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Abstract: In the present study, Li2FeSiO4 (LFS) cathode material has been prepared via a modified
polyol method. The stabilizing nature of polyol solvent was greatly influenced to reduce the particle
size (~50 nm) and for coating the carbon on the surface of the as-mentioned materials (~10 nm).
As-prepared nano-sized Li2FeSiO4 material deliver initial discharge capacity of 186 mAh·g−1 at 1C
with the coulombic efficiency of 99% and sustain up to 100 cycles with only 7 mAh·g−1 is the difference
of discharge capacity from its 1st cycle to 100th cycle. The rate performance illustrates the discharge
capacity 280 mAh·g−1 for lower C-rate (C/20) and 95 mAh·g−1 for higher C-rate (2C).

Keywords: Li2FeSiO4; cathode; lithium batteries, polyol method

1. Introduction

An economic status of any nation has been scaled by consumption of electric energy. All
the countries are probing viable technology for electric energy storage devices from the intermittent
renewable sources. Complacency of the instantaneous demand can be fulfilled with the help of a storage
system. Solid state batteries have stored the electric energy in the form of a chemical reaction. Usually,
batteries comprises of the anode, cathode, separator and electrolyte [1–6]. This storage system was
highly recommended for replacing the combustion engines, because of its properties like more silent, no
CO2 emission, cost effective [7–10]. Battery technologies can be classified according to their intercalated
alkaline metals such as lithium [11–15], sodium [16], potassium [17], magnesium [18], etc. Among
these, lithium based technology is one of the promising candidate owing to its increased volumetric
and power density [19,20]. Cost and less lithium resources is a major drawback for implementing
the Li-ion storage system [21,22]. Hence, a special attention has been focused with respect to the
battery components. In batteries, the cathode ascertained capacity of the whole system (i.e., higher
amount of Li+, leads to boost up the capacity) [23]. The anode allows reversible insertion/extraction of
lithium ions, which was released from the cathode with the help of electrolyte (contain ions) through
the separator [24,25]. Among all the components, the cathode holds the predominant place to judge
the performance of the battery. Commercially used cathode material includes layered LiCoO2 [26,27]
exhibits higher voltage but more toxicity, spinel LiMn2O4 [28] provides excellent rate capability with
poor cycling. Olivine LiFePO4 [29,30] has good structural stability during cycling due to the presence
of polyanion and the only demerit is poor electronic conductivity. However, its theoretical capacity
is only 170 mAh·g−1. In order to achieve twice the theoretical capacity, polyanionic Li2FeSiO4 (LFS)
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was introduced by Nyten et al. [31], because of the charge of silicate anionic is higher than that of
phosphate. However, all other parameters are similar to phosphate. The orthosilicate exhibits better
thermal stability, because they possess a framework that comprises of strong covalently bonded Si–O,
which reduces the risk of ignition during cycling. However, the major demerit of the LFS cathode
suffered by the poor conductivity of order 6 × 10−14 S·cm−1, leads to control the utilization of its
full theoretical capacity [32]. The materials synthesized via solution based routes, low temperature
method offers nano-sized powder, creating more channels for the lithium diffusion path way, because
Li+ diffusion plays a significant role in the performance of the cathode, especially for commercial
application [33]. The coating of higher conducting materials like conductive carbon, metal oxide,
etc. was coated on the surface of the nano sized LFS. To date a lot of different synthesis approaches
have been followed to prepare phase pure Li2FeSiO4 in most applied solution based techniques
including sol-gel [34], hydrothermal [33], polyol [35], spray technology [36], super critical fluid [37],
solvo-thermal [38], the co-precipitation method [39], etc. Among these most cited hydrothermal
methods needs autoclave during the synthesis process, this is maintained at a particular pressure.
Hence it is so difficult to adopt this method for large-scale production. However, in the case of the
polyol method, it offers an ambient synthesis condition i.e., atmospheric pressure and higher degree of
crystallites with homogeneous distribution of particle. The cathode materials Li2FeSiO4 (LFS) capture a
wide attention due to its high theoretical capacity (of 332 for 2 Li+ and 166 mAh·g−1 for 1 Li+ diffusion),
safety and environmental benignity [40]. However, it has been suffered from poor practical capacity
attributed to the poor electronic conductivity and presence impurities, which were generated during
the synthesis process [32,41]. In order to control the impurities, each and every step of synthesis process
must be concerned. Initially, the solvents such as water, ethanol and methanol used to hydrolysis the
tetra ethoxysilane, which is the major starting material for silicate. During condensation the silicon
oxide particles aggregate together by using the as-mentioned solvent, but the glycol-based solvent
minimizes the aggregation of particles. Due to the stronger polarity nature of ethylene glycol, it
makes a weaker hydrophobic effect. Thus fast hydrolysis kinetics and well homogeneous morphology
has been obtained. According to stokes Einstein relation D = 1

η (where D: diffusion constant and η:
viscosity of the solution) the much higher viscous of ethylene glycol 21 mPa s, 20 ◦C as compared
to water 1.0087 × 10−3 mPa s, 20 ◦C decrease the diffusivity of metal ions in the solution like Fe2+

and Li+, which regulate the direction of crystal orientation and growth [42,43]. The different types of
polyalcohol solvents include ethylene glycol, di, tri, tetra and poly ethylene glycol. While using tetra
and ethylene glycol as a solvent the particle obtained with nano sized towards inhomogeneous particle
distribution. Hence, diethylene glycol is providing homogeneous particle. Extraordinary architecture
electrode materials with spherical morphology in the form of nanosized particle with carbon composite
could be easily yielded by using the polyol method and so on.

In this regard the low temperature method has been adopted to obtain nanoparticle via polyol.
The major advantage of polyol over hydrothermal is that polyol works in atmospheric pressure.
Particularly, the low temperature method facilitates controlled morphology compared with the high
temperature method. This work discloses the preparation and the half-cell performance of spherically
symmetric Li2FeSiO4/C particle using the polyol method, since it is an energy efficient route. This
method offers worthy homogeneity and reduced particle size. The structural, elemental, morphological
and electrochemical performances of the Li2FeSiO4/C materials have been characterized by XRD, XPS,
SEM and galvanostatic charge–discharge analyses.

2. Materials and Methods

LFS/C was prepared by the polyol method using diethylene glycol (DEG) (99%, Alfa Aesar) as
a solvent [44]. Stoichiometric amounts of iron (II) acetate (Alfa Aesar), tetraethyl orthosilicate (99%,
Alfa Aesar) and lithium acetate (99% Alfa Aesar) were mixed and dissolved using DEG and stirred by
adding few drops of H2SO4 to catalyze the reaction. The solution was reflexed overnight at 245 ◦C
to obtain nano-sized LFS/C particles. This solution was centrifuged to separate the precipitant. The
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obtained precipitate was dried at 150 ◦C to get rid of the solvent. Then the dried resultant powder
was sintered at 600 ◦C for 8 h in Ar atmosphere and was quickly transferred to the glove box to
avoid oxidation.

An X-ray diffraction (XRD) measurement was performed to investigate the crystallographic
information using powder X-Ray Diffractometer (X’Pert Pro-PAnalytical, The Netherlands, 2007)
with monochromated Cu–K-Alpha X-ray source. The elemental analysis was analyzed with the
help of X-ray Photoelectron Spectroscopy (XPS) (PHI-VERSAPROBE III, Japan, 2018). The vibration
spectrum was analyzed by Fourier Transform Infrared (FT-IR) spectrophotometer (Thermo Nicolet 380,
USA, 2008). The formation of carbon was identified Raman Spectrometer (SEKI Corporation, Japan,
2011). Morphological images were recorded using High-Resolution Transmission Electron Microscopy
(HR-TEM) (JEOL-2100+, Japan, 2018) and Field Emission Scanning Electron Microscope (FE-SEM)
(Quanta FEG 250, USA, 2012). Galvanostatic charge/discharge measurement was performed in the
potential range from 1.5 to 4.5 V vs. Li/Li+ with a Bio-Logic battery cycling station BCS 815 with an EIS
system (Bio-Logic, France, 2018).

The coin cells (2032 type) were assembled inside an argon-filled dry-box with lithium metal as the
anode, Celgard 2400 as the separator and 1 mol L−1 LiPF6 in EC:DMC:EMC (1:1:1 by volume) as the
electrolyte. The cathode slurry was made by mixing active materials, carbon black and poly(vinylidene
fluoride) binder in a weight ratio of 80:10:10 in the solvent N-methyl-2-pyrrolidone (NMP) and the
loading mass of the electrode was 3.2 mg·cm−2. Then the slurry was coated uniformly on aluminum
foil, and then dried at 120 ◦C for at least 6 h in vacuum. Finally, the as-prepared cathodes were used to
assemble cell couple to perform C/D and EIS analyses.

3. Results

The crystalline structural information was studied using XRD analysis and the diffraction patterns
of the samples are shown in Figure 1a.
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All the diffraction peaks could be agreed to an orthorhombic Li2FeSiO4/C with the space group
Pmn21 and the lattice parameters were a = 0.628 nm, b = 0.533 nm and c = 0.497 nm and β = 98.92◦ [45].
Well-defined sharp intense diffraction peaks indicate high degree of crystalline nature. Figure 1b
shows the FTIR spectrum of Li2FeSiO4/C absorption peak around 900 cm−1, indicating the stretching
vibration of the [SiO4]4− polyanion group. Two peaks around 586 and 530 cm−1 were identified as the
bending vibration of the same polyanion. It is necessary to check the presence of impurity because of
the Li2SiO3 was easily nucleate during the synthesis process [46]. A peak at 780 cm−1 was found to
be absent, which dictates the absence of impurity Li2SiO3 and it affirms that the as-prepared LFS/C
had a pure phase. Besides, the peak appeared at 815 cm−1 was assigned due to the presence of SiO4,
well matched with the reported one [47]. Raman spectroscopy was performed to study the chemical
structure LFS/C. Figure 1c shows that there were two peaks that appeared at 1330 and 1590 cm−1,
which were attributed to D-band sp3–type and G-band sp2 type respectively. The magnitude of the
ratio of intensity of D and G bands gives degree of graphitization in carbon; i.e., lower magnitude
possesses higher order of graphitization [48]. For as-prepared LFS possessed a value of

( ID
IG

= 0.93
)
,

which gave rise to high electronic conduction between the particles. The enhanced intrinsic electrical
conductivity of LFS/C has favored in improving the electrochemical activity [49]. Further confirms
with the help of EIS studies.

XPS has been used to investigate the oxidation state of elements presence on the surface of LFS
electrode. The XPS spectrum for the as-prepared sample is shown in Figure 2a–d. The survey spectrum
of the LFS electrode cathode materials hold the characteristic peaks of Fe, O, C, Si and Li as shown
in Figure 2a. Further, Figure 2b shows the binding energy of O 1s as 531.43 eV, corresponded to
the O2− state of oxygen. The Fe 2p state reveals that there were two peaks at 712.42 eV for Fe 2p1/2

and 725.93 eV for Fe 2p3/2 due to the presence of Fe2+, which was well matched with the reported
values [50] in Figure 2c. Figure 2d illustrate the binding energy peak at 284.92 eV, which could describe
the presence of C 1s, which was in good agreement with the literature [51]. At the same time, Raman
analysis provided some preliminary idea of the presence of carbon on LFS [52].
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The actual particle size, crystallite phase and presence of carbon on the surface of as-synthesized
LFS electrode material, were investigated through HR-TEM and shown in Figure 3. From Figure 3a,b
shows the existence of nano particles about 50 nm in size with spherical morphology. Further, it is
clearly noticed that about 15 nm of carbon was found over the surface of LFS, it is similar with a
previous report [53], which was in favor of the fact that the residual polyol solvent (DEG) underwent
pyrolysis during sintering at 600 ◦C. Hence, the pyrolysis process initiated carbon formation and acted
as an additive for surface modification of LFS and also built a conductive carbon network among
LFS particles. The network enhanced the electronic conductivity of LFS electrode. It was already
confirmed with the help of Raman analysis by using the ratio of IG and ID. Subsequently, it was
identified from Figure 3c, wherein the two kinds of crystal lattice fringes with lattice spacing of about
0.513 and 0.265 nm were observed, which corresponded to the orthorhombic Li2FeSiO4 with the plane
(101) and (202), this result coincided with the XRD plane. Figure 3d confirms the polycrystalline nature
of Li2FeSiO4, which was obtained via the polyol route [54].
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Figure 4a,b illustrates the rate performance of the as-prepared cathode material LFS/C. It delivered
the discharge capacity of 280, 262, 207, 154, 95 and 270 mAh·g−1 at different C rates of C/20, C/10,
C/5, 1C, 2C and C/20 up to 10 cycles of each current density. These values were comparatively higher
with the previous report [55]. Even though, LFS electrode was subjected to high current density of
2C, it retained the low C-rate due to structural stability of the material. After several C-rates, the
discharge capacity was reached about 270 mAh·g−1 at C/20, respectively. The average coulombic
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efficiency and capacity retention is revealed in Figure 4b. It can be clearly show that about 99% of
coulombic efficiency was obtained. In Figure 4b shows the rate capability average capacity retention
relative to the highest capacity (initial lithiation) from a lower C-rate (C/20). The capacity retention of
the as-prepared electrode was listed as follows 98%, 92%, 71%, 53% and 31% at lower to higher C-rate
C/20, C/10, C/5, 1C and 2C respectively. It is noted that the lower particle size increased the diffusion
channel of lithium.
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Figure 4. (a) Rate performance, and (b) columbic efficiency and capacity retention of Li2FeSiO4/C.

The galvanostatic charge discharge analysis has been performed in the potential range 1.5–4.5V
at 1C-rate. Figure 5a,b show that discharge capacity of the LFS at 1st and 100th cycle was 186
and 179 mAh·g−1 (with the coulombic efficiency of 99% and sustained even up to 100 cycles with
only a difference of 7 mAh g-1, initiated from the 1st and 100th cycle) respectively. The capacity
retention of 96% was attained for this material, which was comparatively higher than reports for
other orthosilicates [54,55]. At the same time, the initial charge peaks rose at higher voltages of
approximately 4.3 V, and the discharge peaks raised at lower voltages of about 1.82 V, correspond to the
potential plateau in the charge–discharge curves, respectively [43]. It provides better discharge capacity,
coulombic efficiency and capacity retention as compared to previous reports [56–59]. The betterment in
the performance of Li2FeSiO4 was obtained with the uniformly nano architecture symmetry spherical
particles with proper loading of carbon. Comparable also with the report for Li2FeSiO4 synthesized
using the polyol method [60]. From EIS, the Nyquist plot of LFS/C (Figure 6a) reveals that the Rct value
of fresh cell and 10th cycle was 7.5 and 19 Ω. Increases in the values was due to the formation of solid
electrolyte interface upon cycling [52]. The unwanted side reaction taken place at the electrode and
electrode interface in the half cell, led to increase the charge transfer reaction [61]. Furthermore, the
lithium ion diffusion coefficient (DLi+) was calculated using the Warburg impedance factor σ, which
was obtained from the slope of Figure 6b.

DLi+ =
R2T2

2A2 n2 F4 C2 σ2
(1)

where, R is the gas constant (8.314 J·mol−1
·K−1), T is the absolute temperature (298 K), n represents

the number of electrons transferred, F represents Faraday constant (96,485.33 C·mol−1), A means the
surface area of the electrode (0.785 cm2) and CLi+ (0.0390 mol·cm−3) means the concentration of lithium
ions. σ is the Warburg factor by using the diffusion coefficient of as prepared LFS was measured as
1.67 × 10−16 cm2

·s−1. It is an order of magnitude higher than reported phase pure materials [62,63] that
leads to increase the capacity during cycling.
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Figure 5. (a) Cyclic performance and (b) galvanostatic charge discharge profile of Li2FeSiO4/C.
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Figure 6. (a) Electrochemical impedance spectrum of Li2FeSiO4/C at fresh and 10th cycle (b) lithium
diffusion coefficient for LFS.

It is noticed from Figure 7a,b that there not many apparent changes were observed in the
electrode materials even after being cycled for 100 times. Figure 7a,b shows the SEM images of
the LFS/C nanocomposite after 100 cycles, which depicts that the particles were unaffected upon
lithiation/delithiation. This reveals the appealing structural stability of LFS/C electrodes during cycling.
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Figure 7. (a,b) SEM image of Li2FeSiO4/C after the 100th cycle (post-mortem).

Figure 8a,b and the inset shows the TEM images of LFS/C nano composite after 100 cycles. This
divulges that the LFS particle was surrounded by the carbon layer, which sustained the crystallite
nature and morphology of the material upon cycling.
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Figure 8. (a,b) TEM image of Li2FeSiO4/C after the 100th cycle (post-mortem).

The XPS spectra for the post-mortem sample are shown in Figure 9a–d. The survey spectrum of
the LFS after 100 cycles held similar characteristic peaks as compared to the as-prepared one, except
the presence of fluorine (F 1s) peak at 686 eV, which was due to the presence of electrolyte (LiPF6)
(Figure 9a). As well, the peak of Fe 2p3/2 was vanished. It was expected due to the solid electrolyte
interface (SEI) formation on the surface of the materials. However, carbon peaks revealed the presence
of C=O, C–C and C–Fe respectively at 289, 285 and 283 eV [51].
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Figure 9. (a) Survey, (b) O 1s, (c) Fe 2p and (d) C 1s XPS spectra of Li2FeSiO4/C after the 100th cycle
(post-mortem).
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4. Conclusions

The Li2FeSiO4 cathode material with an orthorhombic structure was successfully synthesized via
the polyol method. Evasion of the impure phase of Li2SiO3 was confirmed via FTIR, Raman and XPS
results. TEM demonstrates that the as-prepared cathode material exhibited nano particles about 50 nm
in size with spherical morphology with the presence of carbon coating on LFS and the quality of the
carbon in term of sp2 (ordered graphite) and sp3 (disorder graphite) hybridization were identified
by using the G and D band, which was observed from the Raman spectrum. Besides, the higher
graphitization band enhanced the electronic conductive of LFS. The XPS result proved the divalent
state of Fe, therefore the impure phase of Fe was controlled by the polyol solvent. Li2FeSiO4/C with thin
carbon wiring cathode materials achieved 99% coulombic efficiency at 1C with the discharge capacity
of 186 at the 1st cycle and 179 mAh·g−1 at the 100th cycle. This was achieved only for nanosized
uniformly highly symmetry spherical particles of the as-prepared electrode materials with proper
utilization of carbon for tailoring the particle with the diffusion coefficient of 1.67 × 10−16 cm2

·s−1. This
study recommended the suitability of Li2FeSiO4 cathode for high rate application as evident from the
rate performance.
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