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MOTIVATION Dimensionality-reduction tools, such as t-SNE and UMAP, are frequently used to visualize
highly complex single-cell datasets in single-cell sequencing, flow cytometry, andmass cytometry. Despite
the ubiquity of these approaches and the clear need for quantitative comparison of single-cell datasets, t-
SNE and UMAP have largely remained data visualization tools, with a lack of robust statistical approaches
available. We sought to fulfill the need for a statistical test to evaluate the difference between dimension-
ality-reduced datasets and provide a quantification of differences between multiple datasets.
SUMMARY
Theadventofhigh-dimensional single-cell datahasnecessitated thedevelopmentofdimensionality-reduction
tools. t-Distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projec-
tion (UMAP) are the two most frequently used approaches, allowing clear visualization of complex single-
cell datasets. Despite the need for quantitative comparison, t-SNE andUMAPhave largely remained visualiza-
tion tools due to the lack of robust statistical approaches. Here, we havederived a statistical test for evaluating
the difference between dimensionality-reduced datasets using the Kolmogorov-Smirnov test on the distribu-
tions of cross entropy of single cells within each dataset. As the approach uses the inter-relationship of single
cells for comparison, the resulting statistic is robust andcapableof identifying truebiological variation.Further,
the test provides a valid distance between single-cell datasets, allowing the organization of multiple samples
into adendrogram for quantitative comparison of complexdatasets. These results demonstrate the largely un-
tapped potential of dimensionality-reduction tools for biomedical data analysis beyond visualization.
INTRODUCTION

Single-cell technologies are capable of generating vast datasets

where multiple parameters (tens to thousands) are assessed on

large numbers of cells (hundreds to tens of millions). With the

rapid advance of these technologies, increasing the ease of

data generation while decreasing the cost,1 data analysis ap-

proaches are rapidly becoming the limiting factor.2 Low-dimen-

sional visualizations are an attractive entry point to single-cell

analysis, with dimensionality-reduction tools providing an over-

view of the data. Beyond the science communication advan-

tages of low-dimensional representation, such exploratory ana-

lyses often identify pattern distortions worthy of detailed

analysis. Unfortunately, there is a shortage of statistical tools
Cell Rep
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with which to detect such pattern distortions, forcing the use

of subjective assessment by ‘‘eye balling’’ the data.

Traditional approaches, such as principal-components anal-

ysis (PCA) and multidimensional scaling (MDS) produce linear-

scaled, low-dimensional representations, which are of high utility

for comparing datapoints that aremost different from each other.

By contrast, the structure of most single-cell experiments places

the emphasis on identifying cells that are highly similar to each

other; for these processes, non-linear approaches provide supe-

rior resolution. t-Distributed stochastic neighbor embedding (t-

SNE) is the most commonly used non-linear dimensionality-

reduction algorithm for single-cell biology. In its common usage

for visualizing high-dimensionality single-cell data, the algorithm

starts with the single cells distributed at random points along a
orts Methods 3, 100390, January 23, 2023 ª 2022 The Author(s). 1
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Gaussian distribution in transformed space. In an iterative pro-

cess, the cellsmove along a cost gradient, which provides a pen-

alty for mismatch between the distances between two cells in the

original high-dimensional space versus the representational low-

dimensional space.3 When sufficient iterations have occurred to

reach stability, the outcome produces clusters of similar cells

based on the input data. Membership of a cluster indicates

shared properties; however, the non-linear nature of the penalty

cost does not allow relationships to be inferred by the relative

positioning of the clusters.

The wide-scale use of t-SNE to visualize single-cell datasets

has spurred the development of alternative non-linear dimen-

sionality-reduction tools. Uniform manifold approximation and

projection (UMAP) takes a similar iterative approach in posi-

tioning cells based on mismatch between high- and low-dimen-

sional data; however, it uses a distinct mathematical basis for the

calculations. Cell positions are calculated in topological space,

with mismatch between manifolds driving the iterative process.4

While the results are broadly consistent with t-SNE visualization,

UMAP has superior run times and is argued to better preserve

the global distances between cell clusters,4 although this is

due to the choice of initialization defaults rather than the UMAP

algorithm.5 Density-preserving SNE (den-SNE) and densMAP

aremodifications of t-SNE and UMAP, respectively, that attempt

to solve the problem inherent to these approacheswhereby clus-

ter size is driven by the number of cells in the cluster. den-SNE

and densMAP use an auxiliary function to optimize cell density

between high- and low-dimensional space, with the size of clus-

ters in the resulting low-dimensional plots reflecting the degree

of heterogeneity present in the cluster.6 Additional non-linear

tools have been built, such as TMAP,7 to deal with limitations

of t-SNE when applied beyond the single-cell space.

The near ubiquity of t-SNE or analogous tools in the visualiza-

tion of single-cell sequencing data demonstrates the utility of

low-dimensional representations of complex data. Despite this,

t-SNE is generally not used as an analytical tool, with downstream

analysis most commonly based on subsetting data and treating

as pseudo-bulk populations. t-SNE and UMAP representations

are used primarily as a way of displaying high-parameter data.

Both techniques, however, use K-nearest neighbor (KNN)

graph-based metrics to maintain the local relationships of points

from the original high-parameter space, thus generating good

representations of the data structure while avoiding distortions

caused by asymmetry and outliers. t-SNE and UMAP therefore

carry important information about the high-parameter data struc-

ture that is lost in downstreamcluster analysis. Here, we sought to

develop a statistical replacement for the ‘‘eye-balling’’ approach
Figure 1. A cross entropy test provides a robust statistical test for t-S

The MUS flow cytometry dataset was used to test the sensitivity of the cross en

(A) Three technical replicates of a single splenocyte sample were plotted on a t-S

shown.

(B) t-SNE plots of splenocytes from three individual age-/sex-matched mice (bio

(C) t-SNE plots from lymph nodes, spleen, and tissue (small intestinal lamina pro

(D) Two independent t-SNE runs of lymph node cells. p values for cross entropy

(E) Cumulative distribution function of p values obtained from 200 comparisons

parison with uniform distribution using KS test.

See also Figure S1.
to identifying different patterns present in the output of t-SNE

andUMAPprojects. Taking advantage of cross entropy as amea-

sure of the relationship between multiple datapoints (e.g., the co-

ordinates of individual cells following a dimensionality reduction),

we developed a cross entropy test allowing robust statistical

comparisons of t-SNE representations. The test has appropriate

sensitivity, with the identification of biological differences and

the dismissal of difference in technical replicates, biological repli-

cates, or repeat t-SNE runs. The test responds to differences in

either inter-cluster frequency or intra-cluster phenotype shifts,

and differences between multiple t-SNE plots can be quantified

for the production of dendrograms. The cross entropy test is

broadly applicable to single-cell technologies, including flow cy-

tometry, mass cytometry, and single-cell sequencing, and can

be performed on either t-SNE and UMAP transformations,

providing a highly versatile statistical tool to the single-cell toolkit.

RESULTS

A cross entropy test provides a robust statistical test for
t-SNE comparison
t-SNE is an iterative algorithm for dimensionality reduction. In its

common usage for visualizing high-dimensionality single-cell

data, the cost gradient of t-SNE places greater weight on pairs

of cells close to each other, with medium- and long-range pairs

ignored. The low-dimensional representation of high-dimensional

data makes t-SNE an attractive visualization tool, yet its value as

an analytical tool has been hampered by the paucity of statistical

tests.We sought to derive a statistical test capable of distinguish-

ing biological differences in single-cell t-SNE representations

while being robust against false detection of differences in tech-

nical replicates or the seed-dependent variation in t-SNE gener-

ation. As the t-SNE algorithm is driven by the cross entropy of the

individual cells in the dataset, and t-SNE fixes the average point

entropy, each t-SNE can be considered a distribution of cross en-

tropy divergences. Deriving a distribution of cross entropy diver-

gences per t-SNE plot therefore allows the use of the

Kolmogorov-Smirnov (KS) test to evaluate the degree of differ-

ence between two or more t-SNE plots (see STAR Methods).

A robust t-SNE statistical test should (1) reliably fail to detect dif-

ferences when comparing technical replicates; (2) reliably fail to

detect differences when comparing biological replicates; (3) reli-

ably identify differenceswhen comparing different biological sam-

ples; and (4) not get fooled by different t-SNE runs on the same

sample. The cross entropy test was beta tested by collaborating

immunologists on >130 datasets over the course of 24 months

of validation. We initially focused on flow cytometry datasets as
NE comparison

tropy test.

NE with FlowSOM clustering in overlay. p values for cross entropy testing are

logical replicates). p values for cross entropy testing are shown.

pria). p values for cross entropy testing are shown.

testing are shown.

of independent t-SNE runs of the same lymph node sample. Statistical com-
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Figure 2. LN provides a quantitative compar-

ison of different t-SNE visualizations

In order to create a series of samples with defined

degrees of biological difference, we started with the

spleen and tissue (small intestinal lamina propria)

samples from the MUS sample set and generated

two artificial samples, one composed of 90%

spleen and 10% tissue cells (spleentissue) and one

composed of 10% spleen and 90% tissue cells

(tissuespleen).

(A) t-SNE plots showing spleen, spleentissue, tis-

suespleen, and tissue datasets.

(B) Dendrogram based on the LN cross entropy

distance.
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the very high cell number achievable by flow cytometry provides

superior ability to challenge and validate a statistical test. As an

example of the robustness observed, we present here a high-

dimensional flow cytometry dataset based on immunological

profilingof lymphocytes fromthe lymphnodes, spleen, and tissues

from the C57BL/6 inbredmouse strain (MUSdataset). This design

allows us to compare technical replicates (splitting a single sam-

ple), biological replicates (comparing analogous samples from

different mice), and biological samples (comparing lymphocytes

fromdifferent tissuesof thesamemice).First, to test for robustness

in technical replicates,wecompared the t-SNEplots generated by

splitting a single sample of splenocytes with FlowSOM clustering,

allowing comparative visualization of cell identity (Figure 1A). Visu-

ally similar plots were generated, with cross entropy test values

showing p values of 0.370–1, supporting the null hypothesis of

no difference (Figure 1A). Second, to test for robustness in biolog-

ical replicates,wecompared the t-SNEplotsgeneratedbymultiple

samplesof splenocytes fromage-/sex-matchedmice.Again, visu-

ally similar plots were generated, with the cross entropy test p

values of 0.202–0.636 supporting the null hypothesis (Figure 1B).

Third, to test for the capacity to identify true biological differences,

we compared the t-SNE plots generated on lymphocytes profiled

from the spleen, lymph node, and tissues of mice. Lymphocytes

from the lymph nodes and spleen are phenotypically similar, but

the relative proportions of each population vary between the sites,

while non-lymphoid tissue lymphocytes are phenotypically

distinct. t-SNE visualizations mirrored this biological background

knowledge,withhighly significant cross entropy test valuesacross

each comparison (Figure 1C). Fourth, we produced independent

runs of t-SNE generation on the lymph node sample, generating

similar t-SNEplotswith thecharacteristic rotational symmetry (Fig-

ure 1D). Despite the visual disparity being greater than the highly

significant spleen-lymph node comparison, the cross entropy

test gave a test p value of 0.585, supporting the null hypothesis

(Figure 1D). Multiple runs of this false comparison gave an appro-
4 Cell Reports Methods 3, 100390, January 23, 2023
priate sensitivity of the cross entropy test,

with neither over- nor under-reporting of

false positives (Figure 1E). Furthermore,

we find that the cross entropy test is robust

to changes in t-SNE settings, such as per-

plexity, iteration values, or analysis of inde-

pendent runs (Figure S1). Together, this

example dataset demonstrates the robust
ability of the cross entropy test to distinguish biological signal

from noise.

Calculation of relative distance between t-SNE
comparisons
A key advantage of the utilization of the K-S test in the cross en-

tropy test is the ability to calculate the LN distance, which can

be used as a measure of the difference between t-SNE plots. In

order to test the ability of the LN distance to correctly assign dis-

tances between t-SNE plots, we created two artificial datasets of

known distance from the splenic and tissue flow cytometry data.

First, we created a spleentissue dataset where 90% of the events

were extracted from the spleen sample and 10% of events were

extracted from the tissue sample prior to concatenation to create

a single merged sample. Second, we created the reciprocal tis-

suespleen dataset with 90% tissue events and a 10% splenic event

spike in. Generation of t-SNEplots using the parental samples and

constructed spike-in samples provides visual confirmation of the

intermediate status of the artificial datasets (Figure 2A). Calcula-

tion of the LN distance allowed the construction of a dendrogram

that correctly assigned spleentissue as biologically closer to spleen

and tissuespleen as biologically closer to tissue (Figure 2B). This

demonstrates the LN distance as a tool for gauging the relative

closeness of t-SNE plots when comparing multiple samples.

A cross entropy test responds to both quantitative and
qualitative changes in single-cell phenotype
Next, we sought to determine the sensitivity of the cross entropy

test to biological differences based on inter-cluster frequency

versus intra-clusterphenotype.Currently,mostsingle-cell analysis

ultimately measures either the frequency of individual clusters

(typically annotated based on FlowSOM8 or similar clustering

tools9) or treats individual clusters as pseudo-bulk populations

for comparison of gene/protein expression changes. In principle,

as t-SNE incorporates the full phenotypeof individualcells,auseful
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t-SNE-based statistical test shouldbe sensitive toboth changes in

inter-cluster frequency and in intra-cluster phenotype. To test this,

we generated artificial datasets derived from the MUS dataset of

lymphocytes from the spleen and lymph node, which exhibit

changes in both inter-cluster frequency and phenotype. First, we

used selective downscaling to create a lymph%spleen dataset

where the number of cells in each major FlowSOM cluster were

normalized to match those in the spleen dataset while only using

cells from the lymph node data. Comparison of the spleen sample

with the rescaled lymph%spleen sample generated t-SNE plots with

cluster frequencies normalized between spleen and lymph node

(LN) (Figure 3A). Despite this, the cross entropy test identified the

samples as significantly different (Figure 3B) based on the pheno-

type difference within clusters (Figure 3C). Next, we created a

reciprocal artificial, spleen%lymph, taking biological replicates of

the spleen sample and selectively downscaling populations to

create cluster frequencies similar to that of the LN (Figure 3D). To

determinewhether the cross entropy test could detect differences

solely based on cluster frequency, we compared spleen with

spleen%lymph. The test found significant differences between the

two samples (Figure 3E) despite identical phenotypes (Figure 3F).

These results demonstrate that the cross entropy test is sensitive

to both qualitative and quantitative changes between clusters.

The cross entropy test has broad utility in comparison of
dimensionally reduced single-cell datasets
Having demonstrated the validity of the cross entropy test on a

mouse-based, high-dimensional flow cytometry panel, we sought

to test it on the independent single-cell technologies of mass cy-

tometry and single-cell sequencing from human samples. We

used available datasets generated from healthy humans and pa-

tients with COVID-19 based on mass cytometric analysis of the

peripheral blood10 and 10x single-cell sequencing analysis of

bronchoalveolar lavage.11 Using the mass cytometry dataset,

we compared peripheral blood lymphocyte subsets from 12 pa-

tients at different time points, namely admission to the intensive

care unit (ICU), during their stay at the ICU (intermediate), and

upon discharge from the ICU. We identified major subsets based

on characteristicmarker expression, with the dataset reproducing

key features of severe COVID-19, such as increased neutrophils

and decreased CD4+ as well as CD8+ T cells12,13 (Figure 4A).

The LN distance between the three time points suggests that

the overall immune landscape during the ICU staymore closely re-

sembles that of the admission time point (Figure 4A). However,

when performing analysis of the monocyte subset alone, we

observed a closer resemblance of the intermediate time point to
Figure 3. Cross entropy test detects both qualitative and quantitative

In order to create a series of samples with biological difference restricted only to q

samples from theMUS sample set and generated artificial samples. Artificial samp

sample, then downscaling to match the new proportions and concatenating to

clusters were rescaled such that each cluster was the same frequency as the an

clusters were rescaled to the same frequency as the analogous cluster in LNs (s

(A) FlowSOM cluster frequencies in spleen and LN%spleen samples.

(B) t-SNE plots of in spleen and LN%spleen samples. p values for cross entropy te

(C) Bar chart showing selected mean fluorescence intensity (MFI) values per clus

(D) FlowSOM cluster frequencies in spleen, spleen%LN, and LN samples.

(E) t-SNE plots of spleen%LN and spleen samples. p values for cross entropy tes

(F) Bar chart showing MFI values for markers in clusters from spleen%LN and spl
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that of discharge (Figure 4B). These results are in accordance

with findings from the original publication, generated through

traditional gating and marker analysis, as well as other studies

that report monocytes as the first immune population to recover

following severe COVID-19.10,14 Turning to the single-cell

sequencing dataset, we used a 10x single-cell sequencing com-

parison of bronchoalveolar lavage from patients with COVID and

patients with non-COVID pneumonia.11 Using the annotated cell

clusters, we compared the transcriptional profile of COVID with

non-COVID pneumonia cells for each of the epithelial, neutrophil,

monocyte/macrophage, CD4 T cell, CD8 T cell, dendritic cell, B

cell, and natural killer (NK) cell clusters (Figure 4C). Highly signifi-

cant changeswere observed in the t-SNE cross entropy of COVID

versus non-COVID epithelial, neutrophil, monocyte/macrophage,

CD4 T cell, and CD8 T cell, in accordance with the detailed clas-

sical analysis used.11 Use of the LN distance (Figure 4D) identified

the largest change being in the neutrophil compartment, consis-

tent with the results from multiple studies,11,15,16 and found the

degree of change in CD8 T cells to be greater than that observed

in CD4 T cells, again consistent with traditional analysis.11

Together, these results demonstrate that the cross entropy test

is compatible with t-SNE analysis generated by multiple indepen-

dent technologies, with a simple test recapitulating many of the

key features identified through high-depth traditional methods.

The cross entropy test accurately detects differences in
comparisons of UMAP dimensionally reduced single-
cell datasets
Recently, alternative non-linear data visualization tools have

been generated for single-cell analysis. UMAP performs the

same basic functions as t-SNE with regards to using two dimen-

sions to separate cells based on complex multidimensional

phenotype data.4 Despite the different mathematical basis for

generating the dimensionality reduction, cross entropy dictates

the separation of UMAP as well as t-SNE. We therefore per-

formed validation tests for the cross entropy test on UMAP rep-

resentations. Using the MUS dataset, we produced UMAP plots

comparing technical replicates (Figure 5A), biological replicates

(Figure 5B), biological differences (Figure 5C), and repeat UMAP

runs (Figure 5D). In each case, the cross entropy test produced

the appropriate conclusions: failing to detect significant differ-

ences between technical and biological replicates while appro-

priately detecting differences in biologically distinct samples.

The cross entropy test was also appropriately powered, with

neither over- nor under-sensitivity detected (Figure 5E). As with

the utility in the t-SNE test, the UMAP cross entropy test
changes in single-cell datasets

ualitative or quantitative changes, we started with the spleen and lymph node

les were generated by first defining and exporting the clusters in each parental

reconstruct the artificial sample. This resulted in a sample where lymph node

alogous cluster in spleen (LN%spleen) and the reciprocal sample where spleen

pleen%LN).

sting are shown.

ter for spleen and LN%spleen samples.

ting are shown.

een samples.
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responds to both shifts in subcluster cellular phenotype and

cluster frequency, using the artificial samples spleen%LN and

LN%spleen, comparedwith the parental spleen sample (Figure 5F).

Cross entropy testing of UMAP plots was not sensitive to

changes in UMAP iterations or the number of neighbors, nor to

the number of dimensions used in the dimensionality reduction

(Figure S2). Furthermore, application of the cross entropy test

to additional dimensionality-reduction approaches, giving highly

similar p values regardless of the reduction technique applied

(Figure S3), suggests it may have broad utility in this area. The

recent proliferation and rapid turnover of these embedding algo-

rithms, however, puts validation outside the scope of this work.

These results demonstrate the broad utility of the cross entropy

test for multidimensionally scaled single-cell data across both t-

SNE and UMAP approaches.

DISCUSSION

The advent of single-cell sequencing has led to an urgent need

for analyzing and visualizing the complex high-dimensional data-

sets generated. While similar utility can be found in flow and

mass cytometry datasets, the lower number of parameters and

increased reliability of individual parameters allowed the contin-

uation of the pairwise gating approach, derived from the histor-

ical progress of biological knowledge and technical capacity.9

Both t-SNE and UMAP approaches fulfill the visualization role

created by single-cell technologies, especially when paired

with clustering tools such as FlowSOM,8 to provide biological

meaning to the two-dimensional space that represents complex

shifts in phenotype or transcriptome. At an analytical level, how-

ever, t-SNE and UMAP have been under-utilized. Most analytical

approaches treat single-cell data as pseudo-bulk data. Single-

cell data are typically only used to generate clusters as an inter-

mediate step.9 Downstream analysis typically compares cluster

size change between samples or compares cluster-aggregated

data for cluster-level statistics (such as mean fluorescence in-

tensity in flow cytometry or average transcript expression in sin-

gle-cell sequencing). This large information loss provides an op-

portunity for the generation of new statistical tests that include

single-cell information in the sample comparisons.

Unlike the commonly used pseudo-bulk approach, t-SNE and

UMAP encapsulate the nuance of data at the single-cell level.

These methods, being topological and non-metric, will never

fully preserve the distances in the original data but concentrate

on the closeness of closest points. Cross entropy captures, as

a single statistic, both changes in the relative frequency of cells

of different phenotype classes and also the shift of phenotype of
Figure 4. Cross entropy test provides utility on mass cytometry and si

(A) Whole blood from patients with COVID-19 sampled upon admission, during

CyTOF. Total cells were clustered using the t-SNE algorithm with FlowSOM clus

each cluster per condition (middle). Dendrogram showing the comparative simila

(B) t-SNE run on monocytes from patients with COVID-19 as in (A) overlaid with Fl

the comparative similarity between conditions based on the KS statistic (left).

(C) Bronchoalveolar lavage from patients with COVID and patients with non-CO

notated as epithelium, neutrophils, monocytes/macrophages, CD4 T cells, CD8 T

each cell type, cells were clustered using the t-SNE algorithm with patient sourc

Cross entropy p value and (D) LN distance between patients with and without C
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cells within phenotype classes. We have used this tool to quan-

tify the complex shifts in phenotypic markers present in T cells of

different regions of brain or transcriptional shifts occurring in mi-

croglia in the presence or absence of CD4 T cells.17 Valid targets

for the cross entropy test include any high-dimensional single-

cell dataset routinely generated by single-cell sequencing, flow

cytometry, or mass cytometry in fields ranging from immu-

nology18 to neuroscience19 to cancer.20 The growth of single-

cell technologies expands the potential range to techniques

such as CODEX or other high-dimensional imaging technol-

ogy,21 single-cell proteomics,22 or mutation analysis in single-

cell sequencing.23 More broadly, t-SNE and UMAP use can be

implemented in cases where the cell is not the individual unit.

For example, using people as the individual unit, high-dimen-

sional data such as immune response,24 genomic variation,25

or microbiome composition26 can drive the algorithm. The cross

entropy test would then allow statistical comparison of disparate

groups (e.g., based on disease state) to identify differences in the

underlying data. In each case, full utility of the data generated re-

quires a statistical tool that can compare the high-dimensional

data distributions between two groups.

The use of the K-S tests, and the ability to quantify differences

between samples, in the cross entropy test provides a potential

route to incorporate t-SNE or UMAP into routine diagnostics.

Flow cytometric analysis of blood leukocytes is routinely used

as a single-cell technology in the clinic;27 however, data analysis

is largely limited to calculate population frequencies compared

with reference populations. Consortia such as EuroFlow are

standardizing protocols to enable a broader uptake and cross

center comparison.28 The use of the cross entropy LN distance

would enable a simple analysis for deviations in leukocyte num-

ber or activation status by determining whether an individual

sample mapped to the healthy or disease nodes of a t-SNE-

based dendrogram. For example, we used cross entropy to

draw a dendrogram of T cell phenotypes in individuals with

mild or severe COVID.29 Broader use of a cross entropy test

approach within the diagnostics field may provide higher sensi-

tivity to the detection of atypical immunological disorders or he-

matological malignancies, as the integrated statistical would

incorporate the detection of both aberrant marker expression

and the development of rare/unusual populations not routinely

gated for.30 While flow cytometry is the currently the dominant

single-cell technology in diagnostics, both mass cytometry31

and single-cell sequencing32 are actively being developed for di-

agnostics and may soon become routine; parallel development

of the cross entropy statistic may enhance the utility and sensi-

tivity of these new technologies.
ngle-cell sequencing datasets

their stay (intermediate), and upon discharge from the ICU was analyzed by

ters overlaid and annotated (left). Bar chart represents the mean frequency of

rity between conditions based on the KS statistic (right).

owSOM clusters (left) and events per condition (middle). Dendrogram showing

VID pneumonia was assessed by 10x single-cell sequencing. Cells were an-

cells, dendritic cells, B cells, and NK cells based on transcriptional profiles. For

e overlaid.

OVID and for each cell type.



Figure 5. A cross entropy test provides a robust

statistical test for UMAP comparison

The MUS flow cytometry dataset was used to test the

sensitivity of the cross entropy test.

(A) Three technical replicates of a single splenocyte

sample were plotted on a UMAP with FlowSOM clus-

tering in overlay. p values for cross Entropy testing are

shown.

(B) UMAP plots of splenocytes from three individual age-/

sex-matched mice (biological replicates). p values for

cross entropy testing are shown.

(C) UMAP plots from LNs, spleen, and tissue (small in-

testinal lamina propria). p values for cross entropy testing

are shown.

(D) Two independent UMAP runs of LN cells. p values for

cross entropy testing are shown.

(E) Cumulative distribution function of p values obtained

from 400 comparisons of independent UMAP runs of the

same LN sample. Statistical comparison with uniform

distribution using KS test.

(F) In order to compare samples with biological difference

restricted only to qualitative or quantitative changes, we

used the previously generated artificial samples where LN

clusters were rescaled to splenic frequencies (LN%spleen)

or splenic clusters were rescaled to the LN frequencies

(spleen%LN) and compared both against the parental

spleen sample in UMAP. p values for cross entropy testing

are shown.

See also Figures S2 and S3.
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Limitations of the study
Despite the high utility of the cross entropy test for calculating the

significance of differences between two or more dimensionality-

reduced plots, we caution against the misuse of a p value as a

measure of biological meaningfulness. The power of cross en-

tropy tests isdependentoncell number, and thusevenbiologically

distinct samples can return non-significant p values if the number

of cells is highly limiting. In practice, sample sizes in the low thou-

sands range can return non-significant p values if the biological

difference is slight, while datasets above 10,000 cells are highly

powered for even sensitive change. Conversely, very high cell

numbers can provide sufficient power to capture the differences

between biological replicates, which, while real, are rarely consid-

ered to be biologically meaningful. In the datasets tested here, for

high cell number analysis, a threshold of 0.001excludes biological

replicateswhile successfully identifying biological differences.We

suggest that analyses include biologically distinct positive con-

trols and the use of the LN distance, in addition to the p value

calculation. The LN distance, as a measure of difference magni-

tude rather than statistical difference, is less sensitive to cell num-

ber changes, and the use of a biologically distinct positive control

provides a reference point for the magnitude of the differences

observed. Negative controls, such as technical replicates, can

also provide utility in that a significant difference between tech-

nical replicates should be interpreted as unacceptable technical

variability, reducingconfidence inanysample-to-sample variation

identified by the analysis. We also caution that the cross entropy

test does not aim to evaluate questions regarding preservation

of distance or metric but rather those of the similarity between t-

SNE or UMAP representations. Neither does cross entropy,

used with any dimensionality-reduction tool, replace the value of

full analysis of the original high-dimensional dataset; the choice

to use a dimensionality-reduction tool such as t-SNE and UMAP

should be made with awareness of the limitation of these

methods. Finally, as with all statistical tests, the utility of the anal-

ysis is fully dependent on the quality of the data and experimental

design and the appropriateness of the test implementation.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

MUS dataset This paper https://flowrepository.org/id/FR-FCM-Z48W

MC dataset Penttila et al.10 https://flowrepository.org/id/FR-FCM-Z34U

SCS dataset Wauters et al.11 https://ega-archive.org/studies/EGAS00001004717

Software and algorithms

Cross Entropy test https://github.com/AdrianListon/Cross-

Entropy-test

https://doi.org/10.5281/zenodo.7420921

Guide to running the test https://www.liston.babraham.ac.uk/

flowcytoscript/
RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to the lead contact, Adrian Liston (al989@cam.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Collaborating immunologists beta-tested the Cross Entropy test, testing for robustness. Among these datasets, four are used

as examples here, covering high dimensional flow cytometry inmice (MUS), and flow cytometry (FC), mass cytometry (MC) and

single cell sequencing (SCS) datasets in humans. The MUS dataset may be accessed via FlowRepository (https://

flowrepository.org/id/FR-FCM-Z48W). For the mass cytometry (MC) dataset, we used data published by Pentilla et al.10 and

available in the Flow repository (https://flowrepository.org/id/FR-FCM-Z34U). For the SCS dataset, we used data published

by Wauters et al.11 and available in the EGA European Genome-Phenome Archive database (EGAS00001004717).

d The script used is available on GitHub at https://github.com/AdrianListon/Cross-Entropy-test. Parallel scripts are available for

use on cytometry and single cell sequencing datasets.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
C57BL/6 mice were housed under SPF conditions. Both male and females (8–15 weeks old) mice were fed a standard chow diet, ad

libitum. All experiments were performed in accordance with the Babraham Institute Animal Welfare and Ethics Review Body. Animal

husbandry and experimentation complied with existing European Union and national legislation and local standards under license

PP3981824.

METHOD DETAILS

For theMUSdataset, spleen, lymph nodes and small intestinal lamina propria from 10-week old female C57Bl/6micewere stained for

flow cytometry. Spleen and lymph nodes were disrupted with glass slides, filtered through 100 mm mesh, and, in the case of the

spleen, red blood cells were lysed. Intestinal tissue was incubated in staining buffer (HBSS with 10mM HEPES, 2% FCS and

2mM EDTA) (Gibco) for 15 min at 37�C in a shaking platform. Dislodged cells were discarded and the remaining tissue was digested

with 1 mg/ml Collagenase D (Roche), 100 mg/ml hyaluronidase and 40 mg/ml DNAse I (Sigma) in IMDM with 10mM HEPES and 10%

FCS) for a further 30 min at 37�C with shaking. The tissue was then filtered through 100 mmmesh to obtain a single cell suspension.

The intestinal single cell suspension was passed through a 40%Percoll (GE Healthcare) gradient by centrifugation at 600g for 10 min

at 4�C. Cells (2x106) were blocked for 30min with 2.4G2 hybridoma supernatant supplemented with 1% Monocyte Blocker

(BioLegend) prior to staining. Cells were stained for 60 min at 37�C with CD45-NovaBlue 530, CD4-NovaBlue 585, CD8-NovaBlue
e1 Cell Reports Methods 3, 100390, January 23, 2023
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610, CD19-NovaYellow 690, CD3-NovaRed 685, CD69-biotin (ThermoFisher), CCR2-BV750 and CCR9-BB515 (BD Biosciences) in

staining buffer containing presence of CellBlox (NovaBlock). Cells were washed and stained with ViaKrome 808 (Beckman Coulter)

and Qdot705-streptavidin (ThermoFisher) in HBSS at room temperature for 20min. After washing, cells were fixed and permeabilized

with Foxp3 Transcription Factor Staining Buffer Set (eBioscience) according to the manufacturer’s instructions. Cells were then

washed twice with permeabilization buffer (eBioscience) and stained overnight (16hrs) at 4�C in permeabilization buffer with

2.4G2 anti-CD16/32 for the following antibodies: CD103-BUV395, IgD-BUV496, NK1.1-BUV563, CTLA-4-BUV615, c-Kit-BUV661,

CD62L-BUV737, GITR-BUV805, CXCR3-BV480, Siglec F-BV510, TCRgd-BB660-P2, PDCA-1-BB700, CD11c-BB755-P, Ly-6C-

BB790-P (BD Biosciences), CD150-BV421, Helios-Pacific Blue, TCRb-BV570, PD-1-BV605, XCR1-BV650, CD127-BV711, I-A/I-

E-PerCP, CD64-PE-Dazzle 594, CD11b-PE-Fire 640, CD172a-PE-Cy7, CD38-PE-Fire 810, CD44-APC-Fire 750, Gr-1-APC-Fire

810 (BioLegend), ICOS-Super Bright 436, KLRG1-Super Bright 780, CD86-PE-Cy5, NKp46-PerCP-eFluor710, F4/80-AF561,

Foxp3-PE-Cy5.5, RORgT-APC, GATA-3-PE, T-bet-eFluor660, Ki67-AF700 (Thermo Fisher), B220 (CD45R)-StarBright UV 445,

CD25-StarBright Violet 515 (Bio-Rad), CD24-Pacific Orange, IgM-AF532 and CD90.2-AF790 (conjugated in house). Cells were

washed twice with permeabilization buffer and once with staining buffer prior to acquisition. Samples were acquired on a 5-laser

Aurora Spectral Analyser (Cytek), with unmixing based on single stained cell controls. An autofluorescence channel was created us-

ing unstained intestinal cells, gating on high SSC cells.

For the artificial MUS dataset, new FCS files were created using events extracted and concatenated from the MUS dataset. For

lymph-spleen normalization, clustersmapped by FlowSOMwere exported as independent FCS files, downscaled in FlowJo tomatch

the new proportions, and concatenated. For tissue-spleen spike-in data, events were extracted and concatenated in R using flow-

Core and premessa.

For the mass cytometry dataset, we used data published by Pentilla et al.10 and available in the Flow repository (https://

flowrepository.org/id/FR-FCM-Z34U). We selected 12 individuals that were serially sampled at the time of admission to the ICU,

6–8 days after (intermediate time point) and upon discharge from the ICU. Briefly, whole blood was collected and stained with an-

tibodies outlined in the original publication within 2–4 h of collection and acquired on a Helios Mass Cytometer (Fluidigm). For the

analysis performed in this manuscript, living single cells were gated and beads removed. Monocytes were identified as being

CD45+CD3�CD19� CD14+ or CD16+ and CD56�.
For the SCS dataset, we used data published by Wauters et al.11 and available in the EGA European Genome-Phenome

Archive database (EGAS00001004717). Briefly, bronchoalveolar lavage was collected from 22 COVID-19 patients and 13

non-COVID-19 pneumonia patients during standard-of-care treatment. The cellular component of the lavage was used for sin-

gle cell sequencing on the 10x platform. We used the data from the bronchoalveolar lavage of both COVID and non-COVID

pneumonia patients, with the published cell identity. For the presented analysis, t-SNE representations were calculated based

on the count matrices using the Seurat pipeline and its coordinates used to calculate the cross entropy distributions and

comparison.

t-SNE representation of multidimensional data
The t-SNE algorithm aims to provide a simplified, low-dimensional representation of high-dimensional data, while preserving as

much as possible the local distances between data points, that is, the differences between similar data points.

Let us represent a dataset in original space as a collection of n data points fxig, with i = 1.n. All data points xi are vectors of Rd,

with d, the number of dimensions, being usually a large number.

The low-dimensional representation that t-SNE produces is another collection of data points fyig, again with i = 1.n. In this case,

data points are vectors of a real space with low number of dimensions, typically R2 or R3.

What defines the t-SNE algorithm, as well as any other technique of dimensionality reduction, is theway in which the new collection

of points fyig is obtained from the original collection fxig. In the case of t-SNE, Gaussian probabilities are defined for each pair of

points, as follows. Given a pair in the original space (xi, xj), with isj, the probability pij is defined by assigning first to each tuple (i,j):

pjji =
exp

�� kxj � xik2s2
i

�
P
ksi

exp ð � kxk � xik2s2
i Þ

(Equation 1)

and then symmetrized by

pij =
pijj + pjji

2n
(Equation 2)

which implies the global normalization property

Xn

i = 1

Xn

j = 1 js1

pij = 1 (Equation 3)

The parameters si are adjusted for each point xi, so that the perplexity r (or equivalently the entropy log r) of the distribution fpjQig
has a predefined value.
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Similarly, probabilities in the representation space are defined for each pair of points (yi, yj), with isj, but following in this case a

Cauchy distribution:

qji =

�
1 + kyj � yik2

�� 1

P
ksi

ð1 + kyl � ykk2Þ� 1
(Equation 4)

which implies global normalization without the need of symmetrisation

Xn

i = 1

Xn

j = 1 js1

qij = 1 (Equation 5)

With the definition of these probability distributions, which give more weight to pairs of points close to each other, the problem of

finding the transformed points fyig from the original points fxig is converted into the problem of making the probabilities fqijg as

similar as possible to fpijg. This is achieved by minimizing numerically the Kullback-Leibler divergence between the distributions

P = P = fpijg and = fqijg,

DðP;QÞ =
Xn

i = 1

Xn

j = 1 js1

pij log
pij

qij

(Equation 6)

This is equivalent to making the cross entropy between P and Q

HðP;QÞ = �
Xn

i = 1

Xn

j = 1 js1

pij log qij (Equation 7)

as close as possible to the entropy of P

HðPÞ = �
Xn

i = 1

Xn

j = 1 js1

pij log pij (Equation 8)

given that

DðP;QÞ = HðP;QÞ � HðPÞ (Equation 9)

Because the entropy of the distribution P is fixed by construction to a value determined by the perplexity r, the optimization carried

out by t-SNE only operates over the cross entropy between P and Q.

Distributions of entropy and cross entropy
The key insight for the test on t-SNE representations proposed here resides in considering the distributions of entropy and cross en-

tropy per point, instead of their global counterparts. For a data point with index i, the entropy and cross entropy, fHðPÞ
i g and fHðP;QÞ

i g,
respectively, are defined as:

H
ðPÞ
i = �

Xn

j = 1 js1

p�
ij log p�

ij (Equation 10)
H
ðP;QÞ
i = �

Xn

j = 1 js1

p�
ij log q�

ij (Equation 11)

with

p�
ij = npij (Equation 12)
�
qij = nqij (Equation 13)

The local pair probabilities p�
ij and q�

ij are introduced to have quantities with a sum per point closer to 1:

Xn

j = 1 jsi

p�
ijz1 (Equation 14)
n
X

j = 1 jsi

q�
ijz1 (Equation 15)
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The distribution of point Kullback-Leibler divergences can also be obtained as

D
ðP;QÞ
i = H

ðP;QÞ
i � H

ðPÞ
i (Equation 16)

This way, the global Kullback-Leibler divergence can be written as the average of the

distribution of divergences per point

DðP;QÞ =
1

n

Xn

i = 1

D
ðP;QÞ
i =

1

n

Xn

i = 1

H
ðP;QÞ
i � 1

n

Xn

i = 1

H
ðPÞ
i (Equation 17)

By design, t-SNEmakes all the point entropies fHðPÞ
i g close to a fixed value determined by the perplexity r, withH

ðPÞ
i = loglog r for

all i before symmetrization. Therefore, their average is fixed a priori and almost the same for any input dataset fxig. As a consequence,
differences between results obtained from different input datasets will necessarily appear as differences between the respective dis-

tributions of cross entropy per point fHðP;QÞ
i g.

Test on distributions of cross entropy
Given two input datasets fxig and fx0ig, the t-SNE algorithm will produce two representations fyig and fy0ig, with associated distribu-

tions of cross entropy fhig and fh0ig.
Under the null hypothesis, fxig and fx0igwill follow the same probability distribution, which implies that local distances between pair

of points will also be equal in distribution. As a consequence, after applying the t-SNE algorithm, obtained datasets in representation

space fyig and fy0ig, local distances, and point cross entropies will also be equal in distribution.

Under the alternative hypothesis, fxig and fx0ig will differ in probability distribution.

This will likely imply differences in the distributions of local distances, which will in turn produce differences in distribution for the

local distances in representation space. As a result, point cross entropies will likely differ in distribution.

Therefore, the test consists in evaluating the difference between the distributions of cross entropy, which allows us to use already

available tests for comparing one-dimensional empirical distributions. The main test chosen for this purpose is the Kolmogorov-

Smirnov test, which offers the additional advantage of providing a statistic that is a valid distance between functions, namely the

LN distance. This distance can be used as a measure of the difference between t-SNE plots, for example to organize them into a

dendrogram.

LN was calculated as:

LNðf ;gÞ = maxðjfðxÞ � gðxÞjÞ
for any x in the domin of f and g

The Kolmogorov-Smirnov test was used as in Durbin.33

Additional dimensionality reduction analysis
Principal Component Analysis (PCA) was performed in R using the function prcomp and the package factoextra. Multidimensional

Scaling (MDS) was implemented using the landmarked MDS R package lmds in order to reduce the computational time required.

Independent Component Analysis (ICA) was run using the package ica in R. Isomap was implemented using the RDRToolbox library.

PacMAP and triMAP were plotted in Python 3.9 via the R package reticulate.

General implementation details
The Cross Entropy test was implemented in R v.4.0.5, using the packages ConsensusClusterPlus, digest, dunn.test, flowCore,

FlowSOM, ggplot2, ggridges, RANN, RColorBrewer, reshape2, Rtsne and umap.

QUANTIFICATION AND STATISTICAL ANALYSIS

This paper describes the development of a statistical test, which is described in the above ’method details’ section.

ADDITIONAL RESOURCES

The script used is available on GitHub at https://github.com/AdrianListon/Cross-Entropy-test. Parallel scripts are available for use

on cytometry and single cell sequencing datasets, and are available as part of the same GitHub repository. As a practical guide

for biologists with low experience at working in R, we have provided a walk-through on the use of this code at: https://www.

liston.babraham.ac.uk/flowcytoscript/
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