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Abstract: ESA defines as Earth Observation (EO) Level 2 information product a
multi-spectral (MS) image corrected for atmospheric, adjacency, and topographic
effects, stacked with its data-derived scene classification map (SCM), whose legend
includes quality layers cloud and cloud-shadow. No ESA EO Level 2 product has ever
been systematically generated at the ground segment. To fill the information gap
from EO big data to ESA EO Level 2 product in compliance with the GEO-CEOS stage
4 validation (Val) guidelines, an off-the-shelf Satellite Image Automatic Mapper
(SIAM) lightweight computer program was selected to be validated by independent
means on an annual 30 m resolution Web-Enabled Landsat Data (WELD) image
composite time-series of the conterminous U.S. (CONUS) for the years 2006 to 2009.
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The SIAM core is a prior knowledge-based decision tree for MS reflectance space
hyperpolyhedralization into static (non-adaptive to data) color names. For the sake
of readability, this paper was split into two. The present Part 2—Validation—
accomplishes a GEO-CEOS stage 4 Val of the test SIAM-WELD annual map time-
series in comparison with a reference 30 m resolution 16-class USGS National Land
Cover Data (NLCD) 2006 map. These test and reference map pairs feature the same
spatial resolution and spatial extent, but their legends differ and must be harmo-
nized, in agreement with the previous Part 1 - Theory. Conclusions are that SIAM
systematically delivers an ESA EO Level 2 SCM product instantiation whose legend
complies with the standard 2-level 4-class FAO Land Cover Classification System
(LCCS) Dichotomous Phase (DP) taxonomy.

Subjects: Algorithms & Complexity; Automation; Cognitive Artificial Intelligence; Expert
systems; GIS, Remote Sensing & Cartography; Image Processing; Intelligent Systems;
Machine Learning; Pattern Analysis; Quality Control & Reliability; Real-Time Systems;
Systems Architecture

Keywords: Artificial intelligence; binary relationship; Cartesian product; cognitive science;
color naming; connected-component multi-level image labeling; deductive inference;
earth observation; land cover taxonomy; high-level (attentive) and low-level (pre-
attentional) vision; hybrid inference; image classification; image segmentation; inductive
inference; machine learning-from-data; outcome and process quality indicators;
radiometric calibration; remote sensing; surface reflectance; thematic map comparison;
top-of-atmosphere reflectance; two-way contingency table; unsupervised data
discretization/vector quantization; validation

1. Introduction
Jointly proposed by the intergovernmental Group on Earth Observations (GEO) and the Committee
on Earth Observation Satellites (CEOS), the implementation plan for years 2005–2015 of the Global
Earth Observation System of Systems (GEOSS) aimed at systematic transformation of multi-source
Earth observation (EO) big data (IBM, 2016; Yang, Huang, Li, Liu, & Hu, 2017) into timely, compre-
hensive, and operational EO value-adding products and services (GEO, 2005), submitted to the
GEO-CEOS Quality Assurance Framework for Earth Observation (QA4EO) calibration/validation (Cal/
Val) requirements (Group on Earth Observation/Committee on Earth Observation Satellites (GEO/
CEOS), 2010). The visionary goal of GEOSS cannot be considered fulfilled by the remote sensing (RS)
community to date. In the terminology of philosophical hermeneutics, the problem is not a lack of
sensory data, but our lack of knowledge in transforming big sensory data into quantitative/
unequivocal information-as-thing and qualitative/equivocal information-as-data-interpretation
(Capurro & Hjørland, 2003). Such a lack of knowledge causes the so-called data-rich, informa-
tion-poor (DRIP) syndrome (Bernus & Noran, 2017), supported by undisputable observations (true-
facts). For example, past and present EO image understanding systems (EO-IUSs) have been
typically outpaced by the rate of collection of EO sensory data, whose quality and quantity are
ever-increasing at an apparently exponential rate related to the Moore law of productivity
(National Aeronautics and Space Administration (NASA), 2016).

To contribute toward the visionary goal of GEOSS, this interdisciplinary work aimed at filling an
analytic and pragmatic information gap from EO big sensory data to systematic European Space
Agency (ESA) EO Level 2 information product generation (CNES, 2015; Deutsches Zentrum fürLuft-
und Raumfahrt e.V. (DLR) and VEGA Technologies, 2011; European Space Agency (ESA), 2015),
never accomplished at the ground segment by any EO data provider to date (DLR & VEGA, 2011;
ESA, 2015). ESA defines as EO Level 2 information product: (i) a single-date multi-spectral (MS)
image, radiometrically calibrated into surface reflectance (SURF) values corrected for atmospheric,

Baraldi et al., Cogent Geoscience (2018), 4: 1467254
https://doi.org/10.1080/23312041.2018.1467254

Page 3 of 52



adjacency, and topographic effects, in compliance with the GEO-CEOS QA4EO Cal requirements
(GEO-CEOS, 2010), stacked with (ii) its data-derived Scene Classification Map (SCM), whose legend
includes quality layers cloud and cloud-shadow (ESA, 2015; DLR & VEGA, 2011; CNES, 2015). In
practice, ESA EO Level 2 product generation is a chicken-and-egg dilemma, synonym of inherently
ill-posed problem in the Hadamard sense (Hadamard, 1902); therefore, it is very difficult to solve.
On the one hand, no effective and efficient understanding (mapping) of a sub-symbolic EO image
into a symbolic SCM is possible if DNs (pixels) are affected by low radiometric quality (GEO-CEOS,
2010). On the other hand, no effective and efficient Cal of digital numbers (DNs) into SURF values
corrected for atmospheric, topographic and adjacency effects is possible without an SCM, available
a priori in addition to sensory data to enforce a statistic stratification (layered) principle, synonym
of class-conditional data analytics (Baraldi, 2017; Baraldi et al., 2010b; Baraldi & Humber, 2015;
Baraldi, Humber, & Boschetti, 2013; Bishop & Colby, 2002; Bishop, Shroder, & Colby, 2003; DLR &
VEGA, 2011; Dorigo, Richter, Baret, Bamler, & Wagner, 2009; Lück & Van Niekerk, 2016; Riano,
Chuvieco, Salas, & Aguado, 2003, Richter & Schläpfer, 2012a, 2012b; Vermote & Saleous, 2007).
Well known in statistics, the principle of statistic stratification guarantees that “stratification will
always achieve greater precision provided that the strata have been chosen so that members of
the same stratum are as similar as possible in respect of the characteristic of interest” (Hunt &
Tyrrell, 2012).

For the sake of readability, this paper is split into two. The preliminary Part 1 - Theory postulated as
working hypothesis a necessary not sufficient pre-condition for a yet-unfulfilled GEOSS development
(GEO-CEOS, 2005). The proposed working hypothesis is “ESA EO Level 2 product ⊂ EO image
understanding (EO-IU) in operating mode ⊂ computer vision (CV) → GEOSS,” where relationship
subset-of, denoted with symbol “⊃,” means specialization with inheritance from the superset to
the subset, while dependence relationship part-of is denoted with symbol “→,” pointing from the
supplier to the client in agreement with the standard Unified Modeling Language (UML) for graphical
modeling of object-oriented software (Fowler, 2016). This working hypothesis postulates that no
GEOSS can exist if the necessary not sufficient pre-condition of systematic ESA EO Level 2 product
generation is not accomplished in advance at the ground segment. Hence, systematic ESA EO
Level 2 product generation is considered a mandatory early stage in a hierarchical EO-IUS
workflow, capable of scene-from-image reconstruction and understanding in operating mode to
cope with the five Vs of big data, specifically, volume, variety, velocity, veracity, and value (IBM, 2016;
Yang et al., 2017).

In the words of Marr, “vision goes symbolic almost immediately, right at the level of zero-
crossing (first-stage primal sketch), without loss of information” (Marr, 1982). In agreement with
Marr’s intuition, our instantiation of an ESA EO Level 2 product generation is constrained as follows.
(I) A single-date MS image is radiometrically corrected for atmospheric, adjacency, and topo-
graphic effects, automatically (without human-machine interaction) and in near real time. (II) It
is stacked with its data-derived SCM, generated automatically and in near real time. The SCM
legend must be general purpose and user and application independent. Unlike the non-standard
SCM legend adopted by the Sentinel 2 imaging sensor-specific (atmospheric) Correction Prototype
Processor (SEN2COR) developed by ESA to be run on user side (ESA, 2015; DLR & VEGA, 2011), the
proposed SCM legend is selected equal to an “augmented” 3-level 9-class Dichotomous Phase (DP)
taxonomy of the Food and Agriculture Organization of the United Nations (FAO)—Land Cover
Classification System (LCCS) (Di Gregorio & Jansen, 2000). Such an “augmented” land cover (LC)
class taxonomy in the 4D spatio-temporal scene-domain encompasses the standard fully nested
3-level 8-class FAO LCCS-DP legend in addition to a thematic layer “other” or “rest of the world,”
which includes quality layers cloud and cloud-shadow; see Figure 1. (III) A GEO-CEOS stage 4 Val of
the ESA EO Level 2 outcome and process is considered mandatory to comply with the GEO-CEOS
QA4EO Cal/Val requirements (GEO-CEOS, 2010). By definition, a GEO-CEOS Stage 3 Val requires that
“spatial and temporal consistency of the product with similar products are evaluated by indepen-
dent means over multiple locations and time periods representing global conditions. In Stage 4
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Val, results for Stage 3 are systematically updated when new product versions are released and as
the time-series expands” (GEO-CEOS - Working Group on Calibration and Validation (WGCV), 2015).

To contribute toward filling an analytic and pragmatic information gap from multi-source EO big
imagery to systematic generation of ESA EO Level 2 product as constrained above, the primary
goal of this interdisciplinary study was to undertake an original (to the best of these authors’
knowledge, the first) outcome and process GEO-CEOS stage 4 Val (GEO-CEOS WGCV, 2015) of an
off-the-shelf Satellite Image Automatic Mapper™ (SIAM™) lightweight computer program for top-
down (deductive) MS reflectance space hyperpolyhedralization into MS color names, superpixel
detection, and vector quantization (VQ) quality assessment. Implemented in operating mode in
the C/C++ programming language, the SIAM software toolbox is “lightweight” because it runs
automatically (without human-machine interaction), in near real time (it is non-iterative and its
computational complexity increases linearly with image size) and in tile streaming mode (it
requires a fixed runtime memory occupation) (Baraldi, 2015, 2017; Baraldi, Puzzolo, Blonda,
Bruzzone, & Tarantino, 2006; Baraldi et al., 2010a, 2010b; Baraldi, Gironda, & Simonetti, 2010c;
Baraldi, 2011; Baraldi & Boschetti, 2012a, 2012b; Baraldi et al., 2013; Baraldi, Tiede, Sudmanns,
Belgiu, & Lang, 2016, 2017; Baraldi & Humber, 2015). In addition to running on either laptop or
desktop computers, the SIAM lightweight computer program is eligible for use in mobile applica-
tion software or web services. Eventually provided with a mobile user interface, a mobile applica-
tion software is a lightweight computer program specifically designed to run directly on mobile
devices, such as tablet computers and smartphones. The core of the non-iterative SIAM software
pipeline is a one-pass prior knowledge-based decision tree (expert system) for MS reflectance
space hyperpolyhedralization (quantization, partitioning) into static (non-adaptive-to-data) color
names, see Figure 2 and refer to Chapter 2 and Chapter 3 in the Part 1. Presented in the RS
literature where enough information was provided for the implementation to be reproduced
(Baraldi et al., 2006), the SIAM expert system for MS color naming is followed by a well-posed
two-pass superpixel detector in the multi-level color map-domain (Dillencourt, Samet, &
Tamminen, 1992; Sonka, Hlavac, & Boyle, 1994) and a per-pixel VQ error assessment for VQ quality
assurance, in agreement with the GEO-CEOS QA4EO Val guidelines, refer to Figure 4 in the Part 1 of
this paper.

There is a long history of prior knowledge-based MS reflectance space partitioners for static color
naming developed, but never validated by space agencies, public organizations, and private
companies for use in hybrid (combined deductive and inductive) EO-IUSs in operating mode,
refer to Chapter 3 in the Part 1 of this paper. EO value-adding products and services delivered by
existing hybrid EO-IUSs whose input is a MS image class-conditioned (masked) by static color
names encompass a large variety of low-level EO image enhancement tasks, ranging from MS
image compositing to atmospheric and topographic correction of top-of-atmosphere reflectance
(TOARF) into SURF values (Ackerman et al., 1998; Baraldi et al., 2010c; Baraldi & Humber, 2015;
Baraldi et al., 2013; Despini, Teggi, & Baraldi, 2014; DLR and VEGA, 2011; Dorigo et al., 2009; Lück &
Van Niekerk, 2016; Luo, Trishchenko, & Khlopenkov, 2008; Richter & Schläpfer, 2012a, 2012b;
Vermote & Saleous, 2007) and high-level EO image understanding applications, including EO
image time-series classification, ranging from cloud/cloud-shadow detection to burned area
recognition (Arvor, Madiela, & Corpetti, 2016; Baraldi, 2015; Baraldi et al., 2010a, 2010b;
Boschetti, Roy, Justice, & Humber, 2015; DLR & VEGA, 2011; Lück & Van Niekerk, 2016; Muirhead
& Malkawi, 1989; Simonetti, Simonetti, Szantoi, Lupi, & Eva, 2015; GeoTerraImage, 2015). To the
best of these authors’ knowledge, none of these prior knowledge-based MS reflectance space
partitioners presented in the RS literature has ever been submitted to a GEO-CEOS stage 4 Val
process (GEO-CEOS WGCV, 2015), in compliance with the GEO-CEOS QA4EO Val requirements (GEO-
CEOS, 2010). To fill this analytic and pragmatic lack, the proposed GEO-CEOS stage 4 Val outcome
and process of an off-the-shelf SIAM lightweight computer program for prior knowledge-based MS
reflectance space hyperpolyhedralization would be the first of its kind. Hence, the potential impact
of the present study on the research and development (R&D), testing and validation of present or
future hybrid EO-IUSs in operating mode, where static color naming is employed for MS image
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stratification purposes according to a convergence-of-evidence approach in agreement with a
Bayesian naïve classification formulation (Baraldi, 2017; Matsuyama & Hwang, 1990), refer to
Equation (3) in the Part 1 of this paper and see Figure 3, is expected to be relevant.

To comply with the GEO-CEOS stage 4 Val requirements (GEO-CEOS WGCV, 2015), outcome and
process of an off-the-shelf SIAM computer program had to be validated by independent means on
a radiometrically calibrated EO image time-series at large spatial extent. The open-access U.S.
Geological Survey (USGS) 30 m resolution annual Web Enabled Landsat Data (WELD) image
composite of the conterminous U.S. (CONUS) for the years 2006 to 2009, radiometrically calibrated
into TOARF values (Homer, Huang, Yang, Wylie, & Coan, 2004; Roy et al., 2010; WELD, 2016), was
identified as a viable input dataset. The 30 m resolution 16-class U.S. National Land Cover Data
(NLCD) 2006 map, delivered in 2011 by the USGS Earth Resources Observation Systems (EROS) Data
Center (EDC) (Environmental Protection Agency (EPA), 2007; Vogelmann et al., 2001; Vogelmann,
Sohl, Campbell, & Shaw, 1998; Wickham, Stehman, Fry, Smith, & Homer, 2010; Wickham et al.,
2013; Xian & Homer, 2010), was selected as the reference thematic map at the CONUS spatial
extent. The 16-class NLCD map legend is described in Table 1. To account for typical non-stationary
geospatial statistics, the USGS NLCD 2006 thematic map was partitioned into 86 Level III ecor-
egions of North America collected from the Environmental Protection Agency (EPA) (Environmental
Protection Agency (EPA), 2013; Griffith & Omernik, 2009).

In the proposed experimental framework, the test SIAM-WELD map time-series and the refer-
ence USGS NLCD 2006 map share the same spatial extent and spatial resolution, but their map
legends are not the same, differing in both semantics and cardinality. These working hypotheses
are neither trivial nor conventional in the RS literature, where thematic map quality assessments
typically adopt a sampling strategy, either probabilistic (random) or non-random (Baraldi et al.,
2013), and assume that the test and reference thematic map dictionaries coincide (Stehman &
Czaplewski, 1998). Starting from a stratified random sampling protocol presented in literature
(Baraldi et al., 2013), the present Part 2 - Validation proposes an original protocol for wall-to-wall
comparison without sampling of two thematic maps featuring the same spatial extent and spatial
resolution, but whose legends can differ. This novel protocol incorporates two original contribu-
tions of the Part 1 where, first, a hybrid (combined deductive and inductive) eight-step guideline
was proposed to streamline a human decision maker in the identification of a binary relationship,
R: A ⇒ B ⊆ A × B, from categorical variable A to categorical variable B estimated from the same
population, where A ≠ B in general and A × B is the 2-fold Cartesian product (product set). This is an
inherently ill-posed (equivocal, subjective) information-as-data-interpretation process (Capurro &
Hjørland, 2003) belonging to the multi-disciplinary domain of cognitive science, refer to Figure 13
in the Part 1. The proposed hybrid eight-step guideline is of practical use because identification of a
binary relationship, R: A ⇒ B, is mandatory to guide the interpretation process of a bivariate
frequency table, BIVRFTAB = FrequencyCount(A × B) ≠ R: A ⇒ B ⊆ A × B, where A ≠ B in general.
Only if A = B then BIVRFTAB becomes equal to the well-known square and sorted confusion matrix
(CMTRX), where the main diagonal guides the interpretation process. Second, version 2 of a
categorical variable-pair index of association (harmonization, matching) in a binary relationship,
R: A ⇒ B, where A ≠ B in general, CVPAI2(R: A ⇒ B) ∈ [0, 1], was proposed to cope with the entity-
relationship conceptual model shown in Figure 18 of the Part 1.

The rest of the present Part 2 is organized as follows. Chapter 2 describes materials including the
SIAM computer program, the time-series of annual WELD image composites, the reference USGS
NLCD 2006 map and the EPA Level III ecoregion map of North America. Methods, specifically, an
original protocol to compare without sampling the test SIAM-WELD map and the reference USGS
NLCD 2006 map of the CONUS, whose map legends do not coincide and must be harmonized
(reconciled, associated, translated) (Ahlqvist, 2005), is proposed in Chapter 3. Experimental results
are presented in Chapter 4 and discussed in Chapter 5. Conclusions are reported in Chapter 6.
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2. Materials
Presented in the RS literature, four alternative implementations of a prior knowledge-based
decision tree for static MS reflectance space hyperpolyhedralization into static color names were
compared for model selection. (i) The year 2006 SIAM decision tree presented in Baraldi et al.
(2006). (ii) The static decision tree for Spectral Classification of surface reflectance signatures
(SPECL) proposed by Dorigo et al. (2009), see Table 4 in the Part 1 of this paper, and implemented
by the Atmospheric/Topographic Correction for Satellite Imagery (ATCOR) commercial software
product (Richter & Schläpfer, 2012a, 2012b). (iii) The static decision tree for Single-Date
Classification (SDC), proposed by Simonetti et al. (2015). (iv) The Canada Centre for Remote
Sensing (CCRS) spectral decision tree is shown in Figure 17 of the Part 1 (Luo et al., 2008).
Whereas the SDC, SPECL, and CCRS decision trees declare their applicability to Landsat images
exclusively, SIAM claims its scalability to MS imaging sensors featuring different spectral resolution
specifications; see Table 1 in the Part 1. Moreover, the SIAM decision tree outperforms its counter-
parts in terms of spectral quantization capability, parameterized by the total number of detected
color names, equal to 96 for the 7-band Landsat-like SIAM (L-SIAM) subsystem, see Table 1 in
the Part 1, versus 13, 19, and 7 color names detected in Landsat images by the SDC, SPECL
(see Tables 4 in the Part 1) and CCRS (see Figure 17 in the Part 1) decision trees, respectively. To
explain their broad differences in terms of number of detected color names and scalability to MS
imaging sensors whose spectral and spatial resolution specifications can vary, the four static
spectral decision trees of interest were compared at the level of understanding of spectral
information/knowledge representation (Marr, 1982), irrespective of the implementation of the
decision rule set (structural knowledge in the decision tree) and of the order of presentation of
decision rules (procedural knowledge in the decision tree).

To investigate the scalability of an a priori knowledge-based spectral decision tree to varying MS
imaging sensor specifications, we started observing that, given a partition of a MS color space, ℜMS,
into a discrete and finite vocabulary (codebook) of hyperpolyhedra equivalent to color names
(codewords), identified as {1, ColorVocabularyCardinality}, for any spatial unit x, either (0D) pixel,
(1D) line or (2D) polygon defined according to the Open Geospatial Consortium (OGC) nomencla-
ture (OGC, 2015) and featuring a numeric ColorValue(x) ∈ ℜMS, the photometric attribute of spatial
unit x can be assigned with a categorical ColorName* ∈ {1, ColorVocabularyCardinality}, such that
membership m(ColorValue(x)| ColorName*) = 1, see Equation (3) in the Part 1 of this paper. In
practice, when spatial unit x is (0D) pixel, then any prior knowledge-based spectral decision tree for
color naming can work at the sensor spatial resolution whatever it is, that is, it can work pixel-
based irrespective of the spatial resolution of the imaging sensor.

Figure 1. The fully nested 3-
level 8-class FAO Land Cover
Classification System (LCCS)
Dichotomous Phase (DP) layers
are: (i) vegetation versus non-
vegetation, (ii) terrestrial ver-
sus aquatic, and (iii) managed
versus natural or semi-natural.
They deliver as output the fol-
lowing 3-level 8-class FAO
LCCS-DP taxonomy. (A11)
Cultivated and Managed
Terrestrial (non-aquatic)
Vegetated Areas. (A12) Natural
and Semi-Natural Terrestrial
Vegetation. (A23) Cultivated
Aquatic or Regularly Flooded
Vegetated Areas. (A24) Natural
and Semi-Natural Aquatic or
Regularly Flooded Vegetation.
(B35) Artificial Surfaces and
Associated Areas. (B36) Bare
Areas. (B47) Artificial
Waterbodies, Snow and Ice.
(B48) Natural Waterbodies,
Snow and Ice. The general-pur-
pose, user- and application-
independent 3-level 8-class
FAO LCCS-DP taxonomy is pre-
liminary to a user- and appli-
cation-specific FAO LCCS
Modular Hierarchical Phase
(MHP) taxonomy of one-class
classifiers (Di Gregorio &
Jansen, 2000), refer to Figure 3
in the Part 1 of this paper.
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Because they are independent of the spatial resolution of the imaging sensor, static decision
trees for color naming depend on spectral resolution specifications exclusively. Inter-sensor differ-
ences in spectral resolution can vary from minor differences in a band-specific sensitivity curve to
the major lack of a whole spectral channel. To gain robustness to changes in spectral resolution
specifications, the necessary not sufficient pre-condition for spectral rules is to infer “strong”
(robust and reliable) conjectures based on the redundant convergence of multiple independent
sources of spectral evidence, each of which is individually “weak.” This rationale is alternative to,
for example, pruning of redundant processing elements in distributed processing systems such as
multi-layer perceptrons (Bishop, 1995; Cherkassky & Mulier, 1998). If this diagnosis holds true, that
is, redundancy of spectral evidence is a value-added of spectral rules to scale to varying spectral
resolutions, then information redundancy of a spectral if-then rule is expected to increase mono-
tonically with the collection of independent premises.

In a MS reflectance (hyper)cube, any target family of LC class-specific spectral signatures is a
multivariate (hyper)polyhedron (envelope, distribution, manifold). Unfortunately, MS reflectance
space hyperpolyhedra for color naming are difficult to think of and impossible to visualize when
the MS data space dimensionality is superior to three, see Figure 7 in the Part 1 of this paper. Like a
vector quantity has two characteristics, a magnitude and a direction, any LC class-specific
MS manifold is characterized by a multivariate shape and a multivariate intensity information
component; see Figure 2. Hence, spectral information redundancy required to gain robustness to
changes in spectral resolution specifications can regard the modelling of both the MS shape and
MS intensity information components of a target MS hyperpolyhedron. Among the spectral
decision trees being compared, only the SIAM decision tree adopts two different sets of spectral
rules to model the MS shape and the MS intensity as two independent spectral information
components of a target manifold of MS signatures. On the contrary, in the SDC, SPECL and CCRS
decision trees MS shape and MS intensity properties are modeled jointly, which negatively affects
principles of modularity, regularity, and hierarchy required by scalable systems (Lipson, 2007). For
example, a typical SDC spectral rule applied to a Landsat pixel vector, radiometrically calibrated
into a TOARF value in range [0, 1] in each Landsat band 1 to 6, is

If NDVI < 0:5 and NIR ¼ Landsat band 4ð Þ � 0:15 then do something else do otherwise:

In this spectral decision rule, the normalized difference vegetation index, NDVI = (NIR—Red)/(NIR +
Red), where NIR = Landsat band 4 and Red = Landsat band 3, is a well-known spectral index, whose
unbounded version is the band ratio NIR/Red. Noteworthy, band ratios are scalar spectral indexes
widely employed in the SPECL decision tree, see Table 4 in the Part 1, and in the CCRS decision tree

Figure 2. (same as Figure 5 in the
Part 1 of this paper, duplicated
for the sake of readability of the
present Part 2). Examples of land
cover (LC) class-specific families
of spectral signatures in top-of-
atmosphere reflectance (TOARF)
values that include surface
reflectance (SURF) values as a
special case in clear sky and flat
terrain conditions. A within-class
family of spectral signatures
(e.g., dark-toned soil) in TOARF
values forms a buffer zone
(hyperpolyhedron, envelope,
manifold). The SIAMdecision tree
models each target family of
spectral signatures in terms of
multivariate shape and multi-
variate intensity information
components as a viable alterna-
tive to multivariate analysis of
spectral indexes. A typical spec-
tral index is a scalar band ratio
equivalent to an angular coeffi-
cient of a tangent in one point of
the spectral signature. Infinite
functions can feature the same
tangent value in one point. In
practice, no spectral index or
combination of spectral indexes
can reconstruct the multivariate
shape and multivariate intensity
information components of a
spectral signature.

Baraldi et al., Cogent Geoscience (2018), 4: 1467254
https://doi.org/10.1080/23312041.2018.1467254

Page 8 of 52



shown in Figures 17 of the Part 1 (Luo et al., 2008). Any scalar spectral index, either normalized band
difference or band ratio, is conceptually equivalent to the slope of a tangent to the spectral signature
in one point. This spectral slope is a MS shape descriptor independent of the MS intensity, that is,
infinite functions with different intensity values can feature the same tangent value in one point.
Although appealing due to its conceptual and numerical simplicity (Liang, 2004), any scalar spectral
index is unable per se to represent either the multivariate shape information or the multivariate
intensity information component of an MS signature (Baraldi, 2017). Intuitively a scalar spectral
index causes a dramatic N-to-1 loss in spectral resolution by reducing an N-channel MS signature to
a univariate (scalar) value, corresponding in the (2D) image-plane to a panchromatic (one-channel)
image. No photointerpreter whose objective is a one-class LC classification, for example, vegetation
detection, would typically consider a panchromatic image made of a univariate spectral index, for
example, NDVI, either as informative as an MS image or informative enough to be mapped onto a
binary map, for example, vegetation/non-vegetation, where a crisp thresholding criterion is
expected to be successful enough to accomplish binary target/no-target discrimination with high
accuracy at large spatial extent, different from toy problems. In general, no univariate or multi-
variate spectral index is representative of themultivariate shape andmultivariate intensity informa-
tion components of an MS manifold; see Figure 2. This obvious, but not trivial observation explains
why, in spectral pattern recognition applications, lossy scalar spectral indexes are ever-increasing in
number and variety in the endless search for yet-another scalar spectral index, supposedly more
informative (Baraldi et al., 2010a, 2010b; Liang, 2004). In the SDC rule reported above, the first
spectral term, NDVI < 0.5, constrains per se themultivariate shape of the target MS hyperpolyhedron
independent of multivariate intensity; it is employed in logical combination with a second spectral
term, where a MS intensity value is restrained as NIR ≥ 0.15, which constrains per se themultivariate
intensity of the target MS hyperpolyhedron independent of multivariate shape. The conclusion is
that, unlike the SIAM decision rule set, neither the SDC nor the SPECL nor the CCRS decision tree
decomposes a target MS hyperpolyhedron, equivalent to a color name, into its multivariate shape
and multivariate intensity information components to make each information component easier to
be investigated by multivariate data analysis according to principles of modularity, regularity and
hierarchy typical of scalable systems (Lipson, 2007). In each of its two independent sets of spectral
rules for MS shape and MS intensity modelling SIAM pursues redundancy of spectral terms as a
necessary condition to accomplish scalability to changes in the sensor spectral resolution specifica-
tions. Possible combinations of these two independent sets of spectral rules make the SIAM decision
tree implementations, starting from that proposed in pseudo-code in Baraldi et al. (2006), capable of
representing the multivariate shape and multivariate intensity information components of a target

Figure 3. See note.
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MS hyperpolyhedron, neither necessarily convex nor connected, as a converging combination of
independent functions whose individual terms are input with 1- to N-variate variables, with N equal
to the total number of spectral channels. Multivariate data statistics are known to be more infor-
mative than a sequence of univariate data statistics. For example, maximum likelihood data
classification, accounting for multivariate data correlation and variance (covariance), is typically
more accurate than parallelepiped data classification whose rectangular decision regions, equiva-
lent to a concatenation of univariate data constraints, poorly fit multivariate data in the presence of
bivariate cross-correlation (Lillesand & Kiefer, 1979). In the RS common practice, thanks to its
spectral redundancy of multivariate data statistics, the “master” 7-band Landsat-like SIAM
(L-SIAM) decision tree can be down-scaled to cope with “slave” MS imaging sensors whose spectral
resolution is inferior to but overlaps with Landsat’s; see Table 1 in the Part 1 of this paper (Baraldi
et al., 2010a, 2010b).

Moving from this decision-tree models comparison, these authors concluded that the SIAM’s peculiar
design in modeling MS hyperpolyhedra and the SIAM implementation complexity/redundancy, superior
to that of its alternative decision trees in terms of number of rules and number of terms (premises) per
rule, appeared sufficient to justify the SIAM claims of, first, a finer spectral quantization capability and,
second, a superior spectral scalability to changes in sensor specifications in comparison with its alter-
native SDC, SPECL, and CCRS decision tree implementations. Based on these conclusions, an off-the-shelf
SIAM application software was selected and considered worth of a GEO-CEOS stage 4 Val in compliance
with the GEO-CEOS QA4EO Val requirements; refer to previous Chapter 1.

To pursue a GEO-CEOS stage 4 Val of the SIAM computer program, the 30 m resolution USGS
NLCD 2006 map was selected as reference LC map at the CONUS spatial extent. When this
experimental work was conducted the USGS NLCD 2006 map was the most recent release of the
U.S. NLCD map series developed by the USGS EDC (Vogelmann et al., 1998, 2001; Wickham et al.,
2010, 2013; Xian & Homer, 2010; EPA, 2007; Homer et al., 2004); see Figure 4. By now, the U.S.
NLCD map series comprises the USGS NLCD 1992, 2001, 2001 Version 2.0, 2006 (released in 2011)
and 2011 (released in 2015) editions. The timeliness from EO image collection to NLCD product
delivery, which includes information layers such as tree cover fraction and impervious fraction, has
steadily decreased from the about 5 years of the initial NLCD product. Made available for public

Figure 4. Reference USGS NLCD
2006 map of the CONUS. It is
shown in the same scale and
projection of the WELD 2006
composite depicted in Figure 6.
Black lines across the USGS
NLCD 2006 map represent the
boundaries of the 86 EPA Level
III ecoregions of the CONUS.
The USGS NLCD 2006 map
legend is shown on the left
bottom side, also refer to
Table 1.
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access in a provisional version in February 2011, the USGS NLCD 2006 map was “based primarily on
the unsupervised classification” of Landsat-5 Thematic Mapper (TM) and “Landsat-7 Enhanced
Thematic Mapper (ETM)+ images acquired in circa 2006” (Xian & Homer, 2010). It has been
released as a 30 m resolution raster product in the Albers Equal Area projection, which is the
cartographic projection reference standard for continental scale cartography produced by U.S.
agencies. Its legend consists of 16 LC classes defined according to the Level II LC classification
system; refer to Table 1 (EPA, 2007). Validation of the USGS NLCD 2006 map provided an overall
accuracy (OA) of 78%, which increased to 84% when the 16 LC classes were aggregated into 9 LC
classes (Stehman, Wickham, Wade, & Smith, 2008; Wickham et al., 2010, 2013). Noteworthy, these
9 LC classes are conceptually equivalent to an “augmented” 3-level 9-class FAO LCCS-DP taxon-
omy; refer to previous Chapter 1. The validated USGS NLCD 2006 map’s OA values of 78% and 84%
with, respectively, a 16 and a 9 LC class legend can be considered state of the art. For example,
these OA estimates are superior to OAs featured by national-scale maps recently generated by
pixel-based random forest classifiers from monthly WELD composites, whose OA is 65%–67%
using 22 detailed classes and 72%–74% using 12 aggregated national classes (Wessels et al.,
2016). In general, renowned experts in Geographical Information Science (GIScience) suggest that
“the widely used target accuracy of 85% may often be inappropriate and that the approach to
accuracy assessment adopted commonly in RS can be pessimistically biased” (Foody, 2006, 2016).

Based on these observations, we considered the USGS NLCD 2006 map’s official OA estimate of
84% realistic and state of the art at the U.S. national scale when the 3-level 9-class “augmented”
FAO LCCS-DP legend is adopted. We concluded that the reference USGS NLCD 2006 map was
eligible for use in a GEO-CEOS Stage 4 Val of the SIAM application software whose output color
map legend had to be reconciled with the “augmented” 3-level 9-class FAO LCCS-DP taxonomy of
the reference USGS NLCD 2006 map and of a target ESA EO Level 2 product; refer to previous
Chapter 1. When a test SIAM-WELD map and a reference USGS NLCD map share the same 30 m
spatial resolution and spatial extent, then they can be compared wall-to-wall without sampling.
Because no conventional sampling-theory procedure is employed (Lunetta & Elvidge, 1999), a wall-
to-wall OA(Test SIAM-WELD; Reference NLCD) estimate ∈ [0, 100%] is provided with a confidence
interval (degree of uncertainty in measurement), ± δ ≥ 0, considered mandatory by the GEO-CEOS
QA4EO Val guidelines, equal to ± δ = 0%.

From a statistic standpoint, the aforementioned experimental work specifications imply the following.
Let us identify with OA(Test SIAM-WELD; “Ultimate” GroundTruth) ∈ [0, 100%] = 100%—Mismatch(Test
SIAM-WELD; “Ultimate” GroundTruth) the OA of an EO data-derived SIAM test map with respect to an
“ultimate” (ideal) ground truth andwithOA(Test SIAM-WELD; Reference NLCD) ± 0%=100%—Mismatch
(Test SIAM-WELD; Reference NLCD) ± 0% the overall degree of agreement provided with its confidence
interval of a test SIAM-WELDmap comparedwall-to-wall without sampling with a reference USGS NLCD
map at the same spatial resolution and spatial extent. It is known that (Stehman et al., 2008; Wickham
et al., 2010, 2013)

OA(Reference NLCD 2006, “augmented” 3-level 9-class FAO LCCS-DP; “Ultimate”
GroundTruth 2006, “augmented” 3-level 9-class FAO LCCS-DP) = 84% = 100% - Mismatch
(Reference NLCD 2006, “augmented” 3-level 9-class FAO LCCS-DP; “Ultimate” GroundTruth
2006, “augmented” 3-level 9-class FAO LCCS-DP) = 100% - 16%.

Similarly (Stehman et al., 2008; Wickham et al., 2010, 2013),

OA(Reference NLCD 2006, NLCD 16 classes; “Ultimate” GroundTruth 2006, NLCD 16 classes) =
78% = 100% - Mismatch(Reference NLCD 2006, NLCD 16 classes; “Ultimate” GroundTruth 2006,
NLCD 16 classes) = 100% - 22%.

Based on the superposition principle, see Figure 5, it is possible to write
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Table 1. Definition of the USGS NLCD 2001/2006/2011 classification taxonomy, Level II.2Alaska
only, consisting of 16 land cover (LC) class names. For further details, refer to the “National Land
Cover Database 2006 (NLCD 2006),” Multi-Resolution Land Characteristics Consortium (MRLC),
2013. The right column instantiates a possible binary relationship R: A ⇒ B ⊆ A × B from set A = 16
-class NLCD legend to set B = 2-level 4-class Dichotomous Phase (DP) taxonomy of the Food and
Agriculture Organization of the United Nations (FAO)—Land Cover Classification System (LCCS) (Di
Gregorio & Jansen, 2000), refer to Figure 1

NLCD 2001/2006/2011 classification scheme (legend), level II LCCS-DP, level 1:
A = Veg,

B = Non-veg, and
level 2:

1 = Terrestrial,
2 = Aquatic

Code ID Name Land cover (LC) class definition ID
11 OW Open water OW: Areas of open water, generally with

less than 25% cover of vegetation or soil
B4—Non-vegetated
aquatic

12 PIS Perennial Ice/Snow PIS: Areas characterized by a perennial
cover of ice and/or snow, generally
greater than 25% of total cover.

B4

21
22
23
24

DOS
DLI
DMI
DHI

● Developed, Open
Space

● Developed, Low
Intensity

● Developed,
Medium Intensity

● Developed, High
Intensity

DOS: Includes areas with a mixture of
some constructed materials, but mostly
vegetation in the form of lawn grasses.
Impervious surfaces account for less
than 20 percent of total cover. These
areas most commonly include large-lot
single-family housing units, parks, golf
courses, and vegetation planted in
developed settings for recreation,
erosion control, or aesthetic purposes.
DLI, DMI, DHI: refer to the “National
Land Cover Database 2006 (NLCD
2006),” Multi-Resolution Land
Characteristics Consortium (MRLC),
2013.

B3—Non-vegetated
terrestrial/A1—
Vegetated terrestrial

31 BL Barren Land (Rock/
Sand/Clay)

BL: Barren areas of bedrock, desert
pavement, scarps, talus, slides, volcanic
material, glacial debris, sand dunes,
strip mines, gravel pits, and other
accumulations of earthen material.
Generally, vegetation accounts for less
than 15% of total cover. As a
consequence of this constraint, class BL
covers only 1.21% of the CONUS total
surface.

B3

41
42
43

DF
EF
MF

● Deciduous Forest
● Evergreen Forest
● Mixed Forest

DF: Areas dominated by trees generally
greater than 5 m tall, and greater than
20% of total vegetation cover. More
than 75 percent of the tree species shed
foliage simultaneously in response to
seasonal change.
EF: Areas dominated by trees generally
greater than 5 m tall, and greater than
20% of total vegetation cover. More
than 75 percent of the tree species
maintain their leaves all year. Canopy is
never without green foliage.
MF: Mixed Forest—Areas dominated by
trees generally greater than 5 m tall,
and greater than 20% of total
vegetation cover. Neither deciduous nor
evergreen species are greater than 75
percent of total tree cover.

A1

(Continued)
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OA(Test SIAM-WELD; “Ultimate” GroundTruth) ∈ [0, 100%] = {OA(Reference NLCD; “Ultimate”
GroundTruth) ± Mismatch(Test SIAM-WELD; Reference NLCD) ± 0%} ∈ [Worst Case, Best
Case], where Worst Case = max{0%, Lower Bound} and Best Case = min{100%, Upper
Bound}, with Lower Bound ≤ Upper Bound ∈ [0%, 100%].

When the “Ultimate” GroundTruth adopts an “augmented” 9-class LCCS-DP legend, then the aforemen-
tioned Lower and Upper Bounds become (Stehman et al., 2008; Wickham et al., 2010, 2013)

NLCD 2001/2006/2011 classification scheme (legend), level II LCCS-DP, level 1:
A = Veg,

B = Non-veg, and
level 2:

1 = Terrestrial,
2 = Aquatic

Code ID Name Land cover (LC) class definition ID

51
52

-SS ● Dwarf Scrub 2

● Scrub/Shrub

SS: Areas dominated by shrubs; less
than 5 m tall with shrub canopy
typically greater than 20% of total
vegetation. This class includes true
shrubs, young trees in an early
successional stage or trees stunted
from environmental conditions. The
aforementioned definition of class BL
means that class SS may feature a
vegetated cover which accounts for
15% of total cover or more.

A1/B3

71
72
73
74

GH- ● Grassland/
Herbaceous

● Sedge
Herbaceous 2

● Lichens 2

● Moss 2

GH: Areas dominated by grammanoid or
herbaceous vegetation, generally
greater than 80% of total vegetation.
These areas are not subject to intensive
management such as tilling, but can be
utilized for grazing. The aforementioned
definition of class BL means that class
GH may feature a vegetated cover that
accounts for 15% of total cover or more.

A1/B3

81
82

PH
CC

● Pasture/Hay
● Cultivated Crops

PH: Areas of grasses, legumes, or grass-
legume mixtures planted for livestock
grazing or the production of seed or hay
crops, typically on a perennial cycle.
Pasture/hay vegetation accounts for
greater than 20 percent of total
vegetation.
CC: Areas used for the production of
annual crops, such as corn, soybeans,
vegetables, tobacco, and cotton, and
also perennial woody crops such as
orchards and vineyards. Crop vegetation
accounts for greater than 20% of total
vegetation. This class also includes all
land being actively tilled.

A1

90
95

WW
EHW

● Woody Wetlands
● Emergent

Herbaceous
● Wetland

WW: Areas where forest or shrubland
vegetation accounts for greater than 20
percent of vegetative cover and the soil
or substrate is periodically saturated
with or covered with water.
EHW: Areas where perennial herbaceous
vegetation accounts for greater than
80% of vegetative cover and the soil or
substrate is periodically saturated with
or covered with water.

A2—Vegetated
aquatic
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Table 2. List of the 19 spectral macro-categories generated from the aggregation by the
independent human expert of the SIAM’s 48 spectral categories originally detected at the
intermediate level of color quantization. The “Water or Shadow” (WA) spectral macro-cate-
gory results from the aggregation of six original SIAM categories, the “Snow” (SN) spectral
macro-category from two and the spectral macro-category “Others” (O) from the aggregation
of 24 original spectral categories covering disturbances typically minimized or removed in an
annual composite (clouds, smoke plumes, fire fronts, etc.) as well as the original spectral
category “Unknowns.” Hence, (19–3) + 6 + 2 + 24 = 48, which is the SIAM’s intermediate color
discretization level. In the proposed names of spectral macro-categories, acronym Near Infra-
Red (NIR) indicates Landsat TM/ETM+ band 4 (0.9 μm) and acronym Medium Infra-Red (MIR)
indicates Landsat TM/ETM+ band 5 (1.6 μm). The right column instantiates a possible binary
relationship R: A ⇒ C ⊆ A × C from set A = 19-class SIAM legend to set C = 2-level 4-class
Dichotomous Phase (DP) taxonomy of the Food and Agriculture Organization of the United
Nations (FAO)—Land Cover Classification System (LCCS) (Di Gregorio & Jansen, 2000), refer to
Figure 1

SIAM, Intermediate discretization level (featuring 48 spectral
categories) reassembled into 19 spectral macro-categories

LCCS-DP, level 1: A = Veg,
B = Non-veg, and level 2:
1 = Terrestrial, 2 = Aquatic

ID Abbreviation OR-
Aggregations

Spectral macro-category
name

ID

1 sV_HC 1 Strong evidence vegetation,
high canopy cover

A1—Vegetated terrestrial

2 aV_HC 1 Average evidence vegetation,
high canopy cover

A1

3 wV_HC 1 Weak evidence vegetation,
high canopy cover

A1

4 sV_MC 1 Strong evidence vegetation,
medium canopy cover

A1

5 aV_MC 1 Average evidence vegetation,
medium canopy cover

A1

6 sV_LC 1 Strong evidence vegetation,
low canopy cover

A1

7 aV_LC 1 Average evidence vegetation,
low canopy cover

A1

8 wbV_MLC 1 Weak evidence bright
vegetation, medium or low
canopy cover

A1

9 wdV_MLC 1 Weak evidence dark
vegetation, medium or low
canopy cover

A1/A2—Vegetated aquatic

10 sbS_1 1 Strong evidence bright soil AND
NIR ≤ MIR

B3—Non-vegetated terrestrial

11 sbS_2 1 Strong evidence bright soil AND
NIR > MIR

B3

12 smS_1 1 Strong evidence medium soil
AND NIR ≤ MIR

B3

13 smS_2 1 Strong evidence medium soil
AND NIR > MIR

B3

14 sdS 1 Strong evidence dark soil B3

15 aS 1 Average evidence soil B3

16 wS 1 Weak evidence soil B3

17 SN 2 Snow B4—Non-vegetated aquatic

18 WA 6 Water or Shadow B4

19 O 24 Others B—Non-vegetated

TOT. 48

Baraldi et al., Cogent Geoscience (2018), 4: 1467254
https://doi.org/10.1080/23312041.2018.1467254

Page 14 of 52



Lower Bound = [OA(Reference NLCD 2006, “augmented” 3-level 9-class FAO LCCS-DP;
“Ultimate” GroundTruth 2006, “augmented” 3-level 9-class FAO LCCS-DP) – Mismatch(Test
SIAM-WELD; Reference NLCD 2006, “augmented” 3-level 9-class FAO LCCS-DP) ± 0%] =
[100% – Mismatch(Reference NLCD 2006, “augmented” 3-level 9-class FAO LCCS-DP;
“Ultimate” GroundTruth 2006, “augmented” 3-level 9-class FAO LCCS-DP) – (100% - OA(Test
SIAM-WELD; Reference NLCD 2006, “augmented” 3-level 9-class FAO LCCS-DP) ± 0%)] = [OA
(Test SIAM-WELD; Reference NLCD 2006, “augmented” 3-level 9-class FAO LCCS-DP) ± 0% -
Mismatch(Reference NLCD 2006, “augmented” 3-level 9-class FAO LCCS-DP; “Ultimate”
GroundTruth 2006, “augmented” 3-level 9-class FAO LCCS-DP)] = [OA(Test SIAM-WELD;
Reference NLCD 2006, “augmented” 3-level 9-class FAO LCCS-DP) ± 0% - 16%],

and (Stehman et al., 2008; Wickham et al., 2010, 2013)

Upper Bound = [OA(Reference NLCD 2006, “augmented” 3-level 9-class FAO LCCS-DP;
“Ultimate” GroundTruth 2006, “augmented” 3-level 9-class FAO LCCS-DP) + Mismatch(Test
SIAM-WELD; Reference NLCD 2006, “augmented” 3-level 9-class FAO LCCS-DP) ± 0%] = [84%
+ (100% - OA(Test SIAM-WELD; Reference NLCD 2006, “augmented” 3-level 9-class FAO
LCCS-DP) ± 0%)] = [184% - OA(Test SIAM-WELD; Reference NLCD 2006, “augmented” 3-level
9-class FAO LCCS-DP) ± 0%].

To recapitulate, when the “Ultimate” GroundTruth adopts an “augmented” 3-level 9-class FAO
LCCS-DP legend, it is expected that (Stehman et al., 2008; Wickham et al., 2010, 2013)

Table 3. Spectral category-specific percentage of occurrences in the SIAM-WELD 2006/2007/
2008/2009 test maps at the intermediate level of color quantization, where 48 basic color
names were aggregated into 19 spectral macro-categories by an independent human expert.
Adopted acronyms for the SIAM’s 19 spectral macro-categories: refer to Table 2

Spectral
category

2006 2007 2008 2009 Mean Std Dev

sV_HC 33.11% 32.56% 33.79% 34.06% 33.38% 0.68%

aV_HC 19.94% 23.31% 20.02% 20.86% 21.03% 1.57%

wV_HC 0.18% 0.17% 0.17% 0.19% 0.18% 0.01%

sV_MC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

aV_MC 20.05% 18.79% 18.07% 17.93% 18.71% 0.97%

sV_LC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

aV_LC 0.40% 0.18% 0.31% 0.22% 0.28% 0.10%

wbV_MLC 4.12% 3.60% 3.73% 3.30% 3.69% 0.34%

wdV_MLC 1.48% 1.37% 1.19% 1.53% 1.39% 0.15%

Total
vegetation

79.28% 79.98% 77.29% 78.10% 78.66% 1.20%

sbS_1 5.00% 5.44% 6.28% 5.39% 5.53% 0.54%

sbS_2 0.09% 0.13% 0.08% 0.12% 0.11% 0.02%

smS_1 4.65% 3.51% 5.38% 4.78% 4.58% 0.78%

smS_2 0.19% 0.16% 0.24% 0.20% 0.20% 0.03%

sdS 0.25% 0.28% 0.25% 0.29% 0.27% 0.02%

aS 8.04% 8.18% 8.24% 8.70% 8.29% 0.29%

wS 0.02% 0.01% 0.01% 0.01% 0.01% 0.00%

Total soils 18.24% 17.71% 20.48% 19.49% 18.98% 1.25%

SN 0.01% 0.01% 0.02% 0.01% 0.01% 0.01%

WA 1.28% 1.28% 1.25% 1.27% 1.27% 0.02%

O 1.19% 1.02% 0.96% 1.13% 1.07% 0.10%
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OA(Test SIAM-WELD; “Ultimate” GroundTruth 2006, “augmented” 3-level 9-class FAO LCCS-
DP) ∈ [max{0%, Lower Bound}, min{100%, Upper Bound}] = [max{0%, OA(Test SIAM-WELD;
Reference NLCD 2006, “augmented” 3-level 9-class FAO LCCS-DP) ± 0% - 16%}, min{100%,
184% - OA(Test SIAM-WELD; Reference NLCD 2006, “augmented” 3-level 9-class FAO LCCS-
DP) ± 0%}]. (1)

Similarly, when the “Ultimate” GroundTruth adopts a 16-class NLCD legend, then it is expected that
(Stehman et al., 2008; Wickham et al., 2010, 2013)

OA(Test SIAM-WELD; “Ultimate” GroundTruth 2006, NLCD 16 classes) ∈ [max{0%, Lower
Bound}, min{100%, Upper Bound}] = [max{0%, OA(Test SIAM-WELD; Reference NLCD 2006,
NLCD 16 classes) ± 0% - 22%}, min{100%, 178% - OA(Test SIAM-WELD; Reference NLCD
2006, NLCD 16 classes) ± 0%}]. (2)

Equations (1) and (2) are useful because, first, they highlight the undisputable fact that per se the
reference USGS NLCD 2006 map is not a “ground truth” for the test SIAM-WELD map, but only a
reference baseline for comparison purposes. Second, they support the validity of this experimental
project by showing that a summary statistic OA(Test SIAM-WELD; “Ultimate” GroundTruth 2006)
can be inferred from an estimated OA(Test SIAM-WELD; Reference NLCD 2006) ± 0% known that
OA(Reference NLCD 2006; “Ultimate” GroundTruth 2006) is equal to 84% or 78% when the NLCD
2006 map and the “Ultimate” GroundTruth adopt an “augmented” 3-level 9-class FAO LCCS-DP
legend or the 16-class NLCD legend, respectively.

Supported by NASA and distributed by the USGS EDC (WELD, 2016), the annual WELD image
composites for years 2006, 2007, 2008, and 2009 were selected as a large-scale EO image time-
series radiometrically calibrated into TOARF values as required by a GEO-CEOS stage 4 Val of the
SIAM application software in comparison with the reference USGS NLCD 2006 map; see Figure 4.
Each annual WELD image composite consists of approximately 8,000 Landsat-5/7 image acquisi-
tions per year over the CONUS, starting from year 2003 to year 2012. The current WELD processing
workflow requires as input Landsat sensor series L1T images with cloud cover ≤ 20%. The WELD
composite of the CONUS encompasses 501 fixed location tiles defined in the Albers Equal Area
projection. Each tile is 5000 × 5000 pixels in size, equal to 150 × 150 km (Homer et al., 2004). The
Landsat sensor series L1T image geolocation error in the CONUS, including areas with substantial
terrain relief, is less than 30 m (< 1 pixel) (Lee, Storey, Choate, & Hayes, 2004). The most recent
Landsat data radiometric Cal expertise is employed in the WELD workflow to ensure harmonization
and interoperability of multi-sensor Landsat image time-series, with a 5% absolute reflective band
Cal uncertainty (Markham & Helder, 2012), in agreement with the GEO-CEOS QA4EO Cal/Val
requirements (GEO-CEOS, 2010). Figure 6 shows the annual WELD 2006 image composite over
the CONUS, where TOARF values are depicted in true colors and linearly stretched for visualization
purposes, with the WELD tiling scheme overlaid in white.

To account for typical non-stationary geospatial statistics, an inter-map statistical comparison
on a stratified (masked) basis should be accomplished at a local spatial extent, where strata
convey some geospatial criteria of land surface information invariance. The USGS NLCD 2006
reference map was partitioned into Level III ecoregions of North America collected from the EPA
(EPA, 2013). There are 86 ecoregions across the CONUS, each ecoregion featuring similar ecological
and climatic characteristics (Griffith & Omernik, 2009). Distributed as vector data, the EPA Level III
ecoregions were rasterized to 30 m resolution in the Albers Equal Area projection. Figure 4 shows
the USGS NLCD 2006 map with boundaries of ecoregions overlaid in black.

3. Methods
A wall-to-wall comparison without sampling between the test SIAM-WELD map time-series and the
reference USGSNLCD2006map, sharing the same30m spatial resolution at the CONUS spatial extent,
but whose legends A = VocabularyOfColorNames (see Table 2) and B = LegendOfObjectClassNames
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(see Table 1) do not coincide and must be harmonized, was designed and implemented for a GEO-
CEOS stage 4 Val purpose. These working hypotheses differ from thematic map accuracy assessment
protocols adopted by the large majority of the RS community, typically based on an either random
(probabilistic) or non-random sampling in combination with a square and sorted confusion matrix,
CMTRX. A CMTRX is defined as a special case of a two-way contingency table (bivariate frequency
table), BIVRFTAB = FrequencyCount(A × B), where A × B is a 2-fold Cartesian product between two
univariate categorical variables A and B of the same population and where A ≠ B in general (Kuzera &
Pontius, 2008; Pontius & Connors, 2006; Pontius & Millones, 2011). In particular, a CMTRX is square and
sorted because the test and reference categorical variables A and B of the same population are
required to be the same, to let the main diagonal guide the interpretation process; refer to the Part
1, Chapter 2.

In Baraldi, Boschetti, and Humber (2014), a crisp thematic map assessment protocol was
proposed based on: (i) a probability sampling strategy, (ii) a pair of test and reference thematic
map legends A and B that may differ, (iii) a crisp overlapping area matrix,
OAMTRX = FrequencyCount(A × B), defined as a BIVRFTAB instantiation estimated from a geospa-
tial population with or without sampling, (Beauchemin & Thomson, 1997; Ortiz & Oliver, 2006),
whose spatial unit x is (0D) pixel, (iv) a set of thematic quantitative quality indicators (Q2Is), TQ2Is,
extracted from the OAMTRX and (v) a set of spatial Q2Is (SQ2Is) extracted from sub-symbolic
image-objects (image-segments) in the multi-level map domain, where image-objects are either
(0D) pixels, (1D) lines or (2D) polygons according to the OGC nomenclature (OGC, 2015). Whereas
the construction of an OAMTRX is straightforward and non-controversial when categorical labels of
sampling units are crisp (hard), the method to construct an OAMTRX when categorical labels are
soft (fuzzy) is not obvious at all; for example, refer to (Kuzera & Pontius, 2008). Hence, those
authors focused on crisp OAMTRX instances, exclusively.

To accomplish our present working hypotheses, the crisp thematic map probability sampling
protocol proposed in (Baraldi et al., 2014) was modified as follows.

● The original hybrid eight-step guideline proposed in the Part 1, Chapter 4 was adopted to stream-
line the inherently subjective selection by human experts of a binary relationship R:

Figure 5. Superposition princi-
ple in a sequence of thematic
map accuracy estimates.
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A = VocabularyOfColorNames ⇒ B = LegendOfObjectClassNames ⊆ A × B that guides the inter-
pretation process of a crisp OAMTRX = FrequencyCount(A × B) = FrequencyCount
(VocabularyOfColorNames × LegendOfObjectClassNames); see Table 3 in the Part 1 of this paper.

● Given a binary relationship R: A = VocabularyOfColorNames ⇒ B = LegendOfObjectClassNames
to guide the interpretation process of a crisp OAMTRX = FrequencyCount(A × B) ≠ R: A ⇒ B ⊆
A × B, a novel formulation CVPAI2(R: A ⇒ B ⊆ A × B) was adopted as a relaxed version of the
CVPAI1 formulation proposed in (Baraldi et al., 2014); refer to the Part 1, Chapter 5 and to
Figure 18 in the Part 1 of this paper.

● Traditional 30 m resolution Landsat image classifiers are pixel-based because MS color infor-
mation tends to dominate spatial information in 30 m resolution MS imagery acquired from
space where; for example, individual man-made objects, such as individual buildings, roads, or
agricultural fields, are typically hard to distinguish. Hence, in the 30 m resolution WELD
composites, the most informative planar entity is (0D) pixel, rather than image-object, either
(1D) line or (2D) polygon (OGC, 2015). As a consequence, for the sake of simplicity, in the
present thematic map comparison image-object-based SQ2Is were omitted. Rather, the fol-
lowing pixel-based TQ2Is were estimated from the crisp OAMTRX = FrequencyCount(A × B)
estimated wall-to-wall with spatial unit x equal to pixel.

○ An OA(OAMTRX = FrequencyCount(A × B)) ± 0% was computed in line with (Baraldi et al.,
2014; Pontius & Millones, 2011; Stehman & Czaplewski, 1998). This OA estimate is guided by
the binary relationship R: A = VocabularyOfColorNames ⇒ B = LegendOfObjectClassNames
identified and community-agreed upon in advance; refer to this text above. In an
OAMTRX = FrequencyCount(A × B) estimated from a wall-to-wall inter-map comparison,
where no sample data is investigated, any adopted TQ2I features a degree of uncertainty in
measurement equal to ± 0%; for example, see Equation (1).

○ User’s and producer’s accuracies, computed in (Baraldi et al., 2014; Pontius & Millones,
2011; Stehman & Czaplewski, 1998), were replaced by class-conditional probabilities, p(r | t)
of reference class r given test class t and, vice versa, p(t | r) of test class t given reference
class r, with r = 1, . . ., RC, and t = 1, . . ., TC, where RC = |B| = b = ObjectClassLegendCardinality
and TC = |A| = a = ColorVocabularyCardinality are the total numbers of reference and test
classes, respectively.

The proposed ensemble of TQ2I summary statistics, specifically, CVPAI2(R: A ⇒ B ⊆ A × B), OA
(OAMTRX = FrequencyCount(A × B)) and class-conditional probabilities(OAMTRX), is an original
minimally dependent and maximally informative (mDMI) set (Si Liu, Hairong Liu, Latecki, Xu, &
Lu, 2011; Peng, Long, & Ding, 2005) of outcome Q2Is (O-Q2Is), to be jointly maximized according to
the Pareto formal analysis of multi-objective optimization problems (Boschetti, Flasse, & Brivio,
2004); refer to the Part 1, Chapter 1.

4. Validation session
According to the GEO-CEOS Val guidelines (GEO-CEOS, 2010; GEO-CEOS WGCV, 2015), Val is the
process of assessing, by independent means, the quality of an information processing system by
means of an mDMI set (Si Liu et al., 2011; Peng et al., 2005) of community-agreed outcome and
process (OP) Q2Is (OP- Q2Is), each one provided with a degree of uncertainty in measurement, ± δ,
with δ ≥ 0%.

In the present study, the following definition is adopted: an information processing system can
be considered in operating mode (ready-to-go) if it scores “high” in all of its OP-Q2I estimates; refer
to the Part 1, Chapter 1.

To comply with the GEO-CEOS stage 4 Val requirements (GEO-CEOS WGCV, 2015), refer to
previous Chapter 1, the SIAM-WELD data mapping process and outcome were validated by a
human expert independent of the present authors (refer to Acknowledgments). This independent
human expert accomplished the following tasks. (I) Run without user interaction an off-the-shelf
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SIAM application upon the 30 m resolution annual WELD 2006 to 2009 image composites of the
CONUS. (II) Overlap wall-to-wall the test SIAM-WELD annual map time-series with the reference
USGS NLCD 2006 map to generate instances of an OAMTRX = FrequencyCount(A × B) (Baraldi et al.,
2014). (III) Estimate an mDMI set of OP-Q2Is, defined as follows, in agreement with the Part 1,
Chapter 1 (Baraldi & Boschetti, 2012a, 2012b; Baraldi & Humber, 2015; Baraldi et al., 2013).

(i) Product effectiveness. Proposed outcome Q2Is (O-Q2Is) were the TQ2Is presented in Chapter
3: (a) CVPAI2(R: A ⇒ B ⊆ A × B; (b) OA(OAMTRX = FrequencyCount(A × B)), and (c) class-
conditional probabilities p(r | t) and p(t | r) with test class t = 1, . . ., TC = |A| =
ColorVocabularyCardinality and reference class r = 1, . . ., RC = |B| =
ObjectClassLegendCardinality.

(ii) Process efficiency. Proposed process Q2Is (P-Q2Is) were: (a) computation time and (b) run-
time memory occupation.

(iii) Process degree of automation, monotonically decreasing with the number of system’s
free-parameters to be user defined.

(iv) Process robustness to changes in the input dataset. For post-classification change/no-
change detection (Lunetta & Elvidge, 1999), the SIAM-WELD 2006 to 2009 maps were
compared with one another when one year apart.

(v) Process robustness to changes in input parameters, if any.

(vi) Process scalability, to keep up with changes in users’ needs and sensor specifications.

(vii) Product timeliness, defined as the time between data acquisition and product generation.

(viii) Product costs in manpower and computer power.

For the sake of paper simplicity, the following decisions were undertaken.

● Two-of-three SIAM-WELD 2006 output color maps, specifically, the one featuring 96 color
names, equivalent to a fine color granularity, and the one featuring 48 color names, equivalent
to an intermediate color granularity, were compared with the 16-class NLCD 2006 map, while
the SIAM-WELD 2006 color map featuring 18 color names, equivalent to a coarse color
granularity, was ignored, see Table 1 in the Part 1. This implied the following.

Figure 6. 30 m resolution
annual Web-Enabled Landsat
Data (WELD) image composite
for the year 2006 (December
2005 to November 2006) of the
conterminous U.S. (CONUS),
radiometrically calibrated into
top-of-atmosphere reflectance
(TOARF) values. Depicted in
true colors (red: Band 3, 0.63–
0.69 μm; green: Band 2, 0.53–
0.61 μm, and blue: Band 1,
0.45–0.52 μm), linearly
stretched for visualization pur-
poses. The white grid shows
locations of the 501 WELD tiles
of the CONUS. Each tile is
5000 × 5000 pixels in size, cov-
ering a surface area of
150 × 150 km. Pixels are geo-
graphically projected in the
Albers Equal Area projection.
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○ In the case of a SIAM-WELD 2006 map featuring 96 color names at the SIAM fine color
discretization level, an OAMTRX = FrequencyCount(A × B) instance consisted of a test set
A = 96 spectral categories as rows and a reference set B = 16 NLCD classes as columns.
Because of its excessive size, equal to 96 × 16 cells, this OAMTRX instance cannot be shown
in a technical paper. However, it is made available on an anonymous ftp site (SIAM-WELD-
NLCD FTP, 2016), and its TQ2I summary statistics are reported in the present paper.

○ In the case of a SIAM-WELD 2006 map featuring 48 color names at the SIAM intermediate
color discretization level, an OAMTRX = FrequencyCount(A × B) instance consisted of a test
set A = 48 spectral categories as rows and a reference set B = 16 NLCD classes as columns.
Because of its excessive size, equal to 48 × 16 cells, this OAMTRX instance cannot be shown
in a technical paper. Hence, the SIAM ensemble of 48 basic color (BC) names at intermedi-
ate color granularity was perceptually (“subjectively”) reassembled into 19 spectral macro-
categories, refer to Table 2 (Benavente, Vanrell, & Baldrich, 2008; Berlin & Kay, 1969; Gevers,
Gijsenij, Van De Weijer, & Geusebroek, 2012; Griffin, 2006), by the independent human
expert who adopted in support the hybrid guideline for binary relationship detection pro-
posed in the Part 1, Chapter 4. This reduced set of 19 spectral macro-categories was
constrained to be mutually exclusive and totally exhaustive, in line with the Congalton
and Green’s requirements of a classification scheme (Congalton & Green, 1999). Such a
grouping of BC names into parent spectral macro-categories scrutinized and agreed upon
by a human expert pertains to the inherently equivocal (subjective) domain of information-
as-data-interpretation; refer to the Part 1, Chapter 4 (Capurro & Hjørland, 2003). Among the
19 spectral macro-categories reassembled by the independent human expert, 16 macro-
categories coincided exactly with one BC name in the SIAM set of 48 BC names at inter-
mediate granularity. One-of-19 spectral macro-category, named “Others” by the indepen-
dent human expert, grouped 25-of-48 BC names detected by SIAM at intermediate color
granularity. Among these 25-of-48 BC names, one is identified by SIAM as category
“Unknowns” (outliers), while the remaining 24 BC names are all related to spectral signa-
tures equivalent to “noisy” data (no terrain data), such as spectral signatures typical of LC
classes cloud, smoke plume, active fire, and so on, which are typically minimized in an
annual WELD image composite according to the known WELD multi-temporal pixel selec-
tion policies; refer to previous Chapter 2. As a consequence of grouping the SIAM’s 48 BC
names into 19 spectral macro-categories, a simplified OAMTRX instance of reduced size was
generated as OAMTRX = FrequencyCount(A^ × B), where a test set A^ = 19 spectral macro-
categories was adopted as rows and a reference set B = 16 NLCD classes was adopted as
columns. Thanks to its size, reduced to 19 × 16 cells, this OAMTRX instance can be shown, in
combination with its estimated TQ2I values, in the present paper.

● In agreement with the previous paragraph, the annual SIAM-WELD 2006 to 2009 maps at the
SIAM intermediate color discretization level of 48 color names were all reassembled into 19
spectral macro-categories; see Table 2.

4.1. Verification of the co-registration requirements for pixel-based inter-map comparison
In the requirements specification of RS projects dealing with per-pixel post-classification change/
no-change detection, the required RS image co-registration error is typically < 1 pixel. For example,
in (Lunetta & Elvidge, 1999), it is recommended that the root-mean-square (RMS) co-registration
error between any pair of two-date imagery should not exceed 0.5 pixels.

In (Dai & Khorram, 1998), simulated misregistration effects are investigated upon multi-tem-
poral Landsat images of North Carolina across four study areas representative of land cover types:
forest land, agricultural land, bare soil, and urban/residential area. In these experiments, a
registration accuracy < 1/5 of a pixel is considered necessary to achieve a land cover change
detection error < 10%. This conclusion is more severe than the one-pixel co-registration constraint
typically adopted in most change detection applications.
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The annual WELD composites and the USGS NLCD 2006 thematic map were derived from the
same sensory dataset of Landsat L1T images acquired by the USGS EDC. It means that the SIAM-
WELD 2006 pre-classification maps and the USGS NLCD 2006 reference map were derived from the
same sensory dataset. Hence, it is reasonable to assume that the co-registration error between
these data-derived maps is negligible.
4.2. Inter-annual SIAM-WELD map comparisons for years 2006 to 2009
The consistency across time and space of the annual SIAM-WELD 2006 to 2009 map time-series
featuring a map legend of 19 spectral macro-categories was investigated. Based on a priori
knowledge of the multi-temporal pixel-based selection criteria adopted by the USGS EDC for the
generation of annual WELD composites (refer to Chapter 2) and of the LC/LC change (LCC)
dynamics in the real-world CONUS, a small percentage of LCC counts was expected to be detected
one year apart at the CONUS spatial extent.

Table 3 shows class-conditional percentages collected at the CONUS spatial extent across the
annual WELD image composite time-series for each of the 19 SIAM-WELD spectral macro-cate-
gories. The green-as-“Vegetation” spectral macro-categories are predominant (refer to the total
vegetation statistic reported in Table 3), with an average 79% of the CONUS pixels, followed by MS
color names such as brown-as-“Bare soils or built-up” (19% on average), followed by the remaining
spectral macro-categories that, altogether, account for about 2%. The standard deviation through
time of the occurrence of each SIAM-WELD spectral macro-category at the CONUS spatial extent is
lower than 1%, with the exception of two vegetation spectral macro-categories (specifically, aV_HC
and aV_MC) where a larger variance can be attributed mostly to phenology. If a vegetation-
through-time spectral variability due to changes in phenology affects the annual WELD composites
then the data-derived SIAM-WELD color quantization maps will be affected by changes in phenol-
ogy too. This diagnosis was verified as follows. Because of the limited availability of cloud-free
Landsat observations at a generic pixel location per year, the Julian day of the year of the
observation selected at a given location (pixel) of the annual WELD image composite changes
through years (Roy et al., 2010). This is illustrated in Figure 7 where, at any fixed location across a
target “ground-truth” area of deciduous forest in a pair of monthly August-November WELD
composites, the SIAM spectral labels change significantly, but consistently with the phenological
season. The same consideration holds when changes in phenology affect the annual WELD
composites. This can explain the “high” intra-vegetation spectral variability observed by the
SIAM vegetation-related spectral macro-categories aV_HC and aV_MC in the tested time-series
of annual WELD composites for years 2006 to 2009.

Non-stationary spatial phenomena occurring at the CONUS spatial extent in the geospatial
physical world can be oversighted by global statistics. To be better captured, spatial non-stationa-
rities require more local statistics, such as class-conditional global statistics described in Table 3.

According to previous Chapter 3, for every pair of one annual SIAM-WELD test map with legend
A = 19 spectral macro-categories for year 2006 to year 2009 overlapped at the CONUS spatial
extent with a reference USGS NLCD 2006 map with legend B = NLCD 16 classes, the pair of
summary statistics CVPAI2(R: A ⇒ B ⊆ A × B) ∈ [0, 1.0] and OA(OAMTRX = FrequencyCount
(A × B)) ∈ [0, 1.0] should be maximized jointly. Shown as gray entry-pair cells in Table 4, a binary
relationship R: A ⇒ B was identified by the independent human expert, who adopted the hybrid
eight-step guideline for identification of a categorical variable-pair relationship proposed in the
Part 1, Chapter 4. The binary relationship R: A ⇒ B, selected by the human expert and shown in
Table 4, provides a CVPAI2(R: A ⇒ B) = 0.6689, while the OA(OAMTRX = FrequencyCount
(A × B) = Table 4) = OA(Test SIAM-WELD 2006, 19 spectral macro-categories; Reference NLCD
2006, NLCD 16 classes) = 96.88% ± 0%. With a binary relationship R: A ⇒ B kept fixed, where
CVPAI2(R: A ⇒ B) = 0.6689, the OA(OAMTRX) estimate became equal to 97.02%, 96.69%, and
96.75% for the annual SIAM-WELD map of year 2007 to year 2009 compared with the reference
USGS NLCD 2006 map.
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4.3. Comparison of the SIAM-WELD 2006 and NLCD 2006 thematic maps
The pair of SIAM-WELD 2006 test maps at intermediate and fine color quantization levels, featur-
ing 48 and 96 BC names respectively, were compared wall-to-wall with the USGS NLCD 2006
reference map as described below.

4.3.1. Test case A
The SIAM-WELD 2006 map of the CONUS at the intermediate color discretization level reassembled
into 19 spectral macro-categories is shown in Figure 8. The OAMTRX = FrequencyCount(A × B)
instance generated from the overlap between the test SIAM-WELD 2006 map with legend A = 19
spectral macro-categories at the CONUS spatial extent with a reference USGS NLCD 2006 map with
legend B = NLCD 16 classes is shown in Table 4, where each cell reports a joint probability value p
(SIAM-WELDt, NLCDr), r = 1, . . ., RC = |B| = 16, refer to Table 2, and t = 1, . . ., TC = |A| = 19, refer to
Table 1. Gray entry-pair cells identify the binary relationship R: A ⇒ B ⊆ A × B ≠

OAMTRX = FrequencyCount(A × B) chosen by the independent human expert to guide the
OAMTRX interpretation process. The distribution of these “correct” entry-pairs shows that every
NLCD class overlaps with several discrete color types, with the exceptions of two SIAM-NLCD entry-
pairs, specifically, entry-pair [SIAM spectral macro-category, NLCD class] = [MS white-as-”Snow”

(SN, see Table 2), NLCD class “Perennial ice/snow” (PIS, see Table 1)] and entry-pair [SIAM spectral
macro-category, NLCD class] = [MS blue-as-“Water or Shadow” (WA, see Table 2), NLCD class “Open
water” (OW, see Table 1)], which are both characterized by a 1–1 matching relation. According to
their specific definitions in natural language (refer to Table 1), anthropic NLCD classes, such as
“Developed, Open Space” (DOS), “Developed, Low Intensity” (DLI), “Developed, Medium Intensity”
(DMI) and “Developed, High intensity” (DHI), are a mixture of vegetated surfaces, impervious
surfaces and bare soil, in agreement with the popular vegetation-impervious surface-soil model
for urban ecosystem analysis (Ridd, 1995). In agreement with their definitions in human language,
these NLCD classes overlap exclusively with the SIAM spectral macro-categories related to vegeta-
tion or bare soil. The USGS NLCD class “Barren Land” (BL, see Table 1) overlaps with all of the SIAM
spectral macro-categories related to bare soil. Noteworthy, according to Table 4, the USGS NLCD
class BL covers only 1.21% of the CONUS total surface. This is due to the USGS NLCD 2006 definition
of class BL (Rock/Sand/Clay), very restrictive with regard to the presence of vegetation, which has
to account for less than 15% of total cover. The USGS NLCD definition of class BL means that the
USGS NLCD classes “Shrub/Scrub” (SS) and “Grassland/Herbaceous” (GH, refer to Table 1) may
feature a vegetated cover which accounts for 15% of total cover or more. The USGS NLCD forest
classes “Deciduous forest” (DF), “Evergreen Forest” (EF) and “Mixed forest” (MF, refer to Table 1)
overlap with the SIAM’s high and medium canopy cover-related spectral macro-categories. The
USGS NLCD vegetation classes “Shrub/Scrub” (SS) and “Grassland/Herbaceous” (GH, refer to Table 1)
overlap with the SIAM-WELD 2006 medium and low canopy cover-related spectral macro-cate-
gories, but, in case of dry or sparse vegetation, also with some of the SIAM-WELD 2006 spectral
macro-categories related to bare soil, namely, sbS_1, SmS_1, and aS (refer to Table 2). The overlap
between the reference USGS NLCD 2006 vegetation classes SS and GH and the test SIAM-WELD
2006 bare soil spectral macro-categories sbS_1, SmS_1, and aS is the only case of comprehensive
(systematic) “semantic mismatch” recorded across the wall-to-wall SIAM-WELD 2006 and NLCD
2006 thematic map pair comparison. Hence, it is worth a deeper analysis in comparison with an
“ultimate” ground truth. Reported above in this chapter, the USGS NLCD 2006 definition of class
“Barren Land” (BL, see Table 1) means that the USGS NLCD vegetation classes SS and GH may
feature a vegetated cover that accounts for 15% of total cover or more. Two consequence of these
three NLCD class definitions are that, whereas the USGS NLCD class BL covers only 1.21% of the
CONUS total surface, the USGS NLCD vegetation classes SS and GH map the near totality of desert
areas across the CONUS. Hence, there is a systematic “semantic mismatch” between the USGS
NLCD 2006 vegetation classes SS and GH and the SIAM-WELD 2006 bare soil spectral macro-
categories across nearly all desert areas of the CONUS. Figure 9 shows real-world examples of
geographic locations mapped as vegetation classes “Scrub/Shrub” (SS) or “Grassland/Herbaceous”
(GH) in the USGS NLCD 2006 map (refer to Table 1), while they are mapped predominantly as the
bare soil spectral categories sbS_1, SmS_1, and aS in the SIAM-WELD 2006 map (refer to Table 2).
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For more comments about this systematic case of “conceptual mismatch” between the test SIAM-
WELD and reference USGS NLCD 2006 maps, refer to Figure 12.

Additional inter-map overlaps highlighted by Table 4 reveal that the USGS NLCD class “Pasture/Hay”
(PH, see Table 1) occurs together with high and medium canopy cover-related BC names in the SIAM-
WELD map. The USGS NLCD class “Cultivated crops” (CC, see Table 1) matches with both SIAM’s
spectral macro-categories MS green-as-“Vegetation” and MS brown-as-“Bare soil or built-up.” Finally,
the USGS NLCD classes of wetland, specifically, “Woody Wetlands”, WW, and “Emergent Herbaceous
Wetland,” EHW, see Table 1, overlap with the SIAM’s vegetated spectral macro-categories or with
spectral macro-category MS blue-as-”Water or Shadow” (WA, refer to Table 2).

As reported in previous Chapter 4.2, in the OAMTRX = FrequencyCount(A × B) instance shown in
Table 4, gray entry-pair cells were identified as “correct” by the independent human expert, based
on the hybrid eight-step guideline proposed in the Part 1, Chapter 4. They identify the binary
relationship, R: A ⇒ B ⊆ A × B ≠ OAMTRX = FrequencyCount(A × B), suitable for guiding the
interpretation process in the OAMTRX at hand. In the OMATRX instance shown in Table 4, the
mDMI set of O-Q2Is to be jointly maximized comprises summary statistics OA
(OAMTRX = FrequencyCount(A × B)) = OA(Test SIAM-WELD 2006, 19 spectral macro-categories;
Reference NLCD 2006, NLCD 16 classes) = 96.88% ± 0% with CVPAI2(R: A ⇒ B ⊆ A × C) = 0.6689. As
a consequence, according to Equation (2),

OA(OAMTRX = FrequencyCount(A × B)) = OA(Test SIAM-WELD 2006, 19 spectral macro-
categories; “Ultimate” GroundTruth 2006, NLCD 16 classes) ∈ [max{0%, Lower Bound}, min
{100%, Upper Bound}] = [max{0%, OA(Test SIAM-WELD 2006, 19 spectral macro-categories;
Reference NLCD 2006, NLCD 16 classes) ± 0% - 22%}, min{100%, 178% - OA(Test SIAM-WELD

Figure 7. Changes through time
of the 19-class SIAM spectral
macro-category labels due to
vegetation phenology affecting
the monthly WELD composite.
Left side: 30 m resolution
monthly WELD composites,
radiometrically calibrated into
top-of-atmosphere reflectance
(TOARF) values, for August and
November 2006, showing an area
predominantly covered by
broadleaf forest in the Mid-
Western United States (Ohio).
Depicted in true colors (red: Band
3, 0.63–0.69 μm; green: Band 2,
0.53–0.61 μm, and blue: Band 1,
0.45–0.52 μm). To allow inter-
image comparison, the two
images are displayed with an
identical contrast stretch. Right
side: SIAM-WELD color maps
generated from the two WELD
images shown on the left side.
The SIAM map legend, consisting
of 19 spectral macro-categories,
is shown on the right side, also
refer to Table 2.
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2006, 19 spectral macro-categories; Reference NLCD 2006, NLCD 16 classes) ± 0%}] = [max
{0%, 96.88% ± 0% - 22%}, min{100%, 178% - 96.88% ± 0%}] = [74.88%, 81.12%],

with

CVPAI2(R: A = SIAM vocabulary of 19 BC names ⇒ B = NLCD legend of 16 LC class names)
=0.6689. (3)

Hence, the semantic information gap, to be minimized, from input sub-symbolic sensory data to
output symbolic NLCD classes, left to be filled (disambiguated) by further stages in the hierarchical
EO-IUS pipeline, where spatial information is masked by first-stage color names, see Figure 3, is
equal to (1—CVPAI2) = 0.3311; refer to the Part 1, Chapter 5.

When disagreements between the two reference and test maps were back-projected onto the
WELD 2006 image domain, these specific WELD sites were photointerpreted by the independent
human expert to provide an additional independent source of thematic evidence for GEO-CEOS
stage 4 Val of the annual SIAM-WELD 2006 test map in BC names. The large majority of the CONUS
areas where the USGS NLCD vegetation classes overlap with the SIAM spectral macro-category MS
blue-as-”Water or Shadow” (WA, refer to Table 2) or, vice versa, where the SIAM vegetation spectral
macro-categories overlap with the USGS NLCD reference class “Open Water” (OW, refer to Table 1)
were identified by the independent human photointerpreter as riparian zones. In practice, these
riparian zones were labeled by the annual SIAM-WELD 2006 and NLCD 2006 maps in two different
conditions of their annual surface status. Also in this case, the SIAM-WELD labeling appears consistent
with the human photointerpretation of the annual WELD composite, irrespective of the semantic
disagreement between this SIAM-WELD labeling and the reference USGS NLCD 2006 map.

Based on evidence collected by the independent photointerpreter with regard to systematic
“conceptual mismatches” between the test SIAM-WELD 2006 map and the reference USGS NLCD
2006 map across nearly all desert areas and nearly all riparian zones of the CONUS, validated
conclusions were twofold. First, according to Equation (1), where the reference USGS NLCD 2006
map is acknowledged to be no “ground truth” for the annual SIAM-WELD 2006 test map, but only a
reference baseline for comparison purposes, “conceptual mismatches” between the test SIAM-

Figure 8. Automatically gener-
ated SIAM-WELD 2006 color
map depicted at an intermedi-
ate discretization level of 48
color names, reassembled into
19 spectral macro-categories
by an independent human
expert. Black lines across the
SIAM-WELD 2006 map repre-
sent the boundaries of the 86
EPA Level III ecoregions of the
CONUS. The reassembled 19-
class SIAM map legend is
depicted at bottom left, also
refer to Table 2.
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WELD 2006 map and the reference USGS NLCD 2006 map should not be misconceived as mapping
errors by the test SIAM-WELD 2006 map with respect to an “ultimate” ground truth. Second,
according to Equation (3), summary statistic OA(OAMTRX = FrequencyCount(A × B) = OA(Test SIAM-
WELD 2006, 19 spectral macro-categories; “Ultimate” GroundTruth 2006, NLCD 16 classes) was
inferred to belong to range [74.88%, 81.12%], to be assessed in combination with a CVPAI2(R: A ⇒
B) value in range [0, 1], estimated equal to 0.6689.

It is important to recall here that for any given two-way frequency table OAMTRX = FrequencyCount
(A × B) generated from two categorical variables A and B of the same population, where A ≠ B in
general, the OAMTRX’s pair of O-Q2Is forming an mDMI set of quality indexes to be jointly maximized is
OA(OAMTRX = FrequencyCount(A × B)) ∈ [0, 1] and CVPAI2(R: A ⇒ B ⊆ A × B ≠

OAMTRX = FrequencyCount(A × B)) ∈ [0, 1], where the latter, estimated from the binary relationship
guiding the interpretation process of the OAMTRX at hand, is independent of the OA(OAMTRX)
estimated value. Only if A = B then OAMTRX = (square and sorted) CMTRX whose main diagonal guides
the interpretation process, CVPAI2(R: A ⇒ B) = 1 and OA(OAMTRX) ∈ [0, 1] becomes the sole O-Q2I
informative per se about the degree of match between bivariate occurrences A and B.

(e) (f)

(c) (d)

(a) (b)

Figure 9. See note.
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4.3.2. Test case B
To reveal the inherent ill-posedness of “conceptual matching” between two categorical variables A
and B investigated by Ahlqvist (2005) (refer to the Part 1, Chapter 4), one co-author of this paper,
different from the independent human expert (refer to Acknowledgments), conducted a second
inherently equivocal selection of “correct” entry-pairs in a binary relationship, R: A ⇒ B ⊆ A × B, to
guide the interpretation process of the OAMTRX = FrequencyCount(A × B) instance shown in Table 4.
This second experiment provided an mDMI pair of O-Q2Is equal to OA(OAMTRX = FrequencyCount
(A × B)) = 97.28%± 0%and CVPAI2(R: A⇒ B) = 0.6731. They are both superior to (better than) the pair of
summary statistics OA(OAMTRX = FrequencyCount(A × B)) = 96.88% ± 0% and CVPAI2(R: A ⇒
B) = 0.6689 provided by the independent human expert in the test case A. This alternative binary
relationship R: A ⇒ B looks sparser and therefore less intuitive to understand than that shown as gray
entry-pair cells in Table 4. Hence, it is not shown in this paper, although it is made available via
anonymous ftp (SIAM-WELD-NLCD FTP, 2016). When these summary statistics replace variables in
Equation (2), we obtain

OA(OAMTRX = FrequencyCount(A × B)) = OA(Test SIAM-WELD 2006, 19 spectral macro-
categories; “Ultimate” GroundTruth 2006, NLCD 16 classes) ∈ [max{0%, Lower Bound}, min
{100%, Upper Bound}] = [max{0%, OA(Test SIAM-WELD 2006, 19 spectral macro-categories;
Reference NLCD 2006, NLCD 16 classes) ± 0% - 22%}, min{100%, 178% - OA(Test SIAM-WELD
2006, 19 spectral macro-categories; Reference NLCD 2006, NLCD 16 classes) ± 0%}] =[max
{0%, 97.28% ± 0% - 22%}, min{100%, 178% - 97.28% ± 0%}] =[75.28%, 80.72%],

with

CVPAI2(R: A = SIAM vocabulary of 19 BC names ⇒ B = NLCD legend of 16 LC class names) =
0.6731. (4)

Hence, the semantic information gap, to be minimized, from input sub-symbolic sensory data to
output symbolic NLCD classes, left to be filled (disambiguated) by further stages in the hierarchical
EO-IUS pipeline, where spatial information is masked by first-stage color names, see Figure 3, is
equal to (1—CVPAI2) = 0. 3269; also refer to the Part 1, Chapter 5.

4.3.3. Test case C
The wall-to-wall overlap between the test SIAM-WELD 2006 map, whose legend A = 96 BC names
belonging to the SIAM fine color discretization level (refer to Table 1 in the Part 1 of this paper), and
the reference USGS NLCD 2006 map, with legend B = 16 LC classes, generated another
OAMTRX = FrequencyCount(A × B) instance, 96 × 16 cells in size, too large to be shown in a
technical paper, but made available via anonymous ftp (SIAM-WELD-NLCD FTP, 2016). Once again,
the hybrid inference procedure described in the Part 1, Chapter 4 was employed by the indepen-
dent human expert to select “correct” entry-pairs in the binary relationship R: A ⇒ B ⊆ A × B eligible
for guiding the interpretation process of this OAMTRX instance. Estimated mDMI set of O-Q2Is
became OA(OAMTRX = FrequencyCount(A × B)) = 95.41% ± 0% and CVPAI2(R: A ⇒ B ⊆
A × B) = 0.5809. When these summary statistics replace variables in Equation (2), we obtained

OA(OAMTRX = FrequencyCount(A × B)) = OA(Test SIAM-WELD 2006, 96 BC names; “Ultimate”
GroundTruth 2006, NLCD 16 classes) ∈ [max{0%, Lower Bound}, min{100%, Upper Bound}] =
[max{0%, OA(Test SIAM-WELD 2006, 96 spectral categories; Reference NLCD 2006, NLCD 16
classes) ± 0% - 22%}, min{100%, 178% - OA(Test SIAM-WELD 2006, 96 spectral macro-
categories; Reference NLCD 2006, NLCD 16 classes) ± 0%}] = [max{0%, 95.41% ± 0% - 22%},
min{100%, 178% - 95.41% ± 0%}] = [73.41%, 82.59%],

with

CVPAI2(R: A = SIAM vocabulary of 96 BC names ⇒ B = NLCD legend of 16 LC class names) = 0.
5809. (5)
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Hence, the semantic information gap, to be minimized, from input sub-symbolic sensory data to
output symbolic NLCD classes, left to be filled (disambiguated) by further stages in the hierarchical
EO-IUS pipeline, where spatial information is masked by first-stage color names, see Figure 3, is
equal to (1—CVPAI2 = 0. 4191); also refer to the Part 1, Chapter 5.

4.3.4. Test case D
When the USGS NLCD 2006 classification taxonomy became less discriminative (coarser) because
reassembled from its original 16 LC class names into either 9 LC class names (Stehman et al., 2008;
Wickham et al., 2010, 2013), refer to previous Chapter 2, or 4 LC class names, see Table 1,
constrained by inter-level parent-child relationships in agreement with the FAO LCCS-DP taxon-
omy, see Figure 1, then the following inequality holds true.

OA(Reference NLCD 2006, NLCD 16 classes; “Ultimate” GroundTruth 2006, NLCD 16 classes)
= 78% (Wickham et al. 2010; Wickham et al. 2013; Stehman et al. 2008) ≤ OA(Reference
NLCD 2006, “augmented” 3-level 9-class FAO LCCS-DP; “Ultimate” GroundTruth 2006, “aug-
mented” 3-level 9-class FAO LCCS-DP) = 84% (Wickham et al. 2010; Wickham et al. 2013;
Stehman et al. 2008) ≤OA(Reference NLCD 2006, 2-level 4-class FAO LCCS-DP taxonomy;
“Ultimate” GroundTruth 2006, 2-level 4-class FAO LCCS-DP taxonomy) = XX%, hence, XX% ≥
84%, (6)

where XX% is an unknown variable expected to remain unspecified because we have no chance
to access the “Ultimate” GroundTruth 2006 dataset, adopted in past works to validate the USGS
NLCD 2006 map (Stehman et al., 2008; Wickham et al., 2010, 2013), to reassemble its original
“augmented” 3-level 9-class FAO LCCS-DP taxonomy into a 2-level 4-class FAO LCCS-DP taxonomy
consisting of LC classes (see Figure 1):

● A1 = Primarily Vegetated Terrestrial Areas = Cultivated Areas (A11) or (Semi) Natural
Vegetation (A12).

● A2 = Primarily Vegetated Aquatic or Regularly Flooded Areas = Cultivated Aquatic Areas (A23)
or (Semi) Natural Aquatic Vegetation (A24).

● B3 = Primarily Non-vegetated Terrestrial Areas = Artificial Surfaces (B35) or Bare Areas (B36).

● B4 = Primarily Non-vegetated Aquatic or Regularly Flooded Areas = Artificial (B47) or Natural
Waterbodies, Snow and Ice (B48).

In agreement with Equations (1), (2), and (6), we could write

OA(Test SIAM-WELD 2006, 19 spectral macro-categories; “Ultimate” GroundTruth 2006, 2-
level 4-class FAO LCCS-DP taxonomy) ∈ [max{0%, Lower Bound}, min{100%, Upper Bound}] =
[max{0%, OA(Test SIAM-WELD 2006, 19 spectral macro-categories; Reference NLCD 2006, 2-
level 4-class FAO LCCS-DP taxonomy) ± 0% - (100% - XX%)}, min{100%, 100% + XX% - OA
(Test SIAM-WELD 2006, 19 spectral macro-categories; Reference NLCD 2006, 2-level 4-class
FAO LCCS-DP taxonomy) ± 0%}], where unknown variable XX% = Equation (6) = OA(Reference
NLCD 2006, 2-level 4-class FAO LCCS-DP taxonomy; “Ultimate” GroundTruth 2006, 2-level 4-
class FAO LCCS-DP taxonomy) ≥ 84%. (7)

As shown in the test case A, according to the USGS NLCD taxonomy definitions (refer to Table 1),
LC classes “Developed, Open Space” (DOS), “Developed, Low Intensity” (DLI), “Developed, Medium
Intensity” (DMI) and “Developed, High intensity” (DHI) describe a spatial mixture of vegetated
surfaces, impervious surfaces and bare soil types, in agreement with the popular vegetation-
impervious surface-soil model for urban ecosystem analysis (Ridd, 1995). It means that a logical
OR combination of the USGS NLCD classes DOS or DLI or DMI or DHI mainly matches with 2-of-4
FAO LCCS-DP 2nd-level classes, either B3 or A1. Experts in the domain of world ontologies and in
the harmonization of LC class taxonomies, the present authors concluded it is not possible to
define without ambiguity each of the four LC classes in the 2-level 4-class FAO LCCS-DP taxonomy
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as a mutually exclusive and totally exhaustive parent-child relationship starting from the 16 LC
classes in the USGS NLCD taxonomy. Nevertheless, to harmonize these two thematic map legends,
we arbitrarily selected a sub-optimal binary relationship from set A = NLCD 16 LC class taxonomy
to set B = 2-level 4-class FAO LCCS-DP taxonomy, constrained as a mutually exclusive and totally
exhaustive parent-child relationship, reported in Table 5. Implemented grouping rules are sum-
marized below.

● A1 = Primarily Vegetated Terrestrial Areas = Cultivated Areas or (Semi) Natural Vegetation ≈

NLCD 16-classes DF (41) or EF (42) or MF (43) or SS (52) or GH (71) or PH (81) or CC (82).
Actually, this OR-combination of NLCD classes is an expected mixture of the FAO LCCS-DP 2nd-
level classes A1 and B3 as first- and second-best match, respectively.

● A2 = Primarily Vegetated Aquatic or Regularly Flooded Areas = Cultivated Aquatic Areas or
(Semi) Natural Aquatic Vegetation ≈ NLCD 16-classes WV (90) or EHW (95).

● B3 = Primarily Non-vegetated Terrestrial Areas = Artificial Surfaces or Bare Areas ≈ NLCD 16-
classes DOS (21) or DLI (22) or DMI (23) or DHI (24) or BL (31). Actually, this OR-combination of
NLCD classes is an expected mixture of the FAO LCCS-DP 2nd-level classes B3 and A1 as first-
and second-best match, respectively.

● B4 = Primarily Non-vegetated Aquatic or Regularly Flooded Areas = Artificial or Natural
Waterbodies, Snow and Ice ≈ NLCD 16-classes OW (11) or PIS (12).

Following the aforementioned “arbitrary” (subjective) aggregation of an NLCD 16-class legend
into a 2-level 4-class FAO LCCS-DP legend, equivalent to an inherently equivocal (qualitative)
information-as-data-interpretation task, we accomplished the following.

● A binary relationship R: A ⇒ C ⊆ A × C from set A = SIAM legend of 19 spectral macro-
categories, identified by the independent human expert, to set C = 2-level 4-class FAO LCCS-
DP legend, identified by the present authors, was (subjectively) identified by the present
authors according to the hybrid eight-step strategy for categorical variable-pair relationship
identification proposed in the Part 1, Chapter 4. Depicted as gray entry-pair cells in Table 5, this
binary relationship is eligible for guiding the interpretation process of an
OAMTRX = FrequencyCount(A × C).

● An OAMTRX = FrequencyCount(A × C) was generated by the wall-to-wall overlap between the
test SIAM-WELD map with legend A = 19 spectral macro-categories as rows and the reference
USGS NLCD map whose original 16-class legend was grouped into legend C = 2-level 4-class
FAO LCCS-DP taxonomy as columns, see Table 5.

The mDMI set of O-Q2Is estimated from Table 5 were OA(OAMTRX = FrequencyCount
(A × C)) = 93.09% ± 0% and CVPAI2(R: A ⇒ C ⊆ A × C) = 0.7486. When these summary statistics
replace variables in Equation (7), we obtained

OA(Test SIAM-WELD 2006, 19 spectral macro-categories; “Ultimate” GroundTruth 2006, 2-
level 4-class FAO LCCS-DP taxonomy) ∈ [max{0%, Lower Bound}, min{100%, Upper Bound}] =
[max{0%, 93.09% ± 0% - (100% - XX%)}, min{100%, 100% + XX% - 93.09% ± 0%}] = [XX% -
6.91%, XX% + 6.91%], (8)

where

unknown variable XX% = Equation (6) = OA(Reference NLCD 2006, 2-level 4-class FAO LCCS-DP
taxonomy; “Ultimate” GroundTruth 2006, 2-level 4-class FAO LCCS-DP taxonomy) ≥ 84%,

with
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CVPAI2(R: A = SIAM vocabulary of 19 spectral macro-categories ⇒ C = 2-level 4-class FAO
LCCS-DP taxonomy) = 0.7486.

Hence, the semantic information gap, to be minimized, from input sub-symbolic sensory data to
output symbolic classes belonging to the 2-level 4-class FAO LCCS-DP legend, left to be filled
(disambiguated) by further stages in the hierarchical EO-IUS pipeline, where spatial information is
masked by first-stage color names, see Figure 3, is equal to (1—CVPAI2) = 0. 2514; refer to the Part
1, Chapter 5.

4.4. Probabilities of the SIAM-WELD test labels conditioned by the USGS NLCD reference
labels and vice versa
Table 4 shows the OAMTRX instance generated from the wall-to-wall overlap of the annual SIAM-
WELD 2006 test map featuring 19 spectral macro-categories, see Table 2 and Figure 8, with the
reference USGS NLCD 2006 map featuring 16 LC classes, see Table 1 and Figure 4. The division of
each probability cell of Table 4 by its column-sum generates the class-conditional probability p
(SIAM-WELDt | NLCDr) of the SIAM-WELD 2006 test spectral category t, with t = 1, . . ., TC = 19, given
the USGS NLCD 2006 reference class r, with r = 1, . . ., RC = 16, refer to Figure 10 and Table 6, where
Table 6 is a summarized text version of Figure 10. To prove their plausibility, conditional probabil-
ities p(SIAM-WELDt | NLCDr), t = 1, . . ., TC, r = 1, . . ., RC, should agree with theoretical expectations
stemming from human experience. For instance, it was expected that the USGS NLCD 2006
reference classes “Deciduous Forest” (DF), “Evergreen Forest” (EF) and “Mixed Forest” (MF), refer
to Table 1, overlap with vegetated spectral categories in the test SIAM-WELD 2006 map, while the
USGS NLCD reference class “Developed, High Intensity” (DHI, see Table 1) was expected to be
mostly matched by bare soil-related spectral macro-categories in the test SIAM-WELD 2006 map.
Overall, these prior knowledge-based expectations about specific class-conditional probabilities
appear satisfied by both Figure 10 and Table 6.

In the RS common practice, once a generic user has generated at no cost in manpower and
computer power, that is, in near real time and without user-machine interaction, a SIAM color map
from an unknown EO image, what this user wishes to do is to infer from the EO image a set of LC
classes (say, “Forest”), conditioned by the detected SIAM’s BC names (say, MS green-as-
“Vegetation”). To accomplish this spectral category-conditional inference, class-conditional prob-
abilities p(SIAM-WELDt | NLCDr), t = 1, . . ., TC, r = 1, . . ., RC, shown in Table 6, are not useful. Rather,
this generic user can found helpful to know the conditional probabilities of an NLCD 2006 reference
class r, with r = 1, . . ., RC = 16, given the SIAM-WELD 2006 spectral category t, with t = 1, . . ., TC = 19.
These are the class-conditional probabilities p(NLCDr | SIAM-WELDt), t = 1, . . ., TC, r = 1, . . ., RC,
generated by dividing each probability cell of Table 4 by its row-sum. They are shown in Figure 11
and summarized in text form in Table 7. Very intuitive to understand, Table 7 clearly highlights the
two main semantic inconsistencies found between the reference USGS NLCD 2006 map and the
test SIAM-WELD 2006 map already reported in previous Chapter 4.3. First, the SIAM vegetation-
related spectral macro-category wV_HC (“Weak evidence vegetation with high canopy cover”, refer
to Table 2) is best matched by the reference NLDC class “Open Water” (OW, refer to Table 2).
Because this semantic mismatch occurs almost exclusively in the CONUS areas recognized by the
independent human expert as riparian zones typically depicted as mixed pixels at 30 m resolution,
then the 30 m resolution SIAM labeling can be considered reasonable, if we consider that the crisp
SIAM implementation is not expected to accomplish pixel unmixing. Second, the USGS NLCD 2006
reference class “Shrub/Scrub” (SS, refer to Table 2) appears to be the best match for several of the
SIAM bare soil-related spectral macro-categories. Figure 9 shows examples of geographic locations
where this semantic mismatch occurs. In these locations, 30 m resolution pixels are typically
affected by mixed spectral contributions the crisp SIAM implementation is not expected to unmix.

4.5. Stratification by ecoregions
According to a simplistic interpretation of the central limit theorem, the sum of a large number of
independent random variables tends to form a Gaussian distribution, where independent “local”
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data distributions (like basis functions) become indistinguishable from the whole. For example, in
human vision, the neural computations are inherently spatially local in the (2D) image-domain;
next, a global spatial average is superimposed on the local computational processes. In general,
non-stationary local features do not survive the averaging process, that is, the precise position of
each local contribution is no longer perceived after the averaging process (Victor, 1994). Because
the WELD composite of the CONUS is about 10 billion pixels in size, summary statistics of the SIAM
mapping quality at the CONUS spatial extent are inadequate to demonstrate the local-scale
capability of the SIAM expert system to correctly map EO images, characterized by non-stationary
local statistics. To investigate the SIAM mapping capability at local spatial extent, the test SIAM-
WELD 2006 map with legend A of 19 BC names and the reference USGS NLCD 2006 map with
legend B of 16 LC class names, where set A ≠ set B in cardinality and semantics, were stratified
using the 86 EPA Level III ecoregions of the CONUS (see Figure 4) and an individual
OAMTRX = FrequencyCount(A × B) was generated per ecoregion. All 86 ecoregion-specific
OAMTRX instances are available as supplemental online material (SIAM-WELD-NLCD FTP, 2016).
As one example of an inter-map comparison at the ecoregion spatial scale of analysis, let us
consider the SIAM-WELD 2006 and NLCD 2006 maps of the Wyoming Basin ecoregion, which is
predominantly desert, see Figure 12 where the ecoregion boundary is highlighted in red. Table 8
reports the corresponding OAMTRX instance. Table 8 shows that the predominantly desertic
Wyoming Basin ecoregion is predominantly classified as the LC classes “Scrub/Shrub” (SS) and
“Grassland/Herbaceous” (GH) in the reference USGS NLCD 2006 map (refer to Table 1) and as bare
soil-related spectral categories (sbS_1, SmS_1, aS) in the test SIAM-WELD 2006 map (refer to
Table 2). This semantic disagreement was already observed in previous Chapter 4.3; also refer to
Figure 9.

Figure 13 provides a synthetic representation of the full dataset of 86 ecoregion-specific OAMTRX
instances available as supplemental online material (SIAM-WELD-NLCD FTP, 2016). It shows for
each of the 16 reference NLDC classes, with index r = 1, . . ., RC = 16, the box-and-whisker diagram
of the USGS NLCD-class-conditional probabilities p(SIAM-WELDer, t | NLCDer, r), with t = 1, . . .,
TC = 19, collected across the 86 ecoregions, each ecoregion identified with an index er = 1, . . .,
ER = 86. In each of the TC = 19 boxes of an NLCD class-specific boxplot, the median (shown as a
horizontal line within the box) represents the general trend of the distribution and the dispersion
around it describes the distribution variability across ecosystems. A small dispersion around the
median value indicates a reference-to-test class mapping whose occurrence is nearly constant
across ecosystems, while a large dispersion around the median indicates that occurrences of this
inter-map relationship change significantly across ecosystems.

4.6. mDMI set of OP-Q2I values estimated by independent means in a GEO-CEOS stage 4 Val
of the SIAM process and product
Described in the introduction to Chapter 4 (Duke, 2016), an mDMI set of OP-Q2Is was estimated by
the independent human expert (refer to Acknowledgments) in compliance with a GEO-CEOS stage
4 Val of the SIAM product and process, input with a 30 m resolution annual WELD 2006 to 2009
image composite time-series of the CONUS. These Val results are summarized below.

(i) Process degree of automation. In line with theoretical expectations about expert systems
(refer to previous Chapter 1), the SIAM computer program required neither user-defined
parameters nor reference samples to run. Hence, its ease of use cannot be surpassed by
any alternative inference approach.

(ii) Outcome effectiveness. An mDMI set of O-Q2Is (Si Liu et al., 2011; Peng et al., 2005),
comprising OA(OAMTRX = FrequencyCount(A × B)), CVPAI2(R: A ⇒ B ⊆ A × B), class-condi-
tional probabilities p(r | t) of reference class r = 1, . . ., RC = |B|, given test class t = 1, . . .,
TC = |A|, and class-conditional probabilities p(t | r), with r = 1, . . ., RC = |B|, t = 1, . . ., TC = |A|,
was estimated in the four test cases described in previous Chapter 4.3 to Chapter 4.5.

Baraldi et al., Cogent Geoscience (2018), 4: 1467254
https://doi.org/10.1080/23312041.2018.1467254

Page 31 of 52



(iii) Process efficiency: run-time memory occupation and computation time. About run-time
memory occupation, the SIAM computer program adopts a tile streaming implementation,
where the dynamic memory (random access memory, RAM) maximum occupation is a
known function of the tile size to be fixed in advance, irrespective of the image size. In
these experiments the RAM maximum occupation was set equal to 800 MB, which can be
considered a “small” RAM value. About computation time: when run on a Dell Power Edge
710 server with dual Intel Xeon @ 2.70 GHz processor with 64 GB of RAM and a 64-bit Linux
operating system, the SIAM software application required less than 45 s to generate its

Table 5. Non-square OAMTRX = FrequencyCount(A × C) instance generated from a wall-to-wall over-
lap between the annual SIAM-WELD 2006 test map of the CONUS with legend A = 19 spectral macro-
categories and the reference USGS NLCD 2006map with legend C = 16 LC class names grouped by the
present authors into a 2-level 4-class FAO LCCS-DP taxonomy, see Figure 1, as proposed in Table 1.
Gray entry-pair cells identify the binary relationship R: A ⇒ C ⊆ A × C chosen by the present authors to
guide the interpretation process of the OAMTRX = FrequencyCount(A × C). Statistically independent
O-Q2Is, to be jointly maximized, are OA(OAMTRX = FrequencyCount(A × C)) = 93.09%with CVPAI2(R: A
⇒ C ⊆ A × C) ∈ [0, 1] (where value 1 means perfect harmonization between the two input sets A and
C) = 0.7486. Adopted acronyms for reference LC classes and test spectral macro-categories are
described in Tables 1 and 2, respectively

NLCD CODE (class

acronym), 16

classes

41 (DF), 42

(EF), 43 (MF),

52 (SS) <->

B3, 71 (GH)

<-> B3, 81

(PH), 82 (CC)

90 (WV), 95

(EHW)

21 (DOS) <->

A1, 22 (DLI)

<-> A1, 23

(DMI) <-> A1,

24 (DHI) <->

A1, 31 (BL)

11 (OW), 12

(PIS)

FAO LCCS-DP1&2

Code, 4 classes

≈ A1 ≈ A2 ≈ B3 ≈ B4

FAO LCCS-DP1&2

Class name, 4

classes

Veg terstrl Veg aqutc Non-veg

terstrl

Non-veg

aqutc

Sum per row

SIAM™

Intermediate
Granularity,
19 Spectral
Categories.

sV_HC 28.80% 3.07% 1.17% 0.07% 33.11%

aV_HC 15.82% 1.49% 2.38% 0.25% 19.94%

wV_HC 0.08% 0.03% 0.03% 0.04% 0.18%

sV_MC 0.00% 0.00% 0.00% 0.00% 0.00%

aV_MC 18.45% 0.42% 1.13% 0.05% 20.05%

sV_LC 0.00% 0.00% 0.00% 0.00% 0.00%

aV_LC 0.39% 0.00% 0.01% 0.00% 0.40%

wbV_MLC 3.80% 0.02% 0.30% 0.01% 4.12%

wdV_MLC 1.27% 0.04% 0.15% 0.02% 1.48%

sbS_1 4.21% 0.01% 0.76% 0.01% 5.00%

sbS_2 0.06% 0.00% 0.03% 0.00% 0.09%

smS_1 4.53% 0.01% 0.10% 0.01% 4.65%

smS_2 0.13% 0.00% 0.06% 0.00% 0.19%

sdS 0.18% 0.00% 0.06% 0.01% 0.25%

aS 7.63% 0.02% 0.38% 0.01% 8.04%

wS 0.02% 0.00% 0.00% 0.00% 0.02%

SN 0.00% 0.00% 0.00% 0.00% 0.01%

WA 0.06% 0.05% 0.07% 1.11% 1.28%

O 0.80% 0.03% 0.21% 0.14% 1.19%

Sum per column 86.23% 5.20% 6.84% 1.73%

Baraldi et al., Cogent Geoscience (2018), 4: 1467254
https://doi.org/10.1080/23312041.2018.1467254

Page 32 of 52



complete set of per-image output products from a 7-band Landsat-7 ETM+ WELD tile of
5000 × 5000 pixels, which means about 8 h to map an annual WELD composite of the
CONUS. In our data mapping workflow, such an output rate was not inferior to the input
rate of an annual WELD composite being implemented or delivered to end-users. Hence,
the SIAM computation time was considered equivalent to near real time, where the SIAM
computational complexity increases linearly with image size.

(iv) Process robustness to changes in the input dataset. The SIAM mapping consistency of the
annual WELD composites from year 2006 to 2009 was estimated to be “high” at the
CONUS spatial extent; refer to Chapter 4.2 to Chapter 4.5.

(v) Process robustness to changes in input parameters, if any. Because SIAM requires no user-
defined parameter to run, its robustness to changes in input parameters cannot be
surpassed by alternative approaches.

(vi) Process maintainability/scalability/re-usability, to keep up with changes in users’ needs
and sensor specifications. The multi-source SIAM physical model can be applied to any
existing or future planned spaceborne/airborne MS imaging sensor provided with a radio-
metric calibration metadata file; refer to the existing literature (Baraldi et al., 2010a,
2010b, 2010c; Baraldi & Humber, 2015) and to previous Chapter 2.

(vii) Outcome timeliness, defined as the time span between data acquisition and product
generation. Because it is prior knowledge based and near real-time, the SIAM application
reduces timeliness from image acquisition to color map generation to almost zero, equal
to computation time, which increaseas linearly with image size.

(viii) Outcome costs, monotonically increasing with manpower and computer power. Because it
is prior knowledge based, therefore automated, and near real time in a standard laptop
computer, the SIAM costs are almost negligible.

5. Discussion
Table 3 shows that the 30 m resolution annual SIAM-WELD map time-series for years 2006 to 2009
at the CONUS spatial extent featuring a SIAM intermediate color discretization legend of 48 BC
names reassembled into 19 spectral macro-categories by the independent human expert (refer to
previous Chapter 3) is characterized by a standard deviation of the annual frequency counts
collected for each spectral macro-category lower than 1%, with the exception of two vegeta-
tion-related spectral macro-categories, specifically, aV_HC and aV_MC (see Table 2). These two
larger variations in spectral category-specific annual frequency counts at the CONUS spatial extent

Figure 10. Histogram of the
conditional probabilities of the
19 SIAM-WELD 2006 spectral
macro-categories (shown as
the right column of acronyms,
refer to Table 2) at the SIAM
intermediate color discretiza-
tion level, conditioned by one-
of-16 NLCD 2006 classes, listed
along the horizontal axis. These
class-conditional probabilities
are derived from Table 4 by
normalizing each cell of Table 4
by its column-sum. The same
class-conditional probabilities
are summarized in text form in
Table 6. In this histogram,
pseudo-colors associated with
the SIAM color types make the
interpretation of the histogram
columns more intuitive. Green
pseudo-colors are associated
with the SIAM vegetation-
related spectral categories
(identified by acronyms of type
xV_y on the right column of
labels), brown pseudo-colors
are selected for the SIAM bare
soil-related spectral categories
(identified by acronyms of type
xS_y on the right column of
labels), the pseudo-color blue is
chosen for the SIAM spectral
category named “Water or
Shadow” (WA), the light blue
pseudo-color is linked to the
SIAM spectral category named
snow (SN), etc. As a conse-
quence, the column of the USGS
NLCD class “Open Water” is
expected to look blue, columns
of the USGS NLCD vegetation-
related classes are expected to
look green, etc.
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can be attributed mostly to vegetation phenology. This was proved in previous Chapter 4.2:
changes in phenology affect the monthly WELD and annual WELD image composites and, as a
consequence, the data-derived SIAM-WELD maps. These numerical results agree with the a priori
knowledge of RS experts about the CONUS surface dynamics, whose inter-annual LCC summary
statistics are expected to score low. The conclusion is that observations stemming from the annual
SIAM-WELD map time-series with a legend of 19 spectral macro-categories comply with the
domain knowledge of RS experts about the LC and LCC dynamics in the geophysical domain of
the CONUS.

The interpretation process of the OAMTRX = FrequencyCount(A × B) shown in Table 4, generated
from the wall-to-wall overlap between the test SIAM-WELD 2006 map featuring a set
A = VocabularyOfColorNames = 19 spectral macro-categories and the reference USGS NLCD 2006
map with a set B = LegendOfObjectClassNames = 16 LC classes, is guided by the inter-dictionary
binary relationship R: A ⇒ B ⊆ A × B, whose entry-pair cells, shown in gray, were selected as
“correct” by the independent human expert (refer to Acknowledgments) according to the hybrid
eight-step guideline for identification of a categorical variable-pair relationship proposed in the
Part 1, Chapter 4. Table 4 reveals one single systematic case of “conceptual mismatch” between
the USGS NLCD 2006 reference vegetation classes “Scrub/Shrub” (SS) or “Grassland/Herbaceous”
(GH, refer to Table 1) and the SIAM-WELD 2006 bare soil-related spectral macro-categories sbS_1,
SmS_1, and aS (refer to Table 2). These inter-map semantic mismatches occur in geographical
locations where the CONUS landscapes look like those shown in Figure 9. When these land surface
types are observed from space with a Landsat-like spatial resolution of 30 m, a one-pixel surface
area of 900 m2 becomes a spectral mixture of sparse vegetation, rangeland, cheatgrass, dry long
grass and/or short grass as foreground, with a background of sand, clay and/or rocks, especially if
the percentage of vegetation cover can be slightly above the 15% of total cover required by the
USGS NLCD definitions of classes SS and GH (refer to Table 2). In these mixed pixels at 30 m
resolution, the spectral detection of the vegetated component is impossible for a hard (crisp)
classifier, while it would be more manageable by a fuzzy classifier (Baraldi, 2011). In these
experiments, since the SIAM expert system is run in crisp mode (refer to Chapter 3), then no
pixel unmixing strategy can be applied to diminish or avoid the observed case of “semantic
mismatch.” The conclusion is that the “conceptual mismatch” between the USGS NLCD 2006
reference vegetation classes SS and GH and the SIAM-WELD 2006 bare soil-related spectral
categories is a possible example of systematic disagreement between the test and reference
thematic maps featuring the same spatial resolution whose occurrence should be carefully scru-
tinized by RS experts in comparison with an “ultimate” ground truth; see Figure 9.

Figure 11. Histogram of the
conditional probabilities of the
USGS NLCD 2006 map’s 16 LC
classes (shown as the right
column of class names) condi-
tioned by one-of-19 SIAM-
WELD 2006 spectral macro-
categories, listed along the
horizontal axis as acronyms,
refer to Table 2, at the SIAM
intermediate color discretiza-
tion level. This histogram is
derived from Table 4 by nor-
malizing each cell of Table 4 by
its row-sum. The same class-
conditional probabilities are
summarized in text form in
Table 7. In this histogram,
pseudo-colors associated with
the USGS NLCD classes make
the interpretation of the histo-
gram columns more intuitive.
Green pseudo-colors are asso-
ciated with vegetation NLCD
classes, brown pseudo-colors
are selected for bare soil NLCD
classes, the pseudo-color blue
is chosen for the USGS NLCD
class “Open Water,” the light
blue pseudo-color is linked to
the USGS NLCD class “Perennial
Ice/Snow,” etc. As a conse-
quence, the column corre-
sponding to the SIAM spectral
category “Water or Shadow”

(WA) is expected to look blue,
column corresponding to the
SIAM vegetation-related spec-
tral categories, identified by
acronyms of type xV_y located
along the horizontal axis, are
expected to look green, etc.
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A different strategy to aesthetically (rather than formally) remove the aforementioned inter-diction-
ary “conceptual mismatch” would be to change color names in the SIAM color map legend, without
changing the SIAM decision tree for MS reflectance space hyperpolyhedralization. In other words, based
on thematic evidence collected on an a posteriori basis from the USGS NLCD 2006 reference map, it
would be possible to change color names attached to the SIAM-WELD 2006 map legend and consider
that, at the Landsat spectral and spatial resolution of an annual WELD composite of the CONUS, the
SIAM spectral categories sbS_1, SmS_1, and aS are more likely to map the USGS NLCD reference
vegetation classes “Shrub/Scrub” (SS) or “Grassland/herbaceous” (GH) than bare soil surface types.

Starting from the same OAMTRX = FrequencyCount(A × B) shown in Table 4, two independent
selections by two different RS experts of a binary relationship R: A ⇒ B ⊆ A × B suitable for guiding
the interpretation process of the OAMTRX instance at hand provided two alternative mDMI pairs of
O-Q2I values to be jointly maximized, namely, an OA_1(OAMTRX = FrequencyCount
(A × B)) = 96.88% ± 0% with a CVPSI2_1(R: A ⇒ B ⊆ A × B) = 0.6689 in test case A and an OA_2
(OAMTRX = FrequencyCount(A × B)) = 97.28% ± 0% with a CVPSI2_2(R: A ⇒ B ⊆ A × B) = 0.6731 in
test case B. These alternative O-Q2I pairs highlight the inherent ill-posedness of any inter-dic-
tionary conceptual harmonization, although a specific protocol to reduce heuristic decisions by
human experts in the identification of a binary relationship R: A ⇒ B ⊆ A × B was proposed in the
Part 1, Chapter 4. According to a Pareto multi-objective optimization principle, the latter O-Q2I
value pair should be preferred to the former. This choice proves that the OA of the test SIAM-WELD
2006 map compared with the reference NLDC 2006 map scores “very high,” with a semantic
information gap from sub-symbolic sensory data to symbolic NLCD classes left to be filled (dis-
ambiguated) by further stages in the hierarchical EO-IUS pipeline, where spatial information is
masked by first-stage color names, see Figure 3, equal to (1—CVPSI2) = 0.3269.

At the fine discretization level of the SIAM-WELD 2006 test map, featuring a legend A = 96 BC
names, another inter-map wall-to-wall overlap with the USGS NLCD 2006 reference map, whose
legend B = 16 LC classes, provided an mDMI pair of O-Q2I values equal to OA
(OAMTRX = FrequencyCount(A × B)) = 95.41% ± 0% and CVPAI2(R: A ⇒ B ⊆ A × B) = 0.5809 in
test case C. When compared to the two pairs of O-Q2I values collected from the test case A and
the test case B, this third O-Q2I value pair proves that a finer hyperpolyhedralization of the MS
reflectance space for color naming is not necessarily more convenient to cope with by human
experts in the stratification of an LC classification problem according to a spectral and spatial
convergence-of-evidence approach, refer to Equation (3) in the Part 1 (Hunt & Tyrrell, 2012).

When an approximated binary relationship R: B ⇒ C ⊆ B × C was identified from set B = NLCD 16-
class legend to set C = 2-level 4-class FAO LCCS-DP legend, see Figure 1, a binary relationship R: A ⇒

Figure 12. Wyoming Basin
ecoregion, as part of the “North
American deserts” level 1 ecor-
egion 10.1.4. Left: WELD 2006
tile (true color). Middle: SIAM
test map of the WELD 2006 tile
shown at left, with 19 spectral
macro-categories at the inter-
mediate color discretization
level. Right: NLCD 2006 refer-
ence map, featuring 16 LC
classes. In these three images,
the boundary of the Wyoming
Basin ecoregion is overlaid in
red. The desertic Wyoming
Basin ecoregion is classified as
predominantly “Scrub/Shrub”
(SS) and “Grassland/
Herbaceous” (GH) in the USGS
NLCD 2006 reference map
(refer to Table 1), and predo-
minantly as bare soil (sbS_1,
SmS_1, aS) in the SIAM-WELD
2006 test map (refer to
Table 2). This phenomenon of
comprehensive “semantic mis-
match” between the USGS
NLCD 2006 and SIAM-WELD
2006 thematic maps is
explained thoroughly in
Chapter 4.3.
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Figure 13. (a)—(d). Reference
USGS NLCD class-specific box-
and-whisker diagrams, identi-
fied by index r = 1, . . ., RC = 16,
of the USGS NLCD class-condi-
tional probabilities p(SIAM-
WELDer, t | NLCDer, r), with t = 1,
. . ., TC = 19, collected across
ecoregions er = 1, . . ., ER = 86.
The 19 spectral categories of
the SIAM-WELD test map,
identified by their acronyms
(refer to Table 2), are distribu-
ted along the x axis of each
NLCD class-specific diagram.
Each of the 19 boxes in a box-
and-whisker diagram extends
from the 25th to the 75th per-
centile, with a horizontal line to
represent the median (50th

percentile) of the distribution.
The whiskers extend to the
maximum or minimum value of
the data set, or to 1.5 times the
interquantile range, whichever
comes first. If there is data
beyond this range, it is repre-
sented by open circles.

Baraldi et al., Cogent Geoscience (2018), 4: 1467254
https://doi.org/10.1080/23312041.2018.1467254

Page 40 of 52



Figure 13. Continued.
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C ⊆ A × C was defined from set A = SIAM 19-class legend as rows to set C = 2-level 4-class FAO
LCCS-DP legend as columns (reassembled from original columns of the 16-class legend B) and an
OAMTRX = FrequencyCount(A × C) was generated by the wall-to-wall overlap between the test
SIAM-WELD map with legend A and the reference USGS NLCD map with 16-class legend grouped
into the 4-class legend C as reported in Table 5 (test case D), then O-Q2I values were OA
(OAMTRX = FrequencyCount(A × C)) = 93.09% ± 0% with CVPAI2(R: A ⇒ C) = 0.7486. From these
results, we could infer the following.

OA(OAMTRX = FrequencyCount(A × C)) = OA(Test SIAM-WELD 2006, 19 spectral macro-
categories; “Ultimate” GroundTruth 2006, 2-level 4-class FAO LCCS-DP taxonomy) ∈ [XX% -
6.91%, XX% + 6.91%], where

unknown variable XX% = Equation (6) = OA(Reference NLCD 2006, 2-level 4-class FAO LCCS-
DP taxonomy; “Ultimate” GroundTruth 2006, 2-level 4-class FAO LCCS-DP taxonomy) ≥ 84%,

with a semantic information gap, to be minimized, from input sub-symbolic sensory data to
output symbolic classes belonging to the 2-level 4-class FAO LCCS-DP legend, left to be filled
(disambiguated) by further stages in the hierarchical EO-IUS pipeline, where spatial infor-
mation is masked by first-stage color names, see Figure 3, equal to (1 – CVPAI2) = 0. 2514,
refer to the Part 1, Chapter 5.

This inference supports the thesis investigated by the present experimental work, where the off-
the-shelf SIAM lightweight computer program for prior knowledge-based MS reflectance space
hyperpolyhedralization into BC names was considered eligible for systematic ESA EO Level 2 SCM
product generation, with an SCM legend consistent with the “augmented” 9-class 3-level FAO
LCCS-DP taxonomy; more specifically, the SIAM color maps are consistent with the 2-level 4-class
FAO LCCS-DP taxonomy; see Figure 1 (Baraldi, Tiede, Sudmanns, Belgiu, & Lang, 2016, 2017).

To complete the interpretation of the OAMTRX instance shown in Table 4, two histograms of
class-conditional probabilities, shown in Figures 10 and 11 respectively, together with their sum-
marized text versions, shown as Tables 6 and 7 respectively, were generated from the OAMTRX of
interest. Figure 10 and Table 6 reveal that any test SIAM-WELD 2006 spectral category conditioned
by one NLCD 2006 reference class appears consistent with the USGS NLCD class definition (refer to
Table 1) and with an a priori domain knowledge of RS experts about the geophysical CONUS
domain, spatially sampled at 30 m resolution. Analogously, Figure 11 and Table 7 show that any
NLCD 2006 reference class conditioned by one SIAM-WELD 2006 spectral category appears con-
sistent with the spectral properties of the SIAM color type and with an a priori domain knowledge
of RS experts about the geophysical CONUS domain, depicted at 30 m resolution. To conclude,
class-conditional probabilities generated from Table 4 appear reasonable and confirm the statis-
tical plausibility of the OAMTRX instance shown in Table 4 as a whole.

Figure 13 shows that if, for example, the boxplot of the USGS NLCD 2006 reference class
“Developed, Open Space” (DOS) is compared to that of reference class “Developed, Low Intensity”
(DLI), “Developed, Medium Intensity” (DMI) and “Developed, High Intensity” (DHI, refer to Table 1),
then a monotonic decrease of the class-conditional probability of the SIAM-WELD vegetation-
related spectral categories conditioned by the USGS NLCD reference class and collected at a
regional spatial extent corresponding to a population of 86 ecoregions is observed in parallel
with a monotonic increase of the class-conditional probability of the SIAM-WELD bare soil-related
spectral categories. This is perfectly consistent with the a priori domain knowledge of RS experts
about the spatial and spectral properties of urban and industrial areas in the CONUS, in agreement
with the popular vegetation-impervious surface-soil model for urban ecosystem analysis (Ridd,
1995). In addition, these boxplots confirm that, at the local spatial extent of individual ecoregions,
the USGS NLCD 2006 reference classes “Deciduous Forest” (DF), “Evergreen Forest” (EF) and “Mixed
Forest” (MF, refer to Table 1) are almost entirely (> 90%) covered by the SIAM-WELD vegetation-
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related spectral categories, in agreement with theoretical expectations about the SIAM-WELD test
map. In line with preliminary outcomes discussed in previous Chapter 4.3 and in Figure 12,
boxplots shown in Figure 13 confirm that the USGS NLCD 2006 reference classes “Scrub/Shrub”
(SS) and “Grassland/Herbaceous” (GH)havea strongheterogeneity ofmatcheswith theSIAM-WELD2006
spectral categories collected at the ecoregion spatial extent. This is tantamount to saying that spectral
signatures of theseNLCDclasses feature a strongvariabilitywhen collectedat regional scale; also refer to
Figure 9.More properties of theUSGSNLCD2006 class-specific box diagrams collected at the local spatial
extent of ecoregions appear reasonable, based on a priori human knowledge of the geophysical CONUS
domain at the ecoregion spatial extent. For example, first, the USGS NLCD 2006 reference classes
“Pasture/Hay” (PH) and “Cultivated Crops” (CC, refer to Table 1) are largely matched across ecoregions
by the SIAM-WELD vegetation-related spectral categories. Second, the USGS NLCD reference class
“Perennial Ice/Snow” (PIS, refer to Table 1) is bestmatchedacross ecoregions by the SIAM-WELD spectral
category MS white-as-“Snow” (SN, refer to Table 2). Third, across ecoregions, the USGS NLCD 2006
reference class “Openwater” (OW, refer to Table 1) is bestmatched by the SIAM-WELD spectral category
MS blue-as-“Water or Shadow” (WA, refer to Table 2). To summarize, collected at the local extent of
ecoregions to account for non-stationary spatial properties, boxplots shown in Figure 13a are considered
statistically and semantically consistent with the definitions of the two legends adopted by the test and
referencemaps, they agreewith apriori domain knowledgeof RS experts about the LC and LCCdynamics
in the geophysical CONUS domain and appear consistent with global (non-stratified by ecoregions)
statistics collected at the CONUS spatial extent, as reported in previous Chapter 4.2 to Chapter 4.4.

6. Conclusions
To pursue the GEO-CEOS visionary goal of a GEOSS implementation plan for years 2005–2015 not
yet accomplished by the RS community, this interdisciplinary work aimed at filling an analytic and
pragmatic information gap from EO big data to systematic ESA EO Level 2 product generation at
the ground segment, never achieved to date by any EO data provider and postulated as necessary
not sufficient precondition to GEOSS development. For the sake of readability, this paper was split
into two, the preliminary Part 1 - Theory and the present Part 2 - Validation.

Provided with a relevant survey value, the Part 1 of this paper reviewed a long history of prior
knowledge-based MS reflectance space partitioners for static color naming developed by the RS
community for use in hybrid (combined deductive and inductive) EO-IUSs for EO image enhancement
and classification tasks in operating mode, but never validated in compliance with the GEO-CEOS
QA4EO Cal/Val requirements. Original contributions of the Part 1 include, first, an analytic expression of
a “naïve” Bayes classifier proposed as a biologically plausible hybrid CV system suitable for conver-
gence of color and spatial evidence. Second, a hybrid eight-step protocol was proposed to infer a
binary relationship, R: A ⇒ B ⊆ A × B, from categorical variable A to categorical variable B estimated
from the same population. This eight-step protocol is of practical use because identification of a binary
relationship R: A ⇒ B is mandatory to guide the interpretation process of a bivariate frequency table,
BIVRFTAB = FrequencyCount(A × B), where A ≠ B in general. Third, in compliance with the GEO-CEOS
QA4EO Val guidelines, two original and alternative formulations, CVPAI2(R: A ⇒ B) ∈ [0, 1] and CVPAI3
(R: A ⇒ B) ∈ [0, 1], were proposed as a categorical variable-pair normalized degree of association
(harmonization, matching) in a binary relationship, R: A ⇒ B ⊆ A × B, from categorical variable A to
categorical variable B estimated from the same population, where A ≠ B in general. When CVPAI2 or
CVPAI3 is maximum, equal to 1, then the two categorical variables A and B are considered fully
harmonized (reconciled). If A ≠ B, an mDMI set of O-Q2Is for a two-way frequency table
BIVRFTAB = FrequencyCount(A × B) comprises OA(BIVRFTAB = FrequencyCount(A × B)) ∈ [0, 1] and
CVPAI2(R: A ⇒ B) ∈ [0, 1] to be jointly maximized. Only if A = B then BIVRFTAB is equal to a well-known
square and sorted CMTRX, intuitive to use because its main diagonal guides the interpretation process
and where CVPAI2(R: A ⇒ B) = CVPAI3(R: A ⇒ B) = 1.

In the present Part 2, from an ensemble of expert systems for color naming found in the RS
literature, an off-the-shelf SIAM lightweight computer program was selected as potential candi-
date for systematic ESA EO Level 2 SCM product generation in operating mode, to be submitted to
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a GEO-CEOS stage 4 Val by independent means, at large spatial extent and multiple time samples,
in agreement with the GEO-CEOS QA4EO Cal/Val guidelines. The selected input data set was the
30 m resolution annual WELD image composite time-series in TOARF values from year 2006 to
2009 at the CONUS spatial extent. The selected reference map was the 30 m resolution USGS NLCD
2006 map of the U.S., whose legend consists of 16 LC classes. The original methodological
contribution of the present Part 2 consists of a novel protocol for wall-to-wall inter-map compar-
ison without sampling, where the test and reference thematic maps feature the same spatial
resolution and spatial extent, but whose legends A and B are not the same and must be
harmonized. These working hypotheses are fully complementary to those of traditional protocols
for map accuracy assessment based on random sampling and a pair of coincident test and
reference map legends.

Conclusions of the present Part 2 are twofold. First, in agreement with the definition of an
information processing system in operating mode proposed in this work, the off-the-shelf SIAM
software executable submitted to a GEO-CEOS stage 4 Val can be considered in operating mode
because its whole set of OP-Q2I estimates scored “high.” Second, the off-the-shelf SIAM light-
weight computer program in operating mode can be considered suitable for systematic generation
of an ESA EO Level 2 SCM product instantiation whose legend agrees with the standard 2-level 4-
class FAO LCCS-DP taxonomy (first DP level: vegetation vs non-vegetation, second DP level: aquatic
vs terrestrial), preliminary to an “augmented” 3-level 9-class FAO LCCS-DP taxonomy, defined as a
standard 3-level 8-class FAO LCCD-DP legend, see Figure 1, augmented with class “Others,” which
includes quality layers cloud and cloud-shadow. At the CONUS spatial extent, the experimental
portion of the present Part 2 inferred that OA(OAMTRX = FrequencyCount(A × C)) = OA(Test SIAM-
WELD 2006, A = 19 spectral macro-categories; “Ultimate” GroundTruth 2006, C = 2-level 4-class
FAO LCCS-DP taxonomy) ∈ [XX%—6.91%, XX% + 6.91%,], where unknown variable XX% = OA
(Reference NLCD 2006, 2-level 4-class FAO LCCS-DP taxonomy; “Ultimate” GroundTruth 2006, 2-
level 4-class FAO LCCS-DP taxonomy) ≥ 84%, with CVPAI2(R: A ⇒ C) = 0.7486. Hence, the semantic
information gap, to be minimized, from input sensory data to the output 2-level 4-class FAO LCCS-
DP legend left to be filled (disambiguated) by further stages in the EO-IUS pipeline following the
SIAM first stage, see Figure 3, is equal to (1—CVPAI2) = 0.2514 ∈ [0, 1]. This is tantamount to
saying that, although spatial information dominates color information in vision (Baraldi, 2017;
Matsuyama & Hwang, 1990), the spatial context-insensitive SIAM expert system for color naming,
whose legend A was a vocabulary of 19 color names equivalent to hyperpolyhedra in a MS
reflectance space, when input with the annual WELD 2006 image composite of the CONUS and
when compared with the reference USGS NLCD 2006 map, whose original legend B consisting of 16
LC class names was reassembled into a dictionary C of four LC classes belonging to a standard 2-
level 4-class FAO LCCS-DP taxonomy, carried out a CVPAI2(R: A ⇒ C) estimate equal to 74.86% of
the classification (discrimination) work required to disentangle the four LC classes of a standard 2-
level 4-class FAO LCCS-DP taxonomy, with an OA(OAMTRX = FrequencyCount(A × C)) = [XX%—

6.91%, XX% + 6.91%], where variable XX% ≥ 84%.

Ongoing developments of this work aim at systematic generation from multi-source MS imagery
of an ESA EO Level 2 SCM product whose legend is the “augmented” 3-level 9-class FAO LCCS-DP
taxonomy, which includes quality layers cloud and cloud-shadow, as a viable alternative to the
non-standard ESA EO Level 2 SCM legend adopted by the SEN2COR software toolbox distributed by
ESA to be run on user side. Preliminary OP-Q2Is collected from a prototypical implementation of
the hybrid (combined physical model-based and statistical model-based) feedback EO-IUS archi-
tecture sketched in Figure 3, where convergence of color and spatial evidence is pursued, were
considered encouraging (Baraldi, 2015, 2017; Baraldi et al., 2016, 2017; Tiede, Baraldi, Sudmanns,
Belgiu, & Lang, 2016). Degrees of novelty of the hybrid EO-IUS under development for systematic
ESA EO Level 2 product generation include, first, a novel 2D wavelet-based spatial filter bank for
automated image-contour detection and image segmentation (raw primal sketch, in the Marr
terminology), consistent with human visual perception, such as the Mach bands illusion (Baraldi,
2017). Second, a “universal” hybrid spatial context-sensitive cloud/cloud-shadow detector in
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single-date MS imagery, eligible for use with past, present, and future optical imaging sensors
provided with metadata Cal parameters (Baraldi, 2015, 2017 2015), alternative to existing cloud/
cloud-shadow detectors, including that implemented in the SEN2COR software toolbox. Third, an
original mDMI set of scale-invariant planar shape indexes (Baraldi, 2017; Baraldi & Soares, 2017),
which includes a novel implementation of a straightness-of-boundaries indicator (Nagao &
Matsuyama, 1980), particularly useful to discriminate managed (man-made, anthropic) LC classes
from natural or semi-natural surface types, such as in the 3rd-level FAO LCCS-DP taxonomy, where
LC class A11 (Cultivated and Managed Terrestrial Vegetated Areas) must be discriminated from LC
class A12 (Natural and Semi-Natural Terrestrial Vegetation) and where LC class B35 (Artificial
Surfaces and Associated Areas) must be separated from LC class B36 (Bare Areas); see Figure 1.
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Cover Image
Source: Satellite Image Automatic Mapper (SIAM) multi-
level map generated automatically, without human-
machine interaction, and in near real-time, specifically, in
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resolution annual Web-Enabled Landsat Data (WELD)
image composite for the year 2006 of the conterminous
U.S. (CONUS), radiometrically calibrated into top-of-
atmosphere reflectance (TOARF) values. The multi-level
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mediate discretization level, consisting of 48 basic color
(BC) names reassembled into 19 spectral macro-cate-
gories by an independent human expert, according to a
proposed hybrid (combined deductive and inductive)
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able-pair binary relationship, from a vocabulary of BC
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discrete and finite vocabulary of color names, such as
SIAM’s, equivalent to a set of mutually exclusive and
totally exhaustive (hyper)polyhedra, neither necessarily
convex nor connected, in a MS reflectance (hyper)space,
should ever be confused with a symbolic (semantic) tax-
onomy of LC class names in the 4D geospace-time scene-
domain. Black lines across the SIAM-WELD 2006 color
map represent the boundaries of the 86 Environmental
Protection Agency (EPA) Level III ecoregions of the
CONUS, suitable for regional-scale statistical stratification
required to intercept geospatial non-stationary statistics,
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typically lost when a global spatial average, e.g., at con-
tinental spatial extent, is superimposed on the local
computational processes.

Notes
Figure 3. Six-stage hybrid (combined deductive and
inductive) feedback EO image understanding system
(EO-IUS) design, based on a convergence-of-evidence
approach consistent with Bayesian naïve classification
(Baraldi, 2017). Alternative to inductive feedforward
EO-IUS architectures adopted by the RS mainstream, it
supports a hierarchical approach to low-level (preli-
minary, general-purpose, sensor-, application- and
user independent) EO image understanding followed
by high-level (sensor-, application- and user-specific)
EO image understanding (classification), consistent
with the standard fully nested Land Cover
Classification System (LCCS) taxonomy promoted by
the Food and Agriculture Organization (FAO) of the
United Nations (Di Gregorio & Jansen, 2000). For the
sake of visualization each of the six data processing
stages plus stage-zero for EO data pre-processing is
depicted as a rectangle with a different color fill. Visual
evidence stems from multiple information sources,
specifically, numeric color values quantized into cate-
gorical color names, local shape, texture and inter-
object spatial relationships, either topological or non-
topological. An example of preliminary (low-level)
general-purpose, user- and application-independent
EO image classification taxonomy required by an ESA
EO Level 2 Scene Classification Map (SCM) product is
the 3-level 8-class FAO LCCS Dichotomous Phase (DP)
legend, in addition to quality layers such as cloud and
cloud-shadow. High-level EO image classification is
user- and application-specific, where a thematic map
product of Level 3 or superior is provided with a legend
consistent with the FAO LCCS Modular Hierarchical
Phase (MHP) taxonomy (Di Gregorio & Jansen, 2000);
refer to Figure 3 in the Part 1 of this paper. Acronym
SIAM stays for Satellite Image Automatic Mapper
(SIAM), a lightweight computer program for MS
reflectance space hyperpolyhedralization into a static
vocabulary of MS color names, superpixel detection
and vector quantization (VQ) quality assessment
(Baraldi, 2017; Baraldi et al., 2006, 2010a, 2010b,
2010c; Baraldi, 2011; Baraldi & Boschetti, 2012a,
2012b; Baraldi et al., 2013; 2016; Baraldi & Humber,
2015).
Figure 9. Examples of geographic locations mapped as
vegetation classes “Scrub/Shrub” (SS) or “Grassland/
Herbaceous” (GH) in the USGS NLCD 2006 reference
map (refer to Table 1) and predominantly as bare soil
spectral categories (sbS_1, SmS_1, aS) in the SIAM-
WELD 2006 test map (refer to Table 2), as pointed out
in Table 8. The SIAM’s color names sbS_1, SmS_1, and
aS mean that, from space, with a pixel size of
30 m × 30 m = 900 m2, the contribution of sparse
vegetation, rangeland, cheatgrass, dry long grass or
short grass as foreground, mixed with a background of
sand, clay, or rocks, like those shown in these pictures,
becomes extremely difficult to detect, especially if a
hard (crisp, defuzzified) label rather than a set of fuzzy
class labels must be provided as the output product.
(a) Sublette, WY, Rangeland, 42° 51ʹ 37” N, 109° 43ʹ 7”
W. Copyright Ralph Maughan, Idaho State Univ.
Reproduced with permission of the author. Acquisition
date: 6/16/2011. [Online]. Available: http://www.panor
amio.com (accessed on 24 February 2013). (b) Twin
Falls, ID, Ripening cheatgrass infestation, 42° 23ʹ 52” N,
114° 21ʹ 9” W. Copyright Ralph Maughan, Idaho State
Univ. Reproduced with permission of the author.

Acquisition date: April 2010? [Online]. Available: http://
www.panoramio.com (accessed on 24 February 2013).
(c) Overton, NV, 36° 25ʹ 42” N, 114° 27ʹ 21” W.
Copyright Ralph Maughan, Idaho State Univ.
Reproduced with permission of the author. Acquisition
date: 2/11/2009. [Online]. Available: http://www.panor
amio.com (accessed on 24 February 2013). (d) San
Juan, UT, 37° 16ʹ 43” N, 109° 40ʹ 27” W. Copyright
Ralph Maughan, Idaho State Univ. Reproduced with
permission of the author. Acquisition date: 3/4/2009.
[Online]. Available: http://www.panoramio.com
(accessed on 24 February 2013). (e) Springerville, AZ,
Volcanic Field, 34° 15ʹ 6” N, 109° 21ʹ 9” W. Copyright
Ralph Maughan, Idaho State Univ. Reproduced with
permission of the author. Acquisition date: 3/3/2009.
[Online]. Available: http://www.panoramio.com
(accessed on 24 February 2013). (f) Esmeralda, NV, 38°
1ʹ 40” N, 117° 43ʹ 21” W. Copyright Ralph Maughan,
Idaho State Univ. Reproduced with permission of the
author. Acquisition date: 4/22/2010. [Online].
Available: http://www.panoramio.com (accessed on 24
February 2013).
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