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Abstract

Alterations in proteins that regulate endoplasmic reticulum morphology are

common causes of hereditary spastic paraplegia (SPG1-78, plus others). Muta-

tions in the REEP1 gene that encodes an endoplasmic reticulum-shaping pro-

tein are well-known causes of SPG31, a common autosomal dominant spastic

paraplegia. A closely-related gene, REEP2, is mutated in SPG72, with both auto-

somal and recessive inheritances. Here, we report a patient with a pure heredi-

tary spastic paraplegia due to a de novo missense mutation (c.119T > G,

p.Met40Arg) in REEP2 at a highly-conserved residue very close to another

known pathogenic missense change. This represents only the second autosomal

dominant SPG72 missense mutation reported.

Introduction

The hereditary spastic paraplegias (HSPs) are a heteroge-

neous group of disorders united by the common feature

of a prominent, progressive, length-dependent axonopa-

thy of the corticospinal motor neurons, giving rise to

lower extremity spasticity and gait impairment. Classi-

cally, the HSPs have been described as “pure” or “com-

plex” based on the absence or presence, respectively, of

other significant clinical features. More recently a genetic

classification scheme has predominated, with HSPs typi-

cally referred to by their numbered genetic loci, in order

of identification. In fact, the HSPs are among the most

genetically-diverse neurologic disorders, with mutations

known in over 90 genes (SPG1-78, plus others).1–4 Func-

tional analyses of these gene products support conver-

gence within a relatively small number of cellular

pathogenic themes, including abnormalities of endoplas-

mic reticulum (ER) morphology, axonal transport, lipid/

sterol metabolism, mitochondrial function, myelination,

microtubule dynamics, nucleotide metabolism, and

endolysosomal membrane trafficking and degradation

pathways.1

Mutations in the spastin (SPAST), atlastin-1 (ATL1),

and receptor expression-enhancing protein 1 (REEP1)

genes account for the three most common forms of HSP–
SPG4, SPG3A, and SPG31, respectively. Together these

account for a preponderance of autosomal dominant HSP

cases, most of which appear to be “pure.” In humans,

there are at least six family members in the REEP super-

family, REEP1-6, and these can be structurally and func-

tionally divided into two groups, comprising REEP1-4

and REEP5-6.5 All REEPs are membrane-bound ER pro-

teins harboring hydrophobic hairpin domains. REEP1-4

proteins have been investigated for their ability to

enhance the surface expression of G protein-coupled

olfactory and taste receptors as well as to shape the tubu-

lar ER network, bind microtubules, interact with mito-

chondria, and affect lipid droplet size.5–10

Both the SPG31 protein REEP1 and its most closely-

related ortholog REEP2 are preferentially expressed in

neuronal and exocytotic tissues.11 Furthermore, REEP2

mutations have been identified as a cause of “pure” HSP,

SPG72, in two families.12 A c.107T > A (p.Val36Glu)

mutation segregated in an autosomal dominant manner

in numerous members of a French family across three
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generations, while in a Portuguese family those affected

were compound heterozygous for c.215T > A (p.Phe72-

Tyr) and c.105 + 3G>T.12 The overall prevalence of

REEP2 mutations is unknown, but they are likely very

rare. In addition to the families described above, just two

members of one other family with “pure” HSP have been

described harboring REEP2 mutation, a likely pathogenic

homozygous mutation in the canonical start codon of

REEP2, p.Met1Thr.13 The “pure” phenotypes in these

cases are reminiscent of those of many patients with

SPG31 due to autosomal dominant REEP1 mutations.14,15

Case Report

The subject is a 9-year old boy (Fig. 1A, II.1) who was

the product of an uncomplicated full-term pregnancy,

with delivery via Cesarean section. His parents provided

informed consent for him to participate in a clinical

research protocol (00-N-0043) approved by the NIH

Combined NeuroScience Institutional Review Board. The

subject walked independently at 11 months, though from

the start he preferred walking on his toes. At 3 years, his

gait began to decline noticeably; he waddled and appeared

off-balance and “pigeon-toed.” He received ankle foot

orthosis at 4 years. In school, he receives extracurricular

assistance with writing, but he otherwise does well. Exam-

ination revealed a cheerful, well-developed child with

markedly increased tone in the lower extremities, but

more mild distal lower extremity weakness (MRC scale

5-/5 and 4-/5 for plantar flexion and dorsiflexion, respec-

tively). Sensory examination was normal, as was coordi-

nation. Reflexes were very brisk with spread at the biceps

and knees; there was sustained clonus at the ankles. Gait

was very spastic, and he scissored while walking. He is

the only child of his parents, although he has a paternal

half-sister (Fig 1A, II.2) who is unaffected at 7 years of

age. There is no family history of neurological disorders.

MRI of the brain and the spine were unremarkable, and

EMG with nerve conduction studies was also normal. Com-

mercial genetic testing (Medical Neurogenetics, Atlanta, GA)

for the following HSP genes failed to reveal any disease vari-

ants: ABCD1, ACOX1, AP4B1, AP4E1, AP4M1, AP4S1,

AP5Z1, ATL1, B4GALNT1, BSCL2, C12orf65, CCT5, CLPP,

CYP2U1, CYP7B1, DDHD1, DDHD2, ERLIN2, FA2H,

FBXO7, GAD1, GAN, GBA2, GJC2, HARS2, HSPD1, KDM5C,

KIAA0196, KIF1A, KIF5A, LARS2, MARS2, NIPA1, OPA3,

PLP1, PNPLA6, PSEN1, REEP1, RTN2, SLC16A2, SLC19A3,

SLC2A1, SLC33A1, SPAST, SPG11, SPG20, SPG21, SPG7,

STXBP1, TECPR2, TFG, TTR, VAMP1, VPS37A, ZFYVE26,

ZFYVE27. A variant of unknown significance in L1CAM

(c.436G > A, p.Val146Met) was reported. However, this X-

linked variant is predicted to be benign by SIFT and Muta-

tionTaster, it occurs at a divergent residue, and it was found

once in 85,777 alleles in the ExAC browser (January, 2017).16

Next, we performed whole-exome sequencing and filtered for

variants in all known HSP genes as well as inherited leukodys-

trophies, ataxias, and motor neuron diseases. This analysis

revealed a heterozygous c.119T>G (p.Met40Arg) mutation in

REEP2 (Fig. 1B), which is mutated in SPG72. We confirmed

the presence of this variant in the index patient via Sanger

sequencing. This variant is not found in the ExAC browser

and has a Combined Annotation-Dependent Depletion

(CADD)17 score of 21.79. This change is predicted to be possi-

bly damaging by PolyPhen2, deleterious by SIFT, and disease-

causing by MutationTaster.18 Met40 is also a very highly-con-

served amino acid residue (Fig. 1B). To evaluate the segrega-

tion of this variant further, we tested the subject’s unaffected

parents using Sanger sequencing. Neither parent carries the

mutation, suggesting that it appeared de novo in the index

subject (Fig. 1A).

Discussion

We present a novel de novo missense variant in REEP2

that is causative for HSP. The mutation occurs very close

to a hydrophobic membrane hairpin domain, and it is in

Figure 1. Pedigree and REEP2 mutation. (A) Family pedigree. The

index patient (II.1; black-filled square) carries a de novo p.Met40Arg

missense mutation in REEP2. (B) Conservation of the mutated REEP2

residue across species (top) and human REEP1-4 proteins (bottom).

The single letter amino acid code is shown. A portion of the putative

hydrophobic hairpin domain is surrounded in green. The novel

missense mutation described here as well as the previously reported

p.Val36Glu SPG72 mutation are indicated at the top.
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close proximity to the only other reported autosomal

dominant REEP2 mutant (Fig. 1A).12 The fact that this is

a de novo mutation emphasizes that the possibility of

sporadic cases of dominant HSP must be considered in

clinical practice. Whether the disorder in this case results

from partial loss-of-function, haploinsufficiency or a

dominant-negative effect of the mutant REEP2 protein

remains unclear. Along these lines, siRNA-mediated

REEP2 depletion in COS7 cells leads to altered ER mor-

phology, and the pathogenic p.Val36Glu mutant REEP2

protein not only has impaired association with mem-

branes, but also inhibits the normal binding of wild-type

REEP2 to membranes. These data could be compatible

with both loss-of-function and dominant-negative patho-

genic mechanisms.

The families already published presented with different

inheritance patterns. The description of their symptoms

suggests that those carrying the heterozygous, missense

variant were less severely afflicted; those affected longest

with the disease were still able to ambulate without assis-

tance at the ages of 43, 55 and 61. In contrast, the com-

pound heterozygotes needed assistance in ambulation at

ages ranging from 6 to 23 years. Similarly, two young

children with pure HSP born of consanguineous parents

(family 1967) had homozygous p.Met1Thr mutations in

REEP2 predicted to destroy the protein translation initia-

tion site;13 this would very likely result in the absence of

REEP2 protein. Interestingly, though these children could

still walk unaided at the ages of 3 and 4 years (as of when

their cases were reported in 2014), they had symptom

onset in infancy.13 Taken together, these data suggest that

complete loss of protein activity from biallelic mutations

may be more deleterious overall than the heterozygous

missense changes. As more SPG72 cases are identified, the

functional sequelae of these different types of alterations

will become more apparent. Finally, this case also high-

lights the importance of a comprehensive approach in

diagnosing genetically-heterogeneous disorders such as

HSP in patients without clear family history or known

consanguinity.
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