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A B S T R A C T

Diabetic retinopathy is not just the most common complication of diabetes but also the leading cause of adult
blindness. Currently, doctors determine the cause of diabetic retinopathy primarily by diagnosing fundus images.
Large-scale manual screening is difficult to achieve for retinal health screen. In this paper, we proposed an
improved U-net network for segmenting retinal vessels. Firstly, due to the lack of retinal data, pre-processing of
the raw data is required. The data processed by grayscale transformation, normalization, CLAHE, gamma trans-
formation. Data augmentation can prevent overfitting in the training process. Secondly, the basic network
structure model U-net is built, and the Bi-FPN network is fused based on U-net. Datasets from a public challenge
are used to evaluate the performance of the proposed method, which is able to detect vessel SP of 0.8604, SE of
0.9767, ACC of 0.9651, and AUC of 0.9787.
1. Introduction

Accurate segmentation of the retinal vasculature is vital for diag-
nosing of many major diseases [1], for example, diabetes mellitus and
hypertension. Often, in the early stages of the disease process, the retinal
vessels develop lesions, such as Microaneurysms, excessive curvature,
and narrowing of the vessels. In the early screening phase, the health of
the retinal vessels can be determined by diagnosing their morphology.
However, the large amount of imaging data increases the workload of
physicians. The process is time-consuming and is accompanied by un-
avoidable manual errors (see Table 1).

Internationally, the use of artificial intelligence methods for assis-
ted diagnosis is widespread. Artificial intelligence-aided diagnosis
can avoid errors due to human operations and reduce the workload
of imaging physicians, which helps the community identify diseases
on a large scale. With the development of science and technology,
deep learning has achieved remarkable results in various research
fields. In the field of medical research, complex medical images can
affect doctors' diagnoses. Moreover, deep learning is superior in image
segmentation, image alignment, lesion detection, assisted diagnosis,
and image histology biomarker extraction, which can overcome the
difficulties of multiple differences in medical image types, complex
fusion, low signal-to-noise ratio, and the variability of biological
individuals.

Segmentation algorithms are classified into two categories according
to the learning mode: supervised and unsupervised learning.
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(1) Unsupervised learning refers to getting the relationship between
data based on a specific model, such as clustering, anonymous
data, and the relationship between features. Unsupervised
learning can be generally divided into two categories: matched
filtering methods and model-based methods. The matched filter-
based segmentation algorithm uses the correlated information
between the local image blocks and the filter kernel. It performs a
two-dimensional convolution operation on the retinal image
based on a two-dimensional Gaussian template to reproduce the
vascular structure in both width and direction. Chaudhuri et al.
[2] were the first to propose a two-dimensional matched filter
approach for retinal vessel segmentation, approximating the
retinal vessel cross-sectional map with a Gaussian curve. Azzo-
pardi et al. [3] proposed to use several different convolution
kernels to extract different filter features and then segment the
blood vessels using the extracted features. Zhang et al. [4] pro-
posed a multi-scale second-order Gaussian derivative filter in the
maximized directional fractional domain based segmentation
method. They evaluated the performance of their algorithm by
using six publicly available datasets, and results was experimen-
tally demonstrated that the method was able to segment the
delicate vascular structures and cross-sections of vascular struc-
tures. The model-based approach includes a vessel profile model
and a deformable model. In the vessel profile model, the profile of
the vessel cross-sectional intensity is considered as a Gaussian
curve. In the variability model, the primary profile method and
ber 2022
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Table 1. Segmentation results of different algorithms.

Type Methods SE SP ACC AUC

Unsupervised learning Zana [13] 0.6971 — 0.9377 0.8984

AI-Diri [ [14]] 0.7282 0.9551 — —

Miri [15] 0.7352 0.9795 0.9458 —

Fraz [16] 0.7152 0.9795 0.9430 —

You [17] 0.7410 0.9759 0.9434 —

Supervised learning Fraz [18] 0.7152 0.9751 0.9430 —

Marin [19] 0.7067 0.9769 0.9452 0.9588

Ricci [20] — 0.9801 0.9563 0.9558

Sohini [21] 0.7249 — 0.9519 0.9620

Oliveira [22] 0.8039 0.9804 0.9576 0.9821

Alom [23] 0.7792 0.9813 0.9556 0.9784

U-NET 0.7240 0.9848 0.9516 0.9735

Tamim [27] 0.7542 0.9843 0.9607 —

This article 0.8064 0.9767 0.9551 0.9787
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the level set-based method were used. It is generally considered
that the cross-sectional shape of the blood vessel conforms to a
Gaussian distribution. Since the model gives poor segmentation
results for low-resolution images, Gang et al. proposed an
improved approach based on the above model, using Gaussian
difference for modeling. Gonzalez et al. [5] proposed a joint
framework for not only retinal vessel but also optic disc segmen-
tation, which uses a graph cut method for segmenting the vessel
tree, followed by a Markov random field graph construction, and a
compensation factor method disc segmentation was performed.

(2) Supervised learning refers to training to obtain an optimal model
based on a known relationship between the input and output of a
data set, with both features and labels on the training data. Su-
pervised learning algorithms classify each pixel and determine
whether the pixel belongs to the vessel or the background. In
general, supervised methods tend to perform better than unsu-
pervised methods. In [6], support vector machine (SVM) classi-
fiers were proposed to be trained using manually designed
features, which showed a significant performance improvement
compared to unsupervised algorithm segmentation results. How-
ever, such methods are based on hand-designed features and have
poor generalization ability. In the research field of machine or
deep learning, many excellent algorithms have shown excellent
performance on publicly available datasets. In 2016, Laskowski
et al. [7] proposed a geometric transform-based data augmenta-
tion for training CNN networks to achieve vascular segmentation.
Lahiri et al. [8] proposed an auto-encoder-based inheritance
network architecture that implements vascular segmentation by
combining all auto-encoder outputs. To achieve vascular seg-
mentation. Maji et al. [9] utilized an ensemble of 12 deep CNN
networks and averaged the outputs of all networks as the final
input. Deep retinal images understood VGGNet [10] as the basis
for effectively solving retinal vascular and optic disc segmentation
using a whole convolutional network with two specific layers.

Compared with traditional algorithms, deep learning reduces human
intervention, builds better prediction models, and avoid bias due to the
lack of data.

This paper proposes an improved U-net model for retinal vessel seg-
mentation to address the shortcomings of the algorithms mentioned
above. Firstly, the data are pre-processed, and CLAHE performs image
enhancement, and then the enhanced image is sliced. The processed data
are fed into the network based on the U-net model and fused with the Bi-
FPN fusion network in the Efficient Det network. The fused network fuses
2

the features at the bottom layer with the features at the top layer, thus
improving the accuracy of accurate vessel segmentation. The results of
our experiments demonstrate that the network achieves better perfor-
mance on the retinal vessel segmentation task.

2. Methods

In this section, our proposed segmentation method will be described
in detail. The preprocessing includes grayscale transformation, normal-
ization, CLAHE, and gamma transformation in the training phase. To
increase the number of training samples, we use a slicing method to slice
the original image into small-sized image blocks of uniform size and
augmented samples as the input to the network.

2.1. Pre-processing

Fundus images have disadvantages such as uneven brightness, poor
contrast, and strong noise, requiring per-processing before input the
network for training. Figures 1(A) and 1(B) show the original fundus
image and manually labeled vascular map of the retinal vessels.

The fundus images are converted to grayscale and then normalized.
The conversion equation is shown as follows:

Igray ¼ 0:299� Ir þ 0:587� Ig þ 0:114� Ib (1)

Among them Ir , Ig andIb are the RGB channel components of fundus
images. As shown in Eq. (1), Igray is the result of processing. It is stan-
dardized and the standardization equation is shown in Eq. (2).

Inorm ¼ Igray � μ
σ

(2)

Among them, μ denotes the mean value,σ denotes variance.
Figure 2(B) is the gray scale of Figure 2(A).
Data augmentation can increase amount of the samples in the training

set, effectively alleviating model overfitting, and bringing stronger
generalization ability to the model. Data augmentation is generally
divided into three categories: geometric transformations, color space
transformations, and pixel point operations. Cropping is a common
method among geometric transformations and a long, more obvious way
to enhance data, which can augment data without destroying the accu-
racy condition. In this paper, based on this cropping property, we choose
to augment the data by random slicing.

The retinal dataset used in this paper contains 20 training sets and 20
test sets. To fit our improved network structure, the original images need
to be chunked. The patches which have been segmented are merged to
create the segmented blood vessel image at the end of the procedure.

The original image 565*565 is sliced into 48*48 size patches, as
shown in Figure 3, each obtained by randomly selecting its center within
the image. Some patches are located in the circular field of view, some
patches are located outside the circular field of view, and others are
located above the boundary. In this way, not only the dataset is enlarged,
but also the network can learn how to distinguish FOV boundaries.

2.2. Image enhancement

As shown in Figure 4(A)&(B), we use CLAHE (Contrast Limited
Adaptive Histogram Equalization) for image enhancement. The adaptive
histogram equalization algorithm expands the local contrast and displays
smooth details by performing histogram equalization in a rectangular
area around the currently processed pixel. Fortunately, CLAHE can
effectively limit the noise amplification generated in the process of
contrast expansion. It mainly contains image chunking, block linear
interpolation, and layer filtering, and blending operations with the
original image.



Figure 1. Original fundus image (A) and Manually labeled vascular map of the retinal vessels (B).

Figure 2. Original (A) and Grayscale (B) fundus image.
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2.3. U-net

The U-net consists of an input layer, a hidden layer, and an output
layer. Its structure is shown in Figure 5. The hidden layer can be divided
into an up-sampling and a down-sampling part, distinguishing decoders
and encoders. Down-sampling consists of convolution layer and pooling
layer, which play the role of path shrinking in the network and capture
global information. The up-sampling consists of convolutional and
deconvolution layers, which play the role of path expansion in the
network and locate pixel points. The output layer is an end-to-end
network that classifies each pixel point of the feature map with the
same size as the original image after up-sampling by the softmax [12]
activation function. That is, the input image is of the same size as the
output image.
2.4. Bi-FPN

The down-sampling layer part of the U-net network is used to extract
the features of the image. After several operations such as convolution
and maximum pooling, it makes the shallow layer information lost,
which is the main reason for the degradation of segmentation accuracy.
In order to combine the high and low resolution information better, this
paper incorporates the Bi-FPN network into the U-net network to form a
new network structure.

The main task of multi-scale feature fusion is to combine features at
different scales of resolutions and can improve segmentation
3

performance efficiently. Low-level features have better resolution and
contain more information on location and detail. High-level features
have low resolution and poor perception of details. The way to efficiently
fuse the features from different levels is the key to optimize the seg-
mentation model.

Model efficiency is crucial in computer vision. Bi-FPN is proposed to
pursue a more efficient multi-scale fusion method. Bi-FPN is used to
replace the skip connection, and the concept of weight is proposed to
balance the feature information of various scales better and improve the
efficiency of the model. The higher level of semantic information is more
able to help us segment the target accurately. Some of the fine target
information may be ignored when doing down-sampling operation in
deep images. The proposed multi-scale feature fusion network is a good
solution to this problem.

O ¼P
i

ωi

εþ
P

j
ωj
� Ii, we are implementing a ReLU procedure after every

ωi, by using ωi � 0 and in order to maintain stability of numerical values,
we set ε ¼ 0:0001 at a small value. Additionally, normalized exponential
function is not implemented in this procedure, and the weight value of
each normalized parameters is between range 0–1, so the efficiency of
this procedure is still very impressive [26].

The bidirectional cross-scale connections and the fast-normalized
fusion are both included in the Bi-FPN. In order to simplify the
example, at level 6, we demonstrated the two fused features for Bi-FPN.
As shown in Figure 6, the structure diagram shows the computational
steps in the middle of connecting each shallow feature to the output
feature of the corresponding height [26].



Figure 3. Data amplification.
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P6 td¼Conv
ω1 �P6 inþ ω2 �ResizeðP7 inÞ

ω1 þ ω2 þ ε
(3)
� �

P6 out¼Conv
�
ω

0
1 �P6 inþ ω

0
2 �P6 tdþ ω

0
3 �ResizeðP5 outÞ

ω0
1 þ ω0

2 þ ω0
3 þ ε

�
(4)

As shown in Eqs. (3) and (4), the intermediate characteristic param-
eters P6 td is at level 6 on the top to bottom route, and characteristic
parameters P6 out of the output is at same level as P6 td but on the
bottom to top path. The other features are performed in a similar manner.
We use depth wise separable convolution [24, 25] first for feature fusion,
then implement batch normalization and activation after each convolu-
tion [18, 26] to boost the efficiency.

Batch Normalization. With the increasing amount of neural network
layers, the networks need to learned more parameters. During the
training of U-net network, the data distribution of the subsequent
network layer will change with the parameters of the previous layer [29].
With the deepening of the network layer, these adverse changes are
Figure 4. Original (A) and En
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amplified and may reduce the speed of network convergence. In order to
defeat this shortcoming, BN layer was implemented before using ReLU
procedure [28]. BN layer can standardize and evenly distribute the
network layer data, and these new data will not have a significant impact
on subsequent layers, which can improve the convergence efficiency of
the network. In addition, BN layer has the effect of regularization, which
takes a positive effective for the transmission of gradient feedback, and
can help network avoid the over-fitting [29].

The neural network structure built in this paper is based on U-net
structure and Bi-FPN, which can extract blood vessels more effectively.
The network structure is shown in Figure 7. It uses U-net as the backbone
network and Bi-FPN as the feature network to transfer shallow infor-
mation at the input end down to the output end of the corresponding
height. The improved network structure inherits the symmetric structure
of the U-net network, and the hidden layer is also composed of up-
sampling and down-sampling parts. The difference is that the Bi-FPN
network can better fuse contextual detail features in the overall struc-
ture to avoid poor segmentation accuracy.
hanced (B) fundus image.



Figure 5. U-net structure.

Figure 6. Bi-FPN structure.
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Figure 7. Unet-Bi-FPN network model.

Figure 8. Evaluation index: ROC curve (A) and Precision-Recall curve (B).
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3. Experiments

3.1. Datasets

In this paper, we use the DRIVE [11] dataset. Images in the DRIVE
dataset were obtained from the Dutch Diabetic Retinal Screening Pro-
gram, using fundus images obtained with a 45-degree field of view (FOV)
Canon CR5 non-dilated 3CCD camera. The size of each fundus image is
768 � 584 8-bit color images. The FOV of each image in the dataset is
circular with a diameter of 540 pixels, and the corresponding FOV image
is given as a masked image. Among them, 33 are standard retinal images,
7 have mild lesions, and each image has a gold standard segmented by
hand by experts.

3.2. Experimental process

In model training, 20 images of the training set are sliced and divided
into 19000 patches, and 90% of them are selected for training in each
training round, and the remaining 10% are used for validation. After
6

slicing, the size of the images is 48*48 pixels, and the information of its
color space is retained, and the size is 48*48*3.

In this paper, the categorical cross-entropy function is used as the loss
function. As shown in Eq. (5), the cross-entropy evaluates how the
probability distribution obtained from the current training differs from
the actual distribution.

loss¼ �
Xn

i¼1

cyi1 log yi1 þ cyi2 log yi2 þ :::þ cyim log yim (5)

3.3. Evaluation methodology

Experiments were conducted to analyze and compare the perfor-
mance of the segmentation algorithm proposed in this paper with other
algorithms using evaluation indexes such as accuracy, sensitivity, speci-
ficity, precision, and AUC, which are defined as follows:

ACC¼ TPþ TN
TPþ TN þ FPþ FN

(6)



Figure 9. Comparison chart of experimental results.
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Precision¼ TP
TPþ FP

(7)
Recall¼ TP
TPþ FP

(8)

TP (True Positive), FP (False Positive), FN (False Negative), TN (True
Negative).

As shown in Eqs. (6), (7), and (8), we can see the relationship between
evaluation index and TP、FP、FN、TN.

As we can find in Figure 8 (A) ROC curve: It is a composite index
reflecting the continuous variables of sensitivity and specificity, and each
pointon the curvereflects theperceptibility to the samesignal stimulus.And
aswe canfind in Figure 8 (B) Precision-Recall curve: Take the precision rate
as the y-axis and the recall rate as the x-axis. The higher the precision rate
and the higher the recall rate, the more efficient the model algorithm is
proved to be, i.e., the closer the curve is to the upper right corner.

In this paper, the model training cycles are 20, and each cycle takes
about 41 s.TheoriginalU-netmodel has 150 training cycles, about 135 sper
training cycle. This experiment runs on a computer platformwithWindows
10andAnacondaas theoperating system,3.6GHz Intel(R)HDGraphics630
as the processor, NVIDIA TITAN Xp as the graphics card, and 32GB of
memory from Kingston. the experiment runs on Python 3.8 as the pro-
gramming language and Tensorflow 2.3.1 as the deep learning framework.
Tensorflow2.3.1. Themodel in this paper has reduced training time,mainly
because the Bi-FPN network can fuse the contextual feature details, which
enables the model to segment the results closer to the labels in the initial
training so that a higher accuracy can be achieved in the next training.

As can be seen from Figure 9, the performance of the algorithm in this
paper can basically segment all the retinal vessels compared to the
labeled map, and there are no missed and false detections at the turns and
ends of the vessels.

4. Conclusion

Semantic segmentation is an important branch of image processing
and machine vision. It classifies and judges each pixel of an image to
achieve accurate segmentation. U-net is a simple and efficient segmen-
tation model, which is suitable for training small data sets. In this paper,
we use the U-net network as the backbone network and replace the skip
connection with Bi-FPN to obtain a new neural network structure.
7

Experiments proved that the algorithm proposed in this paper is
outstanding in terms of sensitivity and accuracy when compared with
other algorithms under the public dataset DRIVE. We are confident that
the improved U-net architecture proposed in this paper can be more
suitable for medical image segmentation.
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