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Background: There is paucity of neurobiological knowledge about major depressive disorder with psychotic fea-
tures (“psychotic depression”). This study addresses this knowledge gap by using resting state functional mag-
netic resonance imaging (R-fMRI) to compare functional connectivity in patients with psychotic depression
and healthy controls.
Methods:We scanned patients who participated in a randomized controlled trial as well as healthy controls. All
patients achieved remission from depressive and psychotic symptoms with sertraline and olanzapine. We
employed Independent Component Analysis in independent samples to isolate the default mode network
(DMN) and compared patients and controls.
Findings: The Toronto sample included 28 patients (mean [SD], age 56·2 [13·7]) and 39 controls (age 55·1
[13·5]). The Replication sample included 29 patients (age 56·1 [17·7]) and 36 controls (age 48·3 [17·9]). Pa-
tients in the Toronto sample demonstrated decreased between-network functional connectivity between the
DMN and bilateral insular, somatosensory/motor, and auditory cortices with peak activity in the right planum
polare (t= 4·831; p= 0·001, FamilyWise Error (FWE) corrected). A similar pattern of between-network func-
tional connectivity was present in our Replication sample with peak activity in the right precentral gyrus (t =
4·144; p = 0·003, FWE corrected).
Interpretation: Remission from psychotic depression is consistently associated with an absence of increased
DMN-related functional connectivity and presence of decreased between-network functional connectivity. Fu-
ture researchwill evaluate this abnormal DMN-related functional connectivity as a potential biomarker for treat-
ment trajectories.
Funding: National Institute of Mental Health.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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. This is an open access article under
1. Introduction

Unipolar major depressive disorder (MDD) with psychotic features
(“psychotic depression”) is a severe psychiatric disorderwith global im-
pact [1]. While depressive and psychotic symptoms can co-occur in
other diagnoses such as schizophrenia, schizoaffective disorder, and
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Research in context

Evidence before this study

Major depressive disorder (MDD) with psychotic features (“psy-
chotic depression”) is a severe psychiatric disorder with global im-
pact. Despite its severity, or perhaps because of it, psychotic
depression is a psychiatric disorder that is rarely studied and little
is known about its neurobiology. Resting state functional mag-
netic resonance imaging (R-fMRI) is a neurobiological probe that
has identified patterns of functional connectivity implicated in de-
pression and psychosis, including functional connectivity abnor-
malities related to the default mode network (DMN). To date, a
single R-fMRI study has focussed on the hypothalamus specifi-
cally in unremitted patients with psychotic depression. Another
R-fMRI study has examined the DMN in an aggregated sample of
unremitted patients with non-psychotic and psychotic
depression.

Added value of this study

To our knowledge, this is the first R-fMRI study to specifically ex-
amine the DMN in psychotic depression while patients are remit-
ted from their depressive and psychotic symptoms. The present
study compared patients with psychotic depression, who were
treated to remission with sertraline and olanzapine and subse-
quently scanned in the remitted state, to healthy controls. An ab-
sence of increased DMN-related functional connectivity (in
patients relative to controls) and presence of decreased DMN
functional connectivity with the bilateral insular, somatosensory/
motor, and auditory cortices was found and replicated.

Implications of all the available evidence

A consistent pattern of abnormal functional connectivity has been
demonstrated between the subgenual cortex and DMN in non-
psychotic depression, as well as in an aggregated sample that in-
cluded patients with unremitted psychotic depression. The ab-
sence of such functional connectivity in remitted psychotic
depression suggests that subgenual-DMN functional connectivity
maybe related to the state of psychotic depression; that remission
may normalize such abnormal functional connectivity; and that
the patterns of abnormal functional connectivity in this study
may be related to the diagnosis of psychotic depression or to the
process of remission. Importantly, these replicated patterns of ab-
normal DMN-related functional connectivity may serve as a bio-
marker for treatment trajectories.
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bipolar I disorder, the hallmark of psychotic depression is the emer-
gence of psychosis during a major depressive episode and the recession
of psychosis as themajor depressive episode remits. This contrasts with
diagnoses of schizophrenia and schizoaffective disorder in which psy-
chotic symptoms remain even after a major depressive episode remits,
or bipolar I disorder,which is characterized bymanic and depressive ep-
isodes with psychosis having the potential to emerge in either mood
state [2]. Psychotic features have been found in 20% of patients with
MDD [3,4] and 45% of elderly inpatients with MDD [5]. Compared to
MDDwithout psychotic features,MDDwith psychotic features is associ-
ated with poorer outcomes, including longer recovery, greater disabil-
ity, and increased mortality [3,4,6]. Despite its severity, or perhaps
because of it, psychotic depression is a psychiatric disorder that is rarely
studied and little is known about its neurobiology.

Two Studies of the Pharmacotherapy of Psychotic Depression (STOP-
PD I and II) have been designed to improve the evidence-based
treatment of psychotic depression. STOP-PD I, a 12-week randomized,
double-blind placebo-controlled trial, demonstrated the efficacy of
combined sertraline and olanzapine in the acute treatment of psychotic
depression [7]. The primary goal of STOP-PD II is to compare the efficacy
and tolerability of sertraline plus olanzapine versus sertraline plus pla-
cebo in preventing relapse following remission from an episode of psy-
chotic depression initially treated with a combination of sertraline and
olanzapine.We used resting-state functional magnetic resonance imag-
ing (R-fMRI) in STOP-PD II participants who had been treated to remis-
sion to identify biomarkers of psychotic depression since R-fMRI has
been used to identify neural circuitry implicated in psychosis that
changeswith treatment response andmaybe the target of interventions
[8]. We studied participants in remission to avoid confounds related to
the state of depression or psychosis present in unremitted patients.

Studies of non-psychotic depression have demonstrated abnormali-
tieswithin the defaultmode network (DMN) [9]. This network has been
considered a “default” since the same regions show greater activity
when no task is being performed. Yet there is evidence that the DMN
is active during a range of self-referential functions, including planning
for the future and remembering the past [10,11]. There aremany resting
state networks and the literature has examined how different resting
state networks (as awhole or in parts andwithin or between networks)
may be functionally connected in health or demonstrate functional con-
nectivity abnormalities in disease [12–14]. With reference to psychotic
depression, functional connectivity abnormalities within the DMN
have been identified in unremitted MDD [15]. The sole R-fMRI study
on psychotic depression revealed abnormal functional connectivity be-
tween the hypothalamus and subgenual cortex, as well as other brain
regions [16].

There is mounting evidence for DMN dysfunction in psychiatric dis-
orders and changes in DMN functional connectivity in response to treat-
ment have been demonstrated in non-psychotic depression [17]. Thus,
identification of abnormal functional connectivity within the DMN or
between theDMNand other brain regions in remittedpsychotic depres-
sion could serve as a biomarker of this disorder. The goal of the present
study was to differentiate remitted psychotic depression from healthy
controls. We hypothesized that remitted patients would have patterns
of DMN-related functional connectivity that differ from healthy
controls.

2. Materials and methods

2.1. Participants

The primary analysis was based on a sample of patients enrolled in
STOP-PD II in Toronto. Twenty-eight patients with psychotic depres-
sion, recruited from the University Health Network (UHN) and the Cen-
tre for Addiction and Mental Health (CAMH), and thirty-nine healthy
controls were scanned on a 3 T GE DiscoveryMR750 at CAMH. Data col-
lected on Siemens 3 T scanners at Cornell University/Nathan Kline Insti-
tute (NKI) (patients n = 16; controls n = 16) and the University of
Pittsburgh Medical Centre (UPMC) (patients n = 13; controls n = 20)
were analyzed to assess replicability of the findings with a sample size
comparable to the Toronto sample.

The design of STOP-PD II, including eligibility criteria, has been de-
scribed in detail [18]. Briefly, STOP-PD II participants were aged
18–85 years andmet diagnostic criteria for non-bipolar MDDwith psy-
chotic features based on the Structured Clinical Interview forDSM-IV-TR
Axis I Disorders administered by a trained research associate. STOP-PD II
is divided into three consecutive phases: given the severity of psychotic
depression, an acute phase of open-label treatment was pursued with
higher doses of sertraline (target dose: 150 − 200 mg/day) and
olanzapine (15–20mg/day) lasting from four to twelve weeks to attain
remission, an eight week stabilization phase to ensure that remission is
sustained, and a 36 week randomized controlled trial (RCT) comparing
the efficacy of sertraline plus olanzapine and sertraline plus placebo in
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preventing relapse of psychotic depression. At the end of the second
phase, to be eligible for randomization into the RCT, participants must
be in remission, defined as: [1] having been free of delusions and hallu-
cinations for eight weeks; and [2] having a score of ≤10 on the 17-item
Hamilton Depression Rating Scale (HAM-D) for two consecutive weeks
or a HAM-D score of 11–15 with ≥50% reduction of the acute phase
baseline HAM-D score and a rating of “very much improved” or “much
improved” on the Clinical Global Impression (CGI) Scale.

In line with the goal of the present study to differentiate remitted
psychotic depression from healthy controls, all participants included
in the analysis were scanned at the end of the second phase
(i.e., before randomization,when theywere in remission and taking ser-
traline and olanzapine). No data were available on patients receiving
sertraline and olanzapine who fail to respond. Moreover, this study oc-
curs prior to randomization and therefore there is no placebo group.
Global cognitive impairment and comorbid physical illness burden
were assessed in both patients and controls using the Mini-Mental
State Examination (MMSE) and Clinical Illness Rating Scale-Geriatrics
(CIRS-G), respectively. Patients with MMSE scores b24 were excluded.
Moreover, patients with evidence of cognitive decline prior to the
index episode were excluded.

Using procedures approved by the local institutional review boards,
written informed consent was obtained from all participants or their
legal representative prior to the initiation of any research assessment
or treatment.

2.2. MRI data acquisition

For 2D axial R-fMRI, participants in the Toronto sample were
instructed to “let your mind wander” while keeping their eyes closed
and head still. Functional scans were acquired using a spiral in/out gra-
dient echo (GRE) pulse sequence with the following parameters: TR =
2000 msec, TE = 30 msec, flip angle = 60°, matrix = 64 × 64, slice
thickness = 5 mm, number of slices = 31. Resting state scan time was
seven minutes. At Cornell/NKI, R-fMRI was acquired using an echo pla-
nar imaging (EPI) pulse sequence with the following parameters: TR=
2000 msec, TE = 30 msec, flip angle = 80°, matrix = 96 × 96, slice
thickness = 2·8 mm, number of slices = 34, with a scan time of
seven minutes. At UPMC, R-fMRI scans were acquired using an EPI
pulse sequence with the following parameters: TR = 2000 msec, TE
= 34 msec, flip angle = 90°, matrix = 128 × 128, slice thickness =
4 mm, number of slices = 28, with a scan time of seven minutes and
eight seconds. Acquisition parameters for T1-weighted scans (for regis-
tration) are in the appendix.

2.3. R-fMRI data analysis

The Functional MRI of the Brain (FMRIB) Software Library (FSL
5·0·9) was used to preprocess and analyze R-fMRI data [19]. Standard
individual preprocessing consisted of removal of the first three volumes
to allow for steady-state signal equilibration, removal of temporal
spikes using the Analysis of Functional NeuroImages (AFNI) [20]
3ddespike, slice timing correction using AFNI 3dtshift (only for EPI ac-
quisitions at Cornell/NKI and UPMC), head motion correction with
AFNI 3dvolreg, brain extraction with the Brain Extraction Tool (BET),
and a linear detrend. Timecourses were variance-normalized and
single-session Independent Component Analysis (ICA) was performed
on an automatically estimated number of ICs usingMultivariate Explor-
atory Linear Optimized Decomposition into Independent Components
(MELODIC) version 3·14 [21]. These single session ICs were labelled
as “signal” and “noise”. Noise ICs were regressed from the data using
FMRIB's ICA-based Xnoiseifier (FIX) [22]. Given acquisition resolution
differences between sites, AFNI 3dBlurToFWHM was then employed
to iteratively smooth each participant's R-fMRI image to a final smooth-
ness of 10 mm Full-Width-Half-Maximum. Data were realigned to the
MNI template after cleaning with FIX. R-fMRI volumes were registered
to individual structural scans using a normal linear search and subse-
quently spatially normalized to Montreal Neurological Institute (MNI)
standard space (MNI152) using a nonlinear transform.

2.4. Correction for motion artefact and other sources of noise

Rigorous detection and correction of motion artefacts is important
for mitigating site effects [23]. Mean frame displacement was included
in primary statistical analyses, however to further address motion arte-
fact and physiological sources of noise (such as respiration and cardiac
effects which were not measured independently) we employed FIX.
For the purpose of data cleaning with FIX, individual signal and noise
classifiers were trained for each scanning site using a pseudorandom
subset of participants (Toronto: twelve patients, twelve controls; Cor-
nell/NKI, ten patients, ten controls; UPMC, nine patients, nine controls).
To facilitate this process, ICs from the training set were first labelled as
signal (i.e., a resting state network) or noise (i.e., motion or scanner ar-
tefacts, non-neuronal physiology, and other nuisance signals) by FIX
using the standard training set available with the FIX package. These la-
bels were manually inspected and readjusted with the aid of an in-
house html qc interface (https://github.com/edickie/icarus). Readjusted
labels were then submitted to FIX for classifier training. Site-specific
training data was then used to classify all ICs from all participants at
each site. Noise components were regressed out of the original data.

2.5. Group ICA and dual regression

For the Toronto sample collected on a 3 T GE scanner, cleaned data
for each participant were temporally concatenated across participants,
creating a single 4D dataset for group-wise ICA. The number of ICs
was automatically determined to be 42 using standard FSL techniques
[24]. The DMN IC included peak activation in the posterior cingulate, bi-
lateral parietal, and medial prefrontal cortices and did not mask out
non-defaultmode regions. This ICwas identified among the42 ICs by vi-
sual inspection and spatial correlation against a previously well-defined
default modemap [25]. The ICmost correlated with this canonical DMN
map (r = 0·65) had substantially higher spatial correlation than the
next best fitting IC (r = 0·35). The same procedure was followed for
the Cornell/NKI and UPMC data. Since these data were collected on 3 T
Siemens scanners, data were combined to achieve power comparable
to the Toronto sample. Using standard FSL techniques [24], the DMN
was identified among 14 ICs that were automatically isolated and the
IC most correlated with the canonical DMN map (r = 0·81) had sub-
stantially higher spatial correlation than the next best fitting IC (r =
0·10).

Dual regression was then employed for voxel-wise comparisons of
functional connectivity between patients and controls [26]. This ap-
proach proceeded in three stages. First, for each participant, the
group-average DMN were spatially regressed into the participant's 4D
space-time dataset. This resulted in a set of participant-specific
timeseries representing the DMN timeseries. Second, these
participant-specific DMN timeseries were temporally regressed into
the same 4D dataset, resulting in a set of participant-specific DMN func-
tional connectivity maps based on the synchronicity between the
timeseries and any given voxel. Third, group differences were then
tested using FSL's randomise permutation-testing tool (10,000 permuta-
tions). Group comparisons employed threshold-free cluster enhance-
ment (TFCE) and were family-wise error (FWE) corrected for multiple
comparisons across the brain at p b 0·05 [27].

2.6. Post-hoc analyses

We selected regions of interest (ROIs) informed by the DMN and
dual regression results for post-hoc analyses to explore brain regions
with the greatest amount of overlap between the Toronto and Replica-
tion samples and to probe for medication effects. Using a data driven

https://github.com/edickie/icarus
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approach, the conjunction of the Toronto and Replication sample maps
of the DMN (thresholded at z b 3) was obtained to form an unbiased
search space. Similarly, the conjunction of the Toronto and Replication
sample dual regression result maps (thresholded at p b 0·01) was ob-
tained to form an unbiased dual regression result search space. Spheri-
cal ROIs (diameter = 10 mm) from the Power atlas were then applied
within the search space and ROIs that completely overlapped with the
search space were selected [13]. Timeseries data for each ROI was ex-
tracted and ROI-ROI correlations were z-transformed. ROIs were noted
to be mainly related to the auditory, somatomotor (including the sen-
sory/somatomotor hand and mouth systems), and default mode net-
works. The mean functional connectivity within the auditory,
somatomotor, and default mode networks was then calculated for
each participant and included in a linearmodel for the Toronto and Rep-
lication samples with age, sex, years of education, and mean frame dis-
placement as covariates. Results were Bonferroni corrected.

Medication dose at the time of the stabilization scan was available
for all but one patient in the Replication sample. Medication effects
were examined and given skew as well as dose targets, doses were
binned into maximum and less than maximum for sertraline (200 mg
and b 200 mg, respectively) and olanzapine (20 mg and b 20 mg). Ex-
ploratory models were then pursued to examine the combined as well
as separate effects of sertraline and olanzapine onmean functional con-
nectivity within and between the auditory, somatomotor, and default
mode networks. Results were Bonferroni corrected.
2.7. Data statement

As per our data sharing plan, our neuroimaging data fits within the
‘phenotypes’ definition of the NIH-funded Genotypes and Phenotypes
Table 1
Characteristics of patients and healthy controls in the Toronto and Replication Samples. Mean (
assuming equal variance for baselinemeasures in the (a) Toronto and (c) Replication samples. C
(b) Toronto and (d)Replication samples. Significance for baselineversus stabilization compariso
Total MMSE: Mini-Mental State Examination; Total CIRS-G: Total Cumulative Illness Rating Sca
pression; BMI: Body Mass Index.

(a)

Patients (n = 28) Contr

Sex (n) 16F, 12 M 22F, 1
Age (years) 56·2 (13·7) 55·1 (
Education (years) 13·0 (3·4) 14·7 (
Total MMSE 28·3 (2·1) 29·4 (
Total CIRS-G 3·0 (2·8) 2·5 (2

(b)

Baseline Sta

HAM-D 28·5 (4·6) 3·
CGI illness severity score 5·1 (0·9) 1·
Weight (kg) 74·0 (16·0) 83
BMI (kg/m2) 26·3 (4·7) 29

(c)

Patients (n = 29) Contro

Sex (n) 14F, 15 M 22F, 1
Age (years) 56·1 (17·7) 48·3 (
Education (years) 14·4 (3·2) 15·8 (
Total MMSE 27·6 (2·2) 29·1 (
Total CIRS-G 4·8 (4·9) 2·3 (2

(d)

Baseline Sta

HAM-D 27·8 (4·4) 7·
CGI illness severity score 5·1 (0·9) 1·
Weight (kg) 70·3 (13·0) 78
BMI (kg/m2) 24·8 (3·5) 27
(dbGaP) database and we plan to submit neuroimaging data to dbGaP
within one year of study completion.
3. Results

Participant characteristics are shown in Table 1. In terms of motion,
there were no significant differences between patients and controls in
mean frame displacement for the Toronto (Patients M = 0·168, SD =
0·089; Controls M = 0·158, SD = 0·110; t = 0·422; p = 0·67) and
Replication (Patients M = 0·288, SD = 0·231; Controls M = 0·247,
SD = 0·160; t = 0·851; p = 0·40) samples, although taken together,
patients and controls in the Toronto sample (M = 0·162, SD =
0·100) demonstrated less mean frame displacement than patients and
controls in the Replication sample (M = 0·265, SD = 0·190; t =
−3·876; p b 0·001). Given the heterogeneity of participants' age, sex,
years of education, and mean frame displacement, these four variables
were entered into dual regression as covariates. Additionally, the Repli-
cation sample covaried for site. Small but statistically significant differ-
ences between patients and controls were observed in total MMSE
scores in the Toronto and Replication samples. There was no significant
difference between patients and controls in the Toronto samplewith re-
spect to cumulative burden of illness (CIRS-G scores) and a significant
difference was observed in the Replication sample. There were no sig-
nificant differences between patients in the Toronto and Replication
samples for sertraline (TorontoM=160·7mg, SD=34·3mg; Replica-
tion M = 167·9 mg, SD = 40·6 mg; t = −0·720; p = 0·47) or
olanzapine (Toronto M = 14·6 mg, SD = 5·1 mg; Replication M =
14·3 mg, SD = 4·8 mg; t = 0·273; p = 0·79) dose.

Table 1 also presents the clinical characteristics of patients at base-
line (i.e., initiation of open label treatment with olanzapine and
SD) unless indicated otherwise. Significance is reported for two-sample, two-tailed t-tests,
omparison of key baseline and stabilization variables (at time of scanning) are given for the
ns is reported for paired, one-tailed t-tests, assuming equal variance. F=Female;M=Male.
le-Geriatrics; HAM-D: 17 Item Hamilton Depression Rating Scale; CGI: Clinical Global Im-

ols (n = 39) t value (df = 65) p value

7 M – –
13·5) 0·322 0·748
2·2) -2·472 0·016
0·7) −3·127 0·003
·3) 0·927 0·357

bilization t value (df = 27) p value

8 (3·0) 23·951 b0·001
5 (0·8) 15·363 b0·001
·1 (17·7) −8·027 b0·001
·5 (5·1) −8·359 b0·001

ls (n = 36) t value (df = 63) p value

4 M – –
17·9) 1·748 0·085
2·4) −2·028 0·047
1·1) −3·811 b0·001
·0) 2·862 0·006

bilization t value (df = 28) p value

0 (3·6) 20·102 b0·001
2 (0·4) 22·630 b0·001
·9 (13·6) −7·027 b0·001
·8 (3·6) −7·265 b0·001
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sertraline) and following successful acute treatment followed by eight
weeks of stabilization (i.e., at the time of scanning).

3.1. Toronto sample: group ICA and dual regression

Supplementary Fig. 1 (appendix) illustrates the IC capturing the
DMN in the Toronto and Replication samples. Relative to healthy con-
trols, there were no significant increases of within-DMN or between-
network functional connectivity observed in patientswith psychotic de-
pression (FWE corrected, p b 0·05). In contrast, patients had significant
decreased between-network functional connectivity with the DMN
when compared with controls (Fig. 1). The most extensive peak of de-
creased functional connectivity was located within the right planum
polare (x = 62 y = −4 z = 2) in a large cluster that extended into
the bilateral insula and pre/postcentral gyri (t=4·831, p=0·001;
appendix).

3.2. Replication sample: group ICA and dual regression

Relative to healthy controls, therewas an absence of significantly in-
creased within-DMN or between-network functional connectivity in
the Replication sample (FWE corrected, p b 0·05). Therewas also a sim-
ilar pattern of significant decreased between-network functional con-
nectivity with the DMN in a large cluster that extended into the
bilateral insula and pre/postcentral gyri, with the most extensive peak
in the right precentral gyrus (x = 2 y = −14 z = 58) (Fig. 1; t=
4·144, p=0·003; appendix).

3.3. Post-hoc analyses

Supplementary Fig. 2 (appendix) illustrates the covariance matrix
derived from the Power atlas ROIs. Power ROIs were predominantly re-
lated to the default mode (DMN; n= 15), auditory (AUD; n= 11), and
somatomotor (SMN; n=9) networks. To enhance interpretability, ROIs
within these networks were averaged together for each participant.
With reference to Fig. 2 and consideringwithin-network functional con-
nectivity, there was no significant difference between patients and con-
trolswithin the DMN for the Toronto (t=0·873, puncorr= 0·39, pcorr=
1·00) or Replication (t = −0·500, puncorr = 0·62, pcorr = 1·00) sam-
ples. However, both samples demonstrated decreased within-network
functional connectivity in patients for the SMN (Toronto: t = −3·393,
puncorr = 0·001, pcorr = 0·007; Replication: t = −4·172, puncorr =
0·0001, pcorr = 0·0006) and AUD (Toronto: t = −2·927, puncorr =
Fig. 1. Main effect of group on default mode network (DMN) related functional connectivity i
functional connectivity was examined in patients relative to healthy controls in both the Tor
patients had significantly increased functional connectivity in either sample. However, pati
outside the DMN in the Toronto and Replication samples (Family Wise Error (FWE) corrected,
0·005, pcorr = 0·03; Replication: t = −3·699, puncorr = 0·0005, pcorr
= 0·003) networks. In terms of between-network functional connec-
tivity, the SMN to AUD (Toronto: t = −3·322, puncorr = 0·002, pcorr

= 0·009; Replication: t = −3·877, puncorr = 0·0003, pcorr = 0·002),
DMN to SMN (Toronto: t =−2·427, puncorr = 0·02, pcorr = 0·11; Rep-
lication: t =−3·240, puncorr = 0·002, pcorr = 0·01), and DMN to AUD
(Toronto: t =−3·404, puncorr = 0·001, pcorr = 0·007; Replication: t =
−2·732, puncorr = 0·008, pcorr = 0·05) between-network functional
connectivity was decreased in patients in both the Toronto and Replica-
tion samples.

An exploratory medication analysis was pursued. As can be seen in
Supplementary Figs. 3 and 4 (appendix), sertraline and olanzapine
doses were skewed towards high doses. As a result, medication effects
were explored by binning patient participants based on maximum or
less than maximum doses for sertraline (200 mg (Toronto: n = 9, Rep-
lication n= 16) and b 200 mg (Toronto: n = 19; Replication: n = 12))
and olanzapine (20 mg (Toronto: n = 10, Replication: n = 8) and
b 20 mg (Toronto: n = 18, Replication: n = 20)). There was no signifi-
cant relationship between functional connectivity and sertraline and
olanzapine when in a combinedmodel in either the Toronto or Replica-
tion sample (Supplementary Table 4).When examining the relationship
between functional connectivity and sertraline and olanzapine in sepa-
rate models, only the Replication sample revealed a significant effect of
sertraline (t = −2·961, puncorr = 0·006, pcorr = 0·04) and olanzapine
(t =−2·423, puncorr = 0·02, pcorr = 0·14) dose on within-DMN func-
tional connectivity. There were no other significant effects of sertraline
or olanzapine on any other within or between-network functional con-
nectivity (Supplementary Table 4).
4. Discussion

The main finding of this study is that patients with remitted psy-
chotic depression differ from healthy controls in terms of decreased
DMN-related between-network functional connectivity implicating in-
teroceptive and exteroceptive brain regions. A similar pattern of de-
creased DMN-related functional connectivity was observed in a
Replication sample. ROI analyses corroborated these results. Explor-
atory analyses in the Replication sample suggested an effect of sertraline
and olanzapine dose on within-DMN functional connectivity when
modeled separately. However, this effect was not significant in the To-
ronto sample nor in either sample when both sertraline and olanzapine
were modeled.
n the Toronto and Replication samples. Dual regression was employed and DMN-related
onto and Replication samples. Relative to controls, there were no brain regions in which
ents had significantly decreased functional connectivity between the DMN and regions
p b 0·05).



Fig. 2. Post-hoc analyses of brain regions that overlapped in the Toronto and Replication samples. Regions of interest (ROIs) representing brain regionswith the greatest amount of overlap
between the Toronto and Replication samples were examined. ROIswere noted to bemainly related to the auditory (AUD), somatomotor (SMN), and default mode (DMN) networks. The
mean functional connectivity within the auditory, somatomotor, and default mode networks was then calculated for each participant and included in a linear model for the Toronto and
Replication sampleswith age, sex, years of education, andmean frame displacement as covariates. Therewas no significant (p b 0·05) difference between patients and controlswithin the
DMN for the Toronto or Replication samples. However, both samples demonstrated significantly decreased within-network functional connectivity in patients for the SMN and AUD
networks. In terms of between-network functional connectivity, the SMN to AUD, DMN to SMN, and DMN to AUD between-network functional connectivity was significantly
decreased in patients in both the Toronto and Replication samples.
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Our findings suggest a pattern of abnormal functional connectivity
between the DMN and other key brain regions that may be relevant to
remission in psychotic depression. This functional connectivity may be
a biomarker of psychotic depression that endures into remission or
representative of active neural processes of remission itself. Perhaps
the most well known example of between-network relationships re-
lates to the activation and deactivation of different networks during
cognition [28]. Such between-network relationships have been exam-
ined in depression [29,30]. Many disorders have demonstrated DMN-
related functional connectivity abnormalities, yet it has been noted
that there may exist unique abnormalities for specific disorders [12].
It should also be noted that the interoceptive and exteroceptive re-
gions found in this study have been implicated in other neural circuits.
Previous studies have examined the role of the bilateral insula and so-
matosensory/motor cortices and how they may support the mental
experience of bodily states that accompany emotions, i.e., “feelings”
[31]. Furthermore, lesion studies provide evidence that the insula
and somatosensory cortices are necessary but not sufficient for the
emergence of feelings [32,33]. Our results extend this work and sug-
gest that the neural circuits that have been implicated in feelings
have functional connectivity with the DMN and that a disorder such
as psychotic depression impacts this functional connectivity. Another
possibility relates to a recent quantitative MRI study that suggests in-
sular and somatosensory cortices are responsible for processing trait
behaviours associated with empathy [34]. Our study does not permit
the exploration of whether the observed functional connectivity pat-
terns specifically relate to processing feelings or empathy. However,
the observation remains that DMN-related functional connectivity
with interoceptive and exteroceptive brain regions are abnormal in
psychotic depression and that this observation replicates in an inde-
pendent sample.
To our knowledge, these findings are the first functional MRI-based
neural correlates of remitted psychotic depression. This is also the first
study to specifically examine the DMN in psychotic depression. Within
and between-network abnormalities in patientswith non-psychotic de-
pression have been reviewed and abnormal connectivity between the
subgenual cortex and DMN has been the most consistent pattern of
functional connectivity [35]. It is possible that remission was associated
with normalization of functional connectivity between the subgenual
cortex and theDMN in our patient participants. DMN-related functional
connectivity has been previously examined in healthy controls com-
pared to an unremitted sample that aggregated MDD patients with (n
= 11) and without (n= 17) psychotic features and revealed increased
functional connectivitywith the subgenual cingulate, medial prefrontal/
orbitofrontal cortex, and precuneus [15]. Our findings contrast with this
unremitted sample and are notable for the absence of increased/de-
creased within-DMN functional connectivity. Our findings are consis-
tent with earlier research showing between-network abnormalities in
patients with unremitted psychotic depression, reflected in those inves-
tigations by decreased functional connectivity between the hypothala-
mus and subgenual cingulate [16] and decreased regional cerebral
blood flow in the subgenual cingulate, inferior frontal cortex, and insula
[36]. Nonetheless, the pattern of between-network abnormalities in
these unremitted patients differs from our patients with remitted psy-
chotic depression.

There are several limitations of this study. To begin with study de-
sign and medication related limiations, the inclusion of a non-
psychotic depression group would have added information related to
the specificity of our findings to psychotic depression and would have
potentially permitted a direct comparison of effects of antidepressant
medication on functional connectivity to that of the combination of an-
tidepressant and antipsychotic medication on functional connectivity.
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Wenote, however, that the STOP-PD II RCT did not collect such data and
highlight that it remains a unique sample in which all patients remitted
on the same antidepressant and antipsychotic medications. Another
limitation of this study relates to the general effects of medication use
on functional connectivity. While the present cross-sectional study
compares medicated patients and healthy controls and does not permit
an in-depth exploration of such effects, it is noteworthy that our explor-
atory medication analysis that combined sertraline and olanzapine did
not result in any significant effect of sertraline or olanzapine dose on
functional connectivity. Future longitudinal analyses will explore this
issue in greater detail. An additional limitation of our cross-sectional
study is thatwe cannot assesswhether theDMN-related functional con-
nectivity we observed in patients with psychotic depression predict
longer-term remission or relapse. This limitation will be addressed
when follow-up scans are obtained, offering the unique opportunity to
compare functional connectivity in patients who were randomized to
receive sertraline and placebo to those randomized to receive sertraline
and olanzapine. It will further offer the opportunity to compare func-
tional connectivity in patients who maintain remission to those who
relapse.

Ongoing debate remains on whether to use an eyes closed versus
eyes open versus fixated condition when collecting R-fMRI data
[37–40]. For example, variable reliability and higher functional connec-
tivity in the auditory network has been described with an eyes closed
condition [40]. Although these effects were statistically significant, it
should be noted that this study also found the effect size of differences
in reliability and consistency of the eyes open, eyes closed, and fixation
conditions to be small. Our post-hoc analyses suggest, however, that pa-
tients with remitted psychotic depression (relative to healthy controls)
have replicable patterns of within and between-network functional
connectivity (implicating the auditory network and others) that are ev-
ident despite the possibility of the eyes closed condition influencing
functional connectivity.

Our study is also potentially limited by its sample size. However, a
single R-fMRI [16] study and two task-based fMRI [41,42] studies had
a comparable or smaller number of patients with psychotic depression.
Nevertheless, the small sample size may have contributed to some in-
consistent functional connectivity findings. Despite small sample sizes
and varying acquisition parameters, we replicated our findings related
to abnormal insular/somatosensory/motor/auditory functional
connectivity.

In summary, in a multi-centre study of patients with remitted psy-
chotic depression, we identified abnormal DMN-related functional con-
nectivity, particularly between interoceptive and exteroceptive brain
regions and the DMN. When compared to healthy controls, remission
from psychotic depression was consistently associated with signifi-
cantly decreased functional connectivity with these brain regions. Fu-
ture research will evaluate this abnormal DMN-related functional
connectivity as a potential biomarker for treatment trajectories.
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