across time were not
excluded in EBSP. Timing estimates for the expansion
detected using mtDNA or microsatellites do not overlap,
the latter supporting a clear signature of demographic expan-
sion at approximately 6720–3840 years BP by the end of the
wet Holocene Climatic Optimum [47,48]. This resulted in a
7.0-fold increase in the effective population size after which
the species demography remained stable.

Discrepancies in inferring demographic histories using
different molecular markers are not uncommon [46,49,50], and
may be owing to different inheritance mode and/or different
evolutionary rates, but also owing to meaningful constraints of
using a single short mitochondrial fragment in these analyses
[51,52]. For example, different studies on Cape buffalo showed
apparently contradictory results in timing and population
change [53,54]. These discrepancieswere only solvedusingmito-
genomic data, which revealed a two-phased demographic
history with a Pleistocene expansion followed by Holocene
decline [46]. Similarly, we cannot exclude the hypothesis that
the African wolf experienced two population expansions, the
first during the Late Pleistocene (ca 50 kya) and a second one
in the Holocene (approx. 6720–3840 years BP), as detected in
mtDNA andmicrosatellites, respectively. This should be further
investigated using additional molecular tools.

Favourable climate change during the Late Pleistocene
[55,56] triggered the expansion of wild species [46,57–59]
and humans [60], and may have favoured an African wolf
expansion. Interestingly, the Holocene African wolf expansion
is deeply contrasting with the demographic scenario for other
wild species. Mid-Holocene in Africa has been essentially
associated with herbivore population declines, as reported
for African elephant [61], Cape buffalo [46,53] and common
hippopotamus [57], though evidence of range expansion for
African lion may be synchronic [62]. Contrasting guild resili-
ence to humans between herbivores and carnivores in the
Holocene was explained by differential hunting pressure [63].

The Holocene African wolf expansion detected using
microsatellites is remarkably concurrent with African cattle
demographic history with pronounced population expansion
approximately 5000 years BP [46]. The increasing husbandry
of domesticated cattle, sheep and goats [5,64,65] likely rep-
resented an unforeseen increase in prey availability for
opportunistic carnivores. Selection for tameness during dom-
estication, including the loss of anti-predator behaviours,
may have also favoured livestock predation [66,67]. Within
carnivore species, population density is typically positively
correlated with prey biomass and the number of carnivores
supported on given biomass of prey increases with decreasing
body size [68]. African wolves are medium-sized carnivores,
which supports that higher availability of prey biomass
could have fostered a demographic growth of the species.

Although signatures of human-driven demographic
processes are well reported in the literature, there is little
evidence of favourable historical coexistence of post-Neolithic
humans and wild mammals in Africa. Here, we provide
evidence of population expansion of an opportunistic species
during the Neolithic human revolution, which is possibly
related to the increase of human-related resources, such as
food availability. Surprisingly, this idea has been little explored.
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