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a b s t r a c t 

The coronavirus disease, named COVID-19, has become the largest global public health crisis since it 

started in early 2020. CT imaging has been used as a complementary tool to assist early screening, es- 

pecially for the rapid identification of COVID-19 cases from community acquired pneumonia (CAP) cases. 

The main challenge in early screening is how to model the confusing cases in the COVID-19 and CAP 

groups, with very similar clinical manifestations and imaging features. To tackle this challenge, we pro- 

pose an Uncertainty Vertex-weighted Hypergraph Learning (UVHL) method to identify COVID-19 from 

CAP using CT images. In particular, multiple types of features (including regional features and radiomics 

features) are first extracted from CT image for each case. Then, the relationship among different cases 

is formulated by a hypergraph structure, with each case represented as a vertex in the hypergraph. The 

uncertainty of each vertex is further computed with an uncertainty score measurement and used as a 

weight in the hypergraph. Finally, a learning process of the vertex-weighted hypergraph is used to pre- 

dict whether a new testing case belongs to COVID-19 or not. Experiments on a large multi-center pneu- 

monia dataset, consisting of 2148 COVID-19 cases and 1182 CAP cases from five hospitals, are conducted 

to evaluate the prediction accuracy of the proposed method. Results demonstrate the effectiveness and 

robustness of our proposed method on the identification of COVID-19 in comparison to state-of-the-art 

methods. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The coronavirus disease pandemic, named COVID-19, has be- 

ome the largest global public health crisis since late 2019. 

OVID-19 was caused by a kind of savagely contagious virus, and 

ould lead to acute respiratory distress and multiple organ failure 
∗ Corresponding authors. 
∗∗ Corresponding authors. 

E-mail addresses: gaoyue@tsinghua.edu.cn (Y. Gao), dinggang.shen@gmail.com 

D. Shen). 
1 D. Di, F. Shi, F. Yan, L. Xia, Z. Mo, Z. Ding, F. Shan, and B. Song contributed 

qually to this work. 
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 Chen et al., 2020; Holshue et al., 2020; Li et al., 2020a,b; Wang 

t al., 2020a ). 

The latest guideline, published by the Chinese government (the 

rial sixth version) ( General Office of National Health Commit- 

ee et al., 2020 ), declares that the diagnosis of COVID-19 must 

e confirmed by the reverse transcription polymerase chain reac- 

ion (RT-PCR) or gene sequencing for respiratory or blood spec- 

mens. Recent studies ( Fang et al., 2020; Gozes et al., 2020; Xie 

t al., 2020 ) have investigated the sensitivity of non-contrast chest 

T, and demonstrated that, recognizing either diffusion or focal 

round-glass opacities as the disease characteristics in CT is a re- 

iable and efficient approach. More specifically, the bilateral and 

eripheral ground-class and consolidative pulmonary opacities in 

T are the typical features of COVID-19 symptoms, and the greater 

https://doi.org/10.1016/j.media.2020.101910
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101910&domain=pdf
mailto:gaoyue@tsinghua.edu.cn
mailto:dinggang.shen@gmail.com
https://doi.org/10.1016/j.media.2020.101910


D. Di, F. Shi, F. Yan et al. Medical Image Analysis 68 (2021) 101910 

Fig. 1. Illustration of lung CT image, infection, lung lobes, and pulmonary segments 

on a CAP case (left) and a COVID-19 case (right). 
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everity of the disease with increasing time from onset symptoms 

hows larger lung involvement and more linear opacities, a.k.a.the 

crazy-paving” pattern and the “reverse halo” sign ( Xie et al., 2020; 

ernheim et al., 2020 ). However, these image features are similar 

etween COVID-19 and other types of pneumonia, which brings 

ifficulty for its differential diagnosis ( Li et al., 2020a; Bai et al., 

020 ). For example, GGO refers to an area of increased attenuation 

n the lung with preserved bronchial and vascular markings. It is 

 non-specific sign with a wide etiology, such as infection, chronic 

nterstitial disease, and acute alveolar disease. Consolidation on CT 

cans refers to a pattern that appears as a homogeneous increase 

n lung parenchymal attenuation that obscures the margins of ves- 

els and airway walls, which could be caused by pneumonia. Stud- 

es proposed that in COVID-19, these abnormalities tend to have bi- 

ateral peripheral involvement in multiple lobes, and may progress 

o “crazy paving” patterns in a later stage ( Bernheim et al., 2020; 

an et al., 2020 ). In this work, we extracted features from lung lobe

nd pulmonary segments to reflect the distribution differences of 

nfections, which was proven to be an efficient way for COVID-19 

ifferential diagnosis. 

To reduce the workload in diagnosing COVID-19, plenty of ma- 

hine learning and deep learning-based studies have been con- 

ucted ( Gozes et al., 2020; Li et al., 2020a; Narin et al., 2020;

hang et al., 2020; Shan et al., 2020 ). As shown in a recent review

rticle, methods such as U-Net ( Ronneberger et al., 2015 ) were 

sed to segment the infections, and methods such as Radiomics 

 Shi et al., 2020; Wang et al., 2020b ) or ResNet ( Li et al., 2020a )

ere used to extract features for disease diagnosis. However, most 

tudies have a limited number of participants, and methods were 

valuated on single-center data, where its generalizability to other 

atasets is not sufficiently evaluated. To be clinically meaningful, 

here are two major challenges: (1) Noisy data, due to the large 

ariations of data collected in an emergent situation, such as using 

ifferent reconstruction kernels and CT manufactures, along with 

ossible patient movements; (2) Confusing cases, due to similar 

adiological appearance of COVID-19 and other pneumonia, espe- 

ially in the early stage. Therefore, how to handle these challenges 

s the key for successful application of computed-aided COVID-19 

iagnosis methods ( Fig. 1 ). 
2 
Accordingly, in this work, we propose an uncertainty based 

earning framework, called Uncertainty Vertex-weighted Hyper- 

raph Learning (UVHL), to identify COVID-19 from CAP with CT 

mages. The most essential task is to exploit the latent relationship 

mong various COVID-19 cases and CAP cases, and then make a 

rediction for a new testing case, i.e., whether belonging to COVID- 

9 or not. The proposed framework employs a vertex-weighted hy- 

ergraph structure to formulate data correlation among different 

ases. The module of “uncertainty score measurement” is used to 

enerate two metrics, i.e., (1) noisy data aleatoric uncertainty and 

2) the model’s inability epistemic uncertainty. Then, the proposed 

VHL conducts learning on the hypergraph structure to make a 

rediction for the new testing case, by simultaneously (a) incor- 

orating the uncertainty values of measured data to relieve the 

isleading patterns from noisy low-quality data and (b) allocat- 

ng more attention to the nodes distributing around the classifying 

nterface in the latent representation space. Another advantage of 

he proposed framework is its flexibility in utilizing multi-modal 

ata/features when available. We apply our proposed method to a 

arge dataset, with 2148 COVID-19 cases and 1182 CAP cases. The 

xperimental results show that our proposed method can achieve 

 satisfactory accuracy of 90% for identification of COVID-19 from 

AP. 

The main contributions of this paper are summarized as fol- 

ows: 

• We propose to formulate data correlation among all COVID-19 

and CAP cases using hypergraph, for exploring high-order rela- 

tionship using multi-type CT features (such as regional features 

and radiomics features). 
• We propose an uncertainty vertex-weighted strategy to re- 

lieve the influence of noisy (CT) data collected from suspected 

COVID-19 patients in emergent situation. 
• We have demonstrated better prediction accuracy in the task 

of identifying COVID-19 from CAP, and have also shown how 

different types of CT features perform in this task. 

. Related work 

In this section, we briefly review recent works on diagnosing 

OVID-19 and introduce current studies on hypergraph learning. 

.1. AI-based COVID-19 diagnosis 

As introduced in Zu et al. (2020) , COVID-19 patients could be 

ivided into mild, moderate, severe and critically ill stages, accord- 

ng to the severity of disease development. In the mild stage, the 

neumonia symptom is difficult to be observed from CT images for 

 suspected patient. With the development of the disease, ground- 

lass opacity (GGO), increased crazy-paving pattern, and consolida- 

ion can be observed ( Li and Xia, 2020 ). When it becomes a serious

ituation, the symptom will deteriorate and also the gradual reso- 

ution of consolidation could be observed in CT images. 

In the very early studies, several statistics-based methods ( Chen 

t al., 2020; Li et al., 2020b; Wang et al., 2020a ) are proposed to

evelop automatic detection and patient monitoring methods for 

iagnosis of COVID-19. However, only simple data statistics is em- 

loyed in these methods, which limits the capability of diagnos- 

ng suspected patients when facing the challenge of noisy data and 

onfusing cases. 

To further improve the prediction accuracy, a group of AI- 

ased methods ( Narin et al., 2020; Shan et al., 2020; Gozes et al., 

020 ) are proposed in the following. In Bernheim et al. (2020) ; 

han et al. (2020) ; Tang et al. (2020) , reliable representations from 

T are learned to represent the symptom of COVID-19. The co- 

elationship between chest CT and RT-PCR testing has also been 
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nvestigated in COVID-19 ( Ai et al., 2020; Fang et al., 2020; Xie 

t al., 2020 ). Gozes et al. (2020) introduce an AI-based automatic 

T image analysis tool for detection, quantification, and tracking of 

oronavirus. 

Although there have been plenty of works on AI-assisted 

OVID-19 diagnosis tools, the identification of COVID-19 from CAP 

as not fully investigated, which has become an important is- 

ue recently. In this task, Bai et al. (2020) investigate the predic- 

ion accuracy of radiologists in differentiating COVID-19 from CAP 

ased on CT features and demonstrate the radiologists are capable 

f distinguishing with moderate to high accuracy. Ouyang et al., 

020 propose a dual-sampling attention network, including an at- 

ention module with a 3D convolutional network (CNN), to classify 

he regions of infected lesions into COVID-19 or typical viral pneu- 

onia. Another issue is the correlation among the COVID-19 cases 

nd the CAP cases, which is important to identify the category of 

 new testing case, i.e., the focus of this paper. 

.2. Preliminary on hypergraph learning 

Hypergraph learning has been widely applied in many tasks, 

uch as identifying non-random structure in structural connectivity 

f the cortical microcircuits ( Dotko et al., 2016 ), identifying high- 

rder brain connectome biomarkers for disease diagnosis ( Zu et al., 

016 ), and studying the co-relationships between functional and 

tructural connectome data ( Munsell et al., 2016 ), where multi- 

iew information from multiple atlases can also be used ( Jia et al., 

012; Shi et al., 2010 ). Hypergraph learning was first introduced in 

hou et al. (2007) , in which each node represents one case, each 

yperedge captures the correlation between each pair of nodes, 

nd the learning process is conducted on a hypergraph as a prop- 

gation process. By this method, the transductive inference on hy- 

ergraph aims to minimize the label differences between vertices 

hat are connected by more and stronger hyperedges. Then, the 

ypergraph learning is conducted as a label propagation process 

n the hypergraph to obtain the label projection matrix ( Liu et al., 

017 ), or as a spectral clustering ( Li and Milenkovic, 2017 ). 

Other applications of hypergraph learning include video object 

egmentation ( Huang et al., 2009 ), images ranking ( Huang et al., 

010 ), and landmark retrieval ( Zhu et al., 2015 ). Hypergraph learn- 

ng has the advantage of modeling high-order correlation model- 

ng, but the reliability of different vertices on the hypergraph, also 

mportant to conduct accurate learning, has not been well investi- 

ated. 

. Materials and preprocessing 

In this section, we first introduce materials used in this work 

nd image preprocessing steps. Then, multi-type features, includ- 

ng regional features and radiomics features from CT images are 

xtracted. 

.1. Dataset 

In this study, a total of 3330 CT images were collected, in- 

luding 2148 from COVID-19 patients and the rest 1182 from CAP 

atients. These images were provided by the Ruijin Hospital of 

hanghai Jiao Tong University, Tongji Hospital of Huazhong Uni- 

ersity of Science and Technology, China-Japan Union Hospital of 

ilin University, Hangzhou First People’s Hospital of Zhejiang Uni- 

ersity, Shanghai Public Health Clinical Center of Fudan Univer- 

ity and Sichuan University West China Hospital. All the COVID- 

9 cases were confirmed as positive by RT-PCR and acquired from 

an. 9, 2020 to Feb. 14, 2020. CAP images were obtained from Jul. 

0, 2018 to Feb. 22, 2020. The CT scanners used in this study in-

lude uCT 780 from UIH, Optima CT520, Discovery CT750, Light- 
3 
peed 16 from GE, Aquilion ONE from Toshiba, SOMATOMForce 

rom Siemens, and SCENARIA from Hitachi. The CT protocol here 

ncludes: 120 kV, reconstructed CT thickness ranging from 0.625 

o 2 mm, and breath-hold at full inspiration. All images were de- 

dentified before sending for analysis. This study was approved by 

he Institutional Review Board of participating institutes. Written 

nformed consent was waived due to retrospective nature of the 

tudy. 

.2. Preprocessing 

In this study, both regional and radiomics features are extracted 

rom CT image for each patient. More specifically, we first perform 

egmentation of left / right lung, 5 lung lobes, and 18 pulmonary 

egments, as well as infected lesions by deep learning based net- 

ork, i.e., VB-Net, in a portal software ( Shan et al., 2020 ), for each

T image. 

To generate regional features, we calculate a dimension of R 

96 

eatures for each patient, including histogram distribution, infected 

esion counting numbers, the mean and variance grey values of le- 

ion area, lesion surface area, and additional density and mass fea- 

ures, etc. To generate radiomics features, radiomics computation 

s performed on the infected lesions and a dimension of R 

93 for 

ach patient is extracted, including the first-order intensity statis- 

ics and texture features such as gray level co-occurrence matrix 

 Shi et al., 2020 ). With the information on age and sex also in-

luded, the representations for each patient can be concatenated 

s x ∈ R 

191 overall. 

. The method 

In this section, we introduce our proposed Uncertainty Vertex- 

eighted Hypergraph Learning (UVHL) method for COVID-19 iden- 

ification. Fig. 2 shows in the framework of our proposed method, 

hich is composed of three steps, i.e., (1) “Data Uncertainty Mea- 

urement”, (2) “Uncertainty-vertex Hypergraph modeling” and (3) 

Uncertainty-vertex Hypergraph Learning”, respectively. 

.1. Data uncertainty measurement 

As introduced before, the data quality may suffer from the un- 

table, noisy nature caused in the emergent situation. To overcome 

his limitation, it is important to identify the reliability of differ- 

nt cases during the learning processing. In this step, a data uncer- 

ainty measurement process is conducted to generate uncertainty 

cores for all cases used in the learning processing. Here, two types 

f uncertainty factors are calculated in our method. 

a. Aleatoric Uncertainty. The data is abnormal, noisy or collected 

by mistake with low quality. 

b. Epistemic Uncertainty. The features of these cases lie around the 

decision boundary that makes the distinguishing model under 

a serious challenge. 

We will introduce how to calculate these uncertainty scores in 

etails as below. 

.1.1. Aleatoric uncertainty 

The aleatoric uncertainty represents the quality of data ( Gal and 

hahramani, 2016; Kendall and Gal, 2017 ), based on the compari- 

on of data distributions. The objective is to estimate the param- 

ters � in the uncertainty measuring model that minimizes the 

ullback-Leibler (KL) divergence ( Van Erven and Harremos, 2014; 

ershey and Olsen, 2007; Moreno et al., 2004 ) between true dis- 

ribution P D (x ) (provided by the label of data) and predicted dis- 

ribution P (x ) (the output of the uncertainty measuring model) 
�
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Fig. 2. Illustration of our proposed Uncertainty Vertex-weighted Hypergraph Learning (UVHL) method for COVID-19 identification. Given a bunch of patients, “Data Uncer- 

tainty Measurement” stage calculates and generates the uncertainty score for each case of CAP and COVID-19, denoted as green Gvely. The “Uncertainty-vertex Hypergraph 

Modelling” then constructs the hypergraph structure for both labeled cases and unknown cases, former of which are embedded and denoted with the color bars. The stage 

“Uncertainty-vertex Hypergraph Learning” can learn and classify all of the cases into the two diseases, consequently. 
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ver N training samples x i : 

ˆ = arg min 

�

1 

N 

N ∑ 

i =1 

D KL ( P D (x i ) ‖ P �(x i ) ) (1) 

Hence, the loss function can be defined as KL-Divergence: 

 (�) = L KL (�) , which is minimized during the training process. In

etail, the loss for a single case can be calculated as Eq. (2) : 

L (�) 
= D KL ( P D (x ) ‖ P �(x ) ) 

= 

∫ 
P D (x ) log P D (x )d x −

∫ 
P D (x ) log P �(x )d x 

= − log ( 
1 

σ�

√ 

2 π
exp (− (μ − ˆ x ) 2 

2 σ 2 
�

) ) −H(P D (x )) 

= 

CE (y , f �(x )) 

2 σ 2 
�
(x ) 

+ 

log 
(
σ 2 

�(x ) 
)

2 

+ 

log (2 π) 

2 

−H(P D (x )) 

(2) 

here ˆ x denotes ( x + − x −) , i.e., the difference between positive 

ases and negative cases, both of which are the output before 

he last softmax layer in the model. Theoretically, ˆ x should fol- 

ow a Guassian distribution and target is μ. Note that (μ − ˆ x ) 2 

ould be replaced by any loss function and we adopt the Cross- 

ntropy , CE (y , f �(x )) , where f �(x ) = softmax ( ̂ x ) is designed to

ake the gradient of back propagation changing smoothly ( Nix and 

eigend, 1994; Le et al., 2005 ). x ∈ R 

191 denotes the embeded fea-

ure vector of each patient and y ∈ R 

2 is the corresponding label. 

f � : R 

191 �→ R 

2 represents the output after the last softmax func- 

ion, which maps features of 191 dimensions to the binary predic- 

ion results. H( P D ( x ) ) stands for the entropy of P D (x ) . σ 2 
�

denotes 

he predicted variance. To avoid the potential division by zero, we 

eplace log σ 2 
�

(x ) by α�(x ) . Therefore, α� : R 

191 �→ R 

1 can be used

o predict the uncertainty score for each case. 

Note that log (2 π) / 2 and H ( P D (x ) ) are redundant for optimiza- 

ion. Therefore, for N samples, we can rewrite the loss function as 

q. 3 : 

 (�)= 

1 

N 

N ∑ 

i 

(
1 

2 

exp( −α�(x i ) ) CE (y i , f �(x i ))+ 

1 

2 

α�(x i ) 
)

(3) 

If the Cross-Entropy between the predicted y �(x i ) and true label 

 i is quite large, the model tends to predict a higher α�( x i ) to 

ake inputs with high uncertainty having a smaller effect on the 

oss. Thus, low quality data will be allocated a higher α�( x i ) in 

he model. This allows the network to learn to attenuate the effect 

rom erroneous labels, thus becoming more robust to noisy data. 
4 
n our task, we denote A �(x i ) as aleatoric uncertainty to identify 

ow quality data, as defined in Eq. (4) : 

 �(x i ) = σ 2 
�(x i ) = exp( α�( x i ) ) (4) 

.1.2. Epistemic uncertainty 

Epistemic uncertainty refers to the model’s inability for accu- 

ate and precise prediction. To compute this measurement, we 

se the dropout variation inference, which is a widely adopted 

ractical approach for approximate inference ( Gal and Ghahra- 

ani, 2016 ). The Monte Carlo estimation method is referred as 

C dropout. Our approximate predictive distribution is given by 

q. (5) : 

 ( y ∗| x 

∗) = 

∫ 
p ( y ∗| x 

∗, ω ) q ( ω )d ω (5) 

here ω = { W i } L i =1 is a set of random variables for a model with L 

ayers. x ∗ and y ∗ denote the input and the corresponding output of 

ny MC dropout model, respectively. The effect of our MC dropout 

an be attributed to impose a Gaussian distribution on each layer 

uring the test stage. In detail, the multi-layer perception neural 

etwork (MLP) model can be trained with dropout. But different 

rom the conventional settings, these dropout layers are kept open 

uring the testing stage. Each case is predicted for K times, and 

he epistemic uncertainty for this case can be calculated using the 

ariance of these K values. 

The predicted mean for one case can be obtained by Eq. (6) : 

 q ( y ∗| x ∗) ( y ∗) ≈
1 

K 

K ∑ 

k =1 ̂

 y ∗
(
x 

∗, ω 

k 
)

(6) 

r more specifically by Eq. (7) in our task: 

 ( f ̂ �(x i )) ≈
1 

K 

K ∑ 

k =1 

f ̂ �( ω k ) (x i ) (7) 

The epistemic uncertainty can be approximated as Kendall and 

al (2017) in Eq. (8) , which is the variance of K repetitions: 

 ( f ̂ �(x i )) ≈
1 

K 

K ∑ 

k =1 

f ̂ �( ω k ) (x i ) 
T f ̂ �( ω k ) (x i ) 

−E ( f ̂ �( ω k ) (x i )) 
T E ( f ̂ �( ω k ) (x i )) 

(8) 

here i denotes the i th sample and k denotes the k th test with 

ropout. 
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Fig. 3. Besides the hyperedge weights, the uncertainty-vertex hypergraph contains 

the uncertainty score of each vertex. 

Table 1 

The definition of the confusion matrix for COVID-19 identifi- 

cation. 

Classify as COVID-19 Classify as CAP 

COVID-19 True Positive ( TP ) False Negative ( FN ) 

CAP False Positive ( FP ) True Negative ( TN ) 

t

c

u

Q

t

f

�

R

w  

T

c

R

F

 

t

a

5

5

C

m

Combined with aleatoric uncertainty introduced before, our 

roposed uncertainty is calculated as: 

 ̂ �(x i ) = A ̂ �(x i ) + E ( f ̂ �(x i )) (9) 

ote that in the standard definition, epistemic uncertainty includes 

leatoric uncertainty, since the ability of classification model us- 

ng epistemic uncertainty may be affected by low-quality data 

aleatoric uncertainty) or the inherent limitations of the model to 

istinguish boundary data. 

To normalize the uncertainty U ̂ �
(x i ) , its mean and standard 

eviation in the whole dataset can be calculated as μe , s e . Then, 

igmoid function σ (·) is adopted to ensure the uncertainty score 

anging from 0 to 1. λ is an adjustable parameter, to make differ- 

nt uncertainty cases more distinctive. If the λ is set to positive, 

he cases with the high uncertainty score will be adjusted higher, 

he cases with the low uncertainty score will be lower, and vice 

ersa. Weights of all data are shown in Eq. (10) : 

 i = σ

(
λ

U ̂ �(x i ) − μe 

s e 

)
(10) 

n the end of this step, by leveraging the uncertainty, the quality 

f data is measured and also the weighted vertices are generated 

ccordingly. 

.2. Uncertainty-vertex hypergraph construction 

To identify the COVID-19 cases, it is important to exploit the 

ata correlation. Here, the hypergraph structure is employed to 

odel the relationship among the known training COVID-19 cases, 

he known training CAP cases, and the unknown testing cases. 

In the hypergraph, each vertex denotes one case, and there 

re totally n vertices according to the number of cases involved. 

iven the two types of features, i.e., the regional features and ra- 

iomics features, two groups of hyperedges are generated to build 

he connections among these cases. For the regional features, each 

ime one vertex (case) is selected as the centroid, and its k near- 

st neighbors (cases) are selected to be connected by one hyper- 

dge. This process repeats until all vertices have been selected 

nce. Then, a group of hyperedges based on the regional feature 

an be generated. The same process is performed for the radiomics 

eature, which generates another group of hyperedges. These two 

roups of hyperedges are concatenated to build the final hyper- 

raph. 

Different from conventional hypergraph, the uncertainty-vertex 

ypergraph not only cares about features and the label of each ver- 

ex, but also considers the uncertainty U of each vertex. In this 

ay, these more reliable vertices could contribute more during the 

earning process, and vice versa. Here, V is the vertex set, E is 

he hyperedges set, and W is the pre-defined matrix of hyperedge 

eights. Besides these, U denotes the uncertainty matrix for all the 

ertices. Therefore, our uncertainty-vertex hypergraph can be writ- 

en as G = 〈V, E, W , U 〉 . Leveraging vertex weights U , an incidence

atrix H is then generated to represent the relationship among 

ifferent vertices. 

 (v i , e p ) = 

{
U i , v i ∈ e p 
0 , v i / ∈ e p 

(11) 

In the end of this stage, the uncertainty vertex-weighted hyper- 

raph is constructed to represent the correlation among all cases. 

.3. Uncertainty-vertex hypergraph learning 

As shown in Fig. 3 , compared with the conventional hyper- 

raph learning method, the proposed UVHL structure considers 
5 
he uncertainty of each vertex individually and the learning pro- 

ess is conducted on an unequal space. The learning task on the 

ncertainty-vertex hypergraph can be formulated as: 

 U (F ) = arg min 

F 
{ �(F ) + λR emp (F ) } (12) 

More specifically, the smoothness regularizer function �(·) and 

he empirical loss term R emp (·) can be, respectively, rewritten as 

ollows: 

(F , V, U , E, W ) = tr(F � (U 

� − U 

� �U U ) F ) 

 emp (F , U ) = 

K ∑ 

k =1 

∥∥F (: , k ) − Y (: , k ) 
∥∥2 (13) 

here F (: , k ) is the k th column of F and �U = D 

− 1 
2 

v HWD 

−1 
e H 

T D 

− 1 
2 

v .

he uncertainty vertex-weighted hypergraph loss function R emp (·) 
an be further rewritten as: 

 emp (F , U ) = tr(F � U 

� UF + Y 

� U 

� UY 

−2 F � U 

� UY ) 
(14) 

Therefore, the target label matrix F can be obtained as: 

 = λ(U 

� − U 

� �U U + λU 

� U ) −1 U 

� UY (15) 

With the generated label matrix F ∈ R 

n ×K ( K = 2 in our task),

he new coming testing case can be identified as COVID-19 or CAP 

ccordingly. 

. Experiments 

.1. Evaluation metrics 

In our experiments, six criteria are employed to evaluate the 

OVID-19 prediction accuracy, and the definition of the confusion 

atrix is shown in Table 1 . 

1. Accuracy ( ACC ): ACC measures the proportion of samples that 

are correctly classified. 

ACC = 

T P+ T N 
T P+ T N+ F P+ F N . 

2. Sensitivity ( SEN ): SEN measures the proportion of actual pos- 

itives that are correctly identified as such. This metric is also 
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Table 2 

Prediction accuracy comparison of different methods on the pneumonia dataset. For each 10-fold, we compute the accuracy of the proposed method on testing data, and 

compare them with those of UVHL via paired t -test to generate the p -values for each metric. (“† ” denotes significance level is reached as p-value < 0 . 05 .) 

Methods ACC SEN SPEC BAC PPV NPV 

SVM ( p -value) 0.84084 1.173e7 0.85714 1.438e6 0.81034 4.235e3 0.83374 1.037e4 0.89423 0.0498 0.75200 3.283e6 

MLP ( p -value) 0.84685 4.917e6 0.86175 1.082e5 0.81897 0.0153 0.84036 2.349e3 0.89904 0.0507 0.76000 8.777e9 

iHL ( p -value) 0.85135 5.260e7 0.86327 3.415e4 0.83052 0.0332 0.84790 7.905e3 0.90256 0.2367 0.76866 2.088e8 

tHL ( p -value) 0.86486 3.533e4 0.89191 2.851e4 0.81743 4.559e-3 0.85467 0.0197 0.89898 0.2383 0.80547 7.071e5 

UVHL ( std ) 0.89790 † ±0 . 0223 0.93269 † ±0 . 0291 0.84000 † ±0 . 0274 0.88635 † ±0 . 0210 0.90654 ±0 . 0222 0.88235 † ±0 . 0383 
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called as “recall”, reflecting the misdiagnose proportion. In ac- 

tual medical diagnostic application scenarios, this evaluation 

metric is more critical. 

SEN = 

T P 
T P+ F N . 

3. Specificity ( SPEC ): SPEC measures the proportion of actual nega- 

tives that are correctly identified as such. It stands for the omis- 

sion diagnose rate. 

SP EC = 

T N 
T N+ F P . 

4. Balance ( BAC ): BAC is the mean value of SEN and SPEC . 

BAC = 

SEN+ SPEC 
2 . 

5. Positive Predictive Value ( PPV ): PPV measures the proportion of 

detected positives that are true positive. 

P P V = 

T P 
T P+ F P . 

6. Negative Predictive Value ( NPV ): NPV measures the proportion 

of detected negatives that are true negative. 

NP V = 

T N 
T N+ F N . 

.2. Compared methods 

The following popular classification approaches are used for 

omparison : 

• Support Vector Machine (SVM) ( Cortes and Vapnik, 1995 ): It is 

a non-probabilistic linear classifier, used to perform supervised 

learning. It selects a group of the training data as support vec- 

tors to determine the boundary that divides different categories 

apart as unambiguously as possible. 
• Multilayer Perceptron (MLP) Neural Network ( Thimm and 

Fiesler, 1997; Orhan et al., 2011 ): As the fundamental feed- 

forward artificial neural network, MLP can be utilized to per- 

form binary classification with the cross-entropy as the loss 

function. 
• Inductive Hypergraph Learning (iHL) ( Zhang et al., 2018 ): In 

iHL, all available features are combined into one single feature, 

and then a projection is learned on the hypergraph structure, 

which is used to conduct classification task on the pneumo- 

nia instances. This model learns the high-order representations 

from the training set and is evaluated in the testing set. 
• Transductive Hypergraph Learning (tHL) ( Zhou et al., 2007 ): The 

transductive learning on hypergraph is conducted to learn the 

label matrix. Both the training data and all testing data are 

employed in the hypergraph structure, yet leading to the com- 

monly used semi-supervised learning approach. 

.3. Implementation 

In our experiments, the whole dataset consists of 2148 COVID- 

9 cases and 1182 CAP cases. 

We randomly divide them into 10 subsets and perform 10-fold 

ross-validation, in which 9 subfolds are used for training and the 

est one is used for testing each time. The data splitting process re- 

eats 10 times, and the mean and standard deviation of all 10 runs 

re reported as the final result for comparison. All features are nor- 

alized into [0,1] in the training dataset, and the offset mean and 

ariance are applied to the testing dataset for data normalization, 

espectively. 
6 
All the training data were used for generating the uncertainty 

easuring model as well as the uncertainty score U i simultane- 

usly. During the construction of hypergragh in UVHL, K nearest 

eighbors are connected for each vertex when generating hyper- 

dges. We note that it is important to generate a suitable hyper- 

raph structure for representation learning. However, how to se- 

ect the best K value in this procedure is difficult. A large K will 

ead to high dissimilarity insider the hyperedge, while a small K

ay be not informative enough to the overall hypergraph struc- 

ure. To select a suitable K, we adopt the following strategy. First, 

 pool of candidate K values is set as [2 , 3 , . . . , 20] in our experi-

ents. Given a set of training data and corresponding testing data, 

e further split the training data into 10 folds. The 10-fold cross- 

alidation is conducted on the training data, where different K are 

sed. We then collect the prediction accuracy of different K on the 

raining data, and the K with the best prediction accuracy is used 

or testing. In this way, the selection of K can be fully automatic 

nd optimized. 

.4. Results and discussions 

Experimental results are demonstrated in Fig. 4 , and the de- 

ailed mean value and the significance of the t -test between UVHL 

nd other methods are listed in Table 2 . From these results, we 

ave the following observations: 

1. Our proposed method UVHL achieves the most reliable pre- 

diction accuracy among all metrics. Compared with SVM and 

MLP, our approach obtains better prediction accuracy (i.e., 6.79% 

and 6.03% relative improvement in terms of ACC, respectively), 

demonstrating that the hypergraph based approach has the ef- 

fective ability to tackle the pneumonia identification task. 

2. Compared with other hypergraph based methods, i.e., inductive 

hypergraph learning (iHL) ( Zhang et al., 2018 ) and transduc- 

tive hypergraph learning (tHL) ( Zhou et al., 2007 ), our approach 

achieves relative gains of 5.47% and 3.82% in terms of ACC , re- 

spectively. 

3. Besides the better sensitivity value, our proposed UVHL method 

achieves much higher specificity value compared with all other 

methods. This indicates that our proposed method can not only 

have high recall of COVID-19 patients but also be effective on 

filtering CAP patients, which is quite useful in practice. 

.5. Data uncertainty study 

To evaluate the effectiveness of our proposed data uncertainty 

ethod, we further conduct ablation experiments to compare vari- 

nts of the data uncertainty measurement procedure. First, we re- 

ove the uncertainty measurement procedure and treat all cases 

qually. Secondly, the SVM-based uncertainty score is calculated, 

nstead of that of using MLP. Then, the two uncertainty measure- 

ents are used individually for comparison. Experimental results 

re reported in Table 3 , from which we can have the following ob- 

ervations: 
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Fig. 4. The prediction accuracy of UVHL and compared methods. The results show that UVHL outperforms other methods for all metrics. 

Table 3 

Experimental comparison on the data uncertainty measurement. For the “proposed uncertainty”, we compute 

its accuracy on testing data, and compare them with other settings via paired t -test to generate the -values. 

(“† ” denotes significance level is reached as p-value < 0 . 05 .) 

Weighting strategy ACC SEN SPEC BAC PPV NPV 

1 Equal Weight 0.85586 0.88426 0.80342 0.84384 0.89252 0.789912 

2 Support Vectors 0.86066 0.87021 0.84442 0.85731 0.90983 0.78137 

3 Aleatoric Uncertainty 0.87387 0.918919 0.78378 0.85135 0.89474 0.82857 

4 Epistemic Uncertainty 0.88589 0.90741 0.84615 0.87678 0.91589 0.83193 

5 Proposed Uncertainty 0.89790 † 0.93269 † 0.84000 0.88635 † 0.90654 0.88235 † 

Table 4 

Experimental comparison on different feature types and their combination. For the “both”

feature type, we compute its accuracy on testing data, and compare them with each other 

via paired t -test to generate the p -values. (“† ” denotes significance level is reached as p-value 

< 0 . 05 .) 

Feature types ACC SEN SPEC BAC PPV NPV 

Regional 0.85886 0.90323 0.77586 0.83954 0.88288 0.81081 

Radiomics 0.85946 0.86982 0.84182 0.85582 0.90889 0.78012 

Both 0.89790 † 0.93269 † 0.84000 0.88635 † 0.90654 0.88235 † 
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1. Compared with the method without uncertainty, i.e., with equal 

weights, all the other methods with uncertainty can achieve 

better prediction accuracy. 

2. The method with uncertainty from SVM performs worse than 

that of using MLP. It indicates that MLP has better identification 

effectiveness com pared with SVM on uncertainty measurement. 

3. Compared with the case of using aleatoric uncertainty and 

epistemic uncertainty individually, the use of both uncertain- 

ties, i.e., the proposed method, achieves the best prediction ac- 

curacy, which demonstrates the effectiveness of our proposed 

data uncertainty strategy. 

.6. Analysis on feature types 

In this study, there are two types of features from CT, i.e., re- 

ional features and radiomics features. Here, we evaluate the ef- 

ectiveness of these two features on the task of COVID-19 iden- 

ification. We have conducted experiments with our proposed 

ethod using each feature individually. Experimental comparison 

s demonstrated in Table 4 . Our method using regional feature has 

igher sensitivity, while the specificity is relatively lower, com- 

ared with the cases of using radiomics features. These results in- 

icate that regional feature is better in finding the true positive 

OVID-19 cases, while radiomics features have the advantage of 

dentifying CAP cases. When using both types of features in our 

roposed method, the prediction accuracy becomes stable, along 
7 
ith both increasing sensitivity and specificity, as shown in the 

ast row of Table 4 . This observation demonstrates that our pro- 

osed method has the ability of jointly utilizing multi-type fea- 

ures and achieve better prediction accuracy. 

.7. Analysis on confounding factors 

There are many confounding vital factors in this classification 

ask, such as gender, age, image parameters, etc. In this study, we 

onduct sub-group analysis experiments on gender, age, and image 

lickness, since these are the most widely adopted sub-grouping 

ethods. As shown in Table 5 , we can observe that the distribu- 

ions of gender, age, and slice thickness are similar in each of two 

roups. For each factor, we compute the accuracy of our method on 

esting data and compare them with each other via paired t-test. 

he prediction accuracy in male and elder are slightly higher, with 

% and 1% in accuracy, respectively. Also, the images with thinner 

lice thickness ( � 1 mm) shows slightly higher prediction accuracy 

han other images with slice thickness between 1 mm and 2 mm, 

hich is reasonable as thinner slice images provide more detailed 

nformation. 

.8. Analysis on few labeled data 

As the large-scale labeled data for COVID-19 is expensive and 

aybe infeasible in emergent situations, how these methods per- 



D. Di, F. Shi, F. Yan et al. Medical Image Analysis 68 (2021) 101910 

Table 5 

Experimental comparison on different feature types and their combination. For each factor, we compute the ac- 

curacy of the proposed method on testing data, and compare them with each other via paired t -test to generate 

the p-values. (“† ” denotes significance level is reached as p-value < 0 . 05 .) 

Factors % / Subjs ACC SEN SPEC BAC PPV NPV 

Male 50.48% 0.90327 † 0.93575 † 0.84631 † 0.89103 0.91438 † 0.88248 

Female 49.52% 0.88963 0.92768 0.83302 0.88035 0.89209 0.88560 

Elder ( > 50 ) 54.20% 0.89236 0.93286 0.84466 † 0.88876 † 0.87611 0.91441 † 

Youth ( � 50 ) 45.80% 0.90224 † 0.93078 0.82680 0.87879 0.93424 † 0.81877 

Thickness � 1 . 0 59.91% 0.91479 † 0.93084 0.85442 † 0.89263 † 0.96008 † 0.76660 

Thickness > 1 . 0 40.09% 0.87491 0.93531 † 0.82962 0.88247 0.80451 0.94478 † 

Fig. 5. Prediction accuracy comparison with respect to different scales of training data. 
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orm with very limited labeled data is an important issue. It should 

e noted that we have not included MLP, as MLP performs very 

adly when having very few training data. To do that, we inves- 

igate how the compared methods work with respect to a small 

cale of labeled data from 10 to 100 for COVID-19 and CAP re- 

pectively. In these experiments, 100 cases for each category are 

elected as the validation data. The training data selection process 

epeats 10 times and the average prediction accuracy is calculated 

or comparison. Experimental results are shown in Fig. 5 . As shown 

n these results, we can observe that SVM performs inferior in all 

ettings when given just very few labeled data, and the hypergraph 

ased methods perform the best. We can also observe that our 

roposed method, i.e., UVHL, can achieve very stable prediction ac- 

uracy when only a few labeled data are available, which justifies 

he effectiveness of our proposed method in these difficult situa- 

ions. 

. Conclusion 

In this paper, we propose an uncertainty vertex-weighted hy- 

ergraph learning method to identify COVID-19 from CAP using 

T images. Confronting the challenging issues from noisy data 

nd confusing cases with similar clinical manifestations and imag- 

ng features, our proposed method employs a hypergraph struc- 

ure to formulate the data correlation among the known COVID- 

9 cases, the known as CAP cases, and the testing cases. Through 

his method, two types of CT image features (including regional 

eatures and radiomics features) are extracted for patient repre- 

entation. To overcome the limitations of the noisy data, a data 

ncertainty measurement process is conducted to measure the un- 

ertainty of each training case. Finally, a vertex-weighted hyper- 

raph learning process is used to predict whether a new case 

s COVID-19 or CAP. We have conducted experiments on a large 

ulti-center pneumonia dataset, including 2148 COVID-19 cases 

nd 1182 CAP cases from 5 hospitals, and the experimental re- 

ults demonstrate the effectiveness of our proposed method on 
8 
dentification of COVID-19 in comparison to the existing state-of- 

he-art methods. 

In future work, the effectiveness of each individual feature 

hould be fully investigated. Regarding the limited data and possi- 

le evolution of COVID-19, it is important to explore small sample 

earning methods as well as transfer learning techniques on this 

ifficult task of identifying COVID-19. 
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