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Abstract: This paper deals with joint estimation of direction-of-departure (DOD) and direction-of-
arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of
unknown mutual coupling and spatial colored noise by developing a novel robust covariance
tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly
formulated for capturing the multidimensional nature of the received data. Then taking advantage of
the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz
structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for
eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal
subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD)
technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared
with the existing HOSVD-based subspace methods, the proposed method can provide superior
angle estimation performance and automatically jointly perform the DODs and DOAs. Results from
numerical experiments are presented to verify the effectiveness of the proposed method.
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1. Introduction

As an innovative radar framework, multiple-input multiple-output (MIMO) radar system plays
an important role in improving detection and estimation performance. MIMO radar uses multiple
antennas to emit mutual orthogonal waveforms, and attempts to detect the locations of interest targets
from the echoes received by multiple antennas. By exploiting matched filters, the information from
an individual transmitter-to-receiver path can be extracted, and a virtual array with a large aperture
is formed. Thus, MIMO radar can achieve superior performance compared with the traditional
phase-array radar [1]. In terms of the antennas configuration, MIMO radar can be generally divided
into two classes: statistical MIMO radar and collocated MIMO radar [2,3]. The former can deal with
the scintillation problem by taking advantage of widely separated antennas and the latter can achieve
unambiguous angle estimation with closely placed antenna arrays. In this paper, we focus on the
bistatic MIMO radar, which is a kind of the collocated MIMO radar.

In bistatic MIMO radar, joint estimation of direction-of-departure (DOD) and direction-of-arrival
(DOA) is a key issue. Many excellent algorithms, such as spatial spectrum searching methods [4,5],
estimate of signal parameter via rotational invariance techniques (ESPRIT) based methods [6,7],
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propagator methods (PM) [8–10], optimization methods [11,12] and tensor methods [13–15], have been
investigated. As suggested in these literatures, all the methods can perform well under the desired
conditions, such as the well-calibrated transmit and receive arrays, and Gaussian white noise.
Nevertheless, in practice, the transmit and receive arrays may suffer from mutual coupling due to the
radiation effect from antenna elements [16–20]. On the other hand, the noise model is often unknown
spatial colored noise, i.e., the covariance of the noise is no longer a scaled identical matrix. Thus,
the high-resolution estimation methods usually have some performance degradation or fail to work.
The mutual coupling problem in MIMO radar has been investigated [21,22]. In [23], an improved
multiple signal classification (MUSIC) algorithm was proposed to transform the estimation of DOD,
DOA and mutual coupling matrices into a linear constrained quadratic problem. However, it is
computationally inefficient since two one-dimensional peaking searches are required, and angle
ambiguity would appear because the columns in the direction matrices may be linearly dependent.
By using the the banded complex symmetric Toeplitz structure in [24], the ESPRIT-Like algorithm was
introduced to eliminate the effect of mutual coupling for a closed solution to angle estimation, which
avoids the peaking search. A PM-Like method in [25] avoided requiring eigenvalue decomposition
(EVD) of the array covariance matrix. Compared with ESPRIT-Like algorithm, it provides similar
performance with lower computational complexity. The above matrix-based algorithms ignore the
multidimensional nature that is inherent in the received data. Taking the multidimensional structure
of the received data into consideration, the higher-order singular value decomposition (HOSVD)
method and the trilinear decomposition method were derived in [26,27], respectively to achieve
better performance than the conventional subspace methods. On the other hand, efforts have been
devoted to solve the angle estimation problem in spatial colored noise environment. For instance,
the spatial cross-correlation methods [28–31], the temporal cross-correlation methods [32,33] and the
differencing covariance method [34] have been reported. Although these methods can achieve satisfied
performance with spatial colored noise, their performance may have obvious degradation or fail to
work. The above mentioned angle estimation methods investigate the mutual coupling and spatial
colored noise independently.

In this paper, we attempt to estimate the DODs and DOAs in the environment of mutual coupling
and spatial colored noise. To the best knowledge of the authors, there has been little attention to
this case in the open literature. Towards this end, a novel robust covariance tensor-based angle
estimation method is developed, which can be viewed as a generalized HOSVD approach. The main
contribution of this paper can be summarized as: (1) Unlike solving the influence of mutual coupling
and spatial colored noise independently in [26–34], the proposed method can solve the joint DOD
and DOA estimation issue with the coexistence of unknown mutual coupling and spatial colored
noise in MIMO radar for the first time. (2) The proposed method formulates a novel fourth-order
covariance tensor for eliminating the influence of both spatial colored noise and mutual coupling in
tensor domain. (3) The rotational invariance technique is utilized to obtain automatically paired DODs
and DOAs. (4) The proposed method provides better angle estimation performance than the existing
HOSVD-based subspace methods, and simulation results are performed to show the advantages of the
proposed algorithm .

The paper outline is as follows. Some necessary tensor preliminaries and the signal model are
given in Section 2. The proposed scheme is established in Section 3. Some remarks and detailed
analysis of the proposed algorithm are discussed in Section 4. Simulation results are given in Section 5.
Finally, we give the conclusions of the proposed method in Section 6.

Notation: The bold face capital letter X and lower case x denote matrices and vectors, respectively.
The M×M identity matrix is denoted by IM, and a M× N zero matrix (all the elements are zeros)
is denoted by 0M×N . For X, the expressions, (X)T ,(X)H ,(X)−1 and(X)†, represent the operations
of transpose, Hermitian transpose, inverse and pseudo-inverse, respectively and ⊗ stands for the
Kronecker product. The Khatri-Rao product (column-wise Kronecker product) is denoted by �, i.e.,
[a1, a2, . . . , aK]� [b1, b2, . . . , bK] = [a1 ⊗ b1, a2 ⊗ b2, . . . , aK ⊗ bK]; Toeplitz[r] denotes the symmetric
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Toeplitz matrix constructed by the vector r; diag(r) denotes the diagonalization operation; angle(·)
returns the phase angles of an element in radians.

2. Tensor Preliminaries and Signal Model

2.1. Tensor Preliminaries

Let us briefly review some necessary operations in tensor domain. For more details about tensor
algebra, the readers can refer to the review article [35].

Definition 1 (Unfolding or Matricization). An (I1 × I2 × · · · × IN)-dimensional tensor has N indices.
The mode-n unfolding of a tensor X ∈ CI1×I2×···×IN is denoted by [X ](n), where the (i1, i2, . . . , iN)-element of

X maps to the (in, j)-th element of [X ](n), where j = 1 + ∑N
k=1,k 6=n (ik − 1)Jk with Jk = ∏k−1

m=1,m 6=n Im.

Definition 2 (Mode-n Tensor-Matrix Product). The mode-n product of an N-order tensorX ∈ CI1×I2×···×IN

and a matrix A ∈ CJn×In , is denoted by Y = X×nA. In the matrix form, it can be expressed as

[Y ](n) = A [X ](n) (1)

Moreover, the mode-n tensor-matrix product satisfies the following properties{
X×nA×mB = X×mB×nA, m 6= n
X×nA×nB = X×n (BA) , m = n

(2)

[X×1A1×2A2× . . .×N AN ](n) = An · [X ](n) · [An+1 ⊗ · · · ⊗AN ⊗A1 · · · ⊗An−1] (3)

Definition 3 (Tensor Decomposition). The HOSVD of a tensor X ∈ CI1×I2×···×IN is given by

X = G×1U1×2U2×3 . . .×N UN (4)

where G ∈ CI1×I2×···×IN is the core tensor, and Un ∈ CIn×In (n = 1, 2, 3, . . . , N) is a unitary matrix, which is
consist of the left singular vectors of [X ](n).

2.2. Signal Model

Now we consider a general bistatic MIMO radar system, as shown in Figure 1. There are M
transmitters and N receivers, and both of which are uniform linear arrays (ULAs) with half-wavelength
spacing. The transmitters emit M mutual orthogonal waveforms and illuminate a given area. Suppose
that there are K point targets located in the far field. The signals are reflected by the slow-moving
targets and the echoes are collected by the receivers. With the assumtion that each pulse period of the
transmitted waveform is consist of Q coded symbols, let us consider a coherent processing interval
(CPI) consisting of L pulses. Then the received data during the l-th (l = 1, 2, . . . , L) pulse period can be
expressed as

Xl = Ardiag (sl)AT
t W + Fl (5)

where Ar ∈ CN×K is the receive direction matrix, At ∈ CM×K is the transmit direction matrix,
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sl ∈ CK×1 is the echo coefficient vector, W ∈ CM×Q is the baseband code matrix, and Fl ∈ CN×Q is the
received spatial colored noise. The details of the above mentioned matrices are given below

Ar = [ar (θ1) , ar (θ2) , . . . , ar (θK)]

ar(θk) =
[
1, e−jπ sin θk , . . . , e−jπ(N−1) sin θk

]T
, k = 1, 2, . . . , K

At = [at (ϕ1) , at (ϕ2) , . . . , at (ϕK)]

at(ϕk) =
[
1, e−jπ sin ϕk , . . . , e−jπ(M−1) sin ϕk

]T
, k = 1, 2, . . . , K

sl =
[
α1ej2πl f1/ fs , α2ej2πl f2/ fs , . . . , αKej2πl fK/ fs

]T

W = [w1, w2, . . . , wM]

where ar(θk) and at(ϕk) denote the receive steering vector and the transmit steering vector, respectively;
αk, fk and fs represent the radar cross section (RCS) amplitude, the Doppler frequency and the
pulse repeat frequency, respectively and wm ∈ CQ×1 is the m-th transmitted baseband code with

wH
m wn =

{
0, m 6= n
P, m = n

m, n ∈ {1, 2, . . . , M}. The received noise is spatially colored, which indicates

that the columns of Fl are independently and identically distributed complex Gaussian random vectors
with zero mean and unknown covariance matrix C, i.e., for any a, b ∈ {1, 2, . . . , L}, there exist

E
{

vec (Fa) vec
(

FH
b

)}
=

{
0, a 6= b
IQ ⊗ C, a = b

(6)

0.98,0.00,0.00 where Fa and Fb are the columns of Fl . At the receive array, the received data Xl is
matched by wm/Q, m = 1, 2, . . . , M, respectively. After this operation, the matched data can be
stacked in to a matrix Ỹ according to the spatial-temporal order. Similar to [24], we have

Ỹ = [At �Ar] ST +
1
Q

N (7)

where S = [s1, s2, . . . , sL]
T is the echo coefficient matrix and N = [n1, n2, . . . , nL] denotes the matched

noise matrix with nl = vec
(
FlWH), (l = 1, 2, . . . , L). Generally speaking, mutual coupling effect

would exist in the antenna array due to the radiation effects of the antenna elements [16]. The mutual
coupling between antenna elements of a ULA can be described as a banded symmetric Toeplitz matrix,
known as the mutual coupling matrix. The mutual coupling coefficient between two antennas in a
ULA is opposite to their distance and is approximated as zeros when the distance is large enough [24].
Assuming that the number of nonzero mutual coupling coefficients is P + 1 for both transmit and
receive arrays, and P is satisfied with min{M, N} > 2P. Taking the mutual coupling effect into
consideration, the data model in Equation (7) becomes

Y = [(CtAt)� (CrAr)] ST +
1
Q

N =
[
Ãt � Ãr

]
ST +

1
Q

N (8)

where Ct = toeplitz
([

cT
t , 01×(M−P−1)

])
∈ CM×M and Cr = toeplitz

([
cT

r , 01×(N−P−1)

])
∈

CN×N are the mutual coupling matrices with ct = [ct0, ct1, ..., ctP] and cr = [cr0, cr1, ..., crP], and
cip(i = r, t; p = 0, 1, 2, . . . , P) is the P + 1 nonzero mutual coupling coefficients, which
satisfy with 0 < |ciP| <, . . . ,< |ci1| < |ci0| = 1. Ãt = [ãt (ϕ1) , ãt (ϕ2) , . . . , ãt (ϕK)] = CtAt,
Ãr = [ãr (ϕ1) , ãr (ϕ2) , . . . , ãr (ϕK)] = CrAr.
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Figure 1. Bistatic MIMO radar configuration.

Since each element in Y is formed by multiplying the unique entity in Ãt, Ãr and S, the
matched data Y exhibits three diversities. However, these diversities have been ignored by the
traditional matrix-based estimation methods. To further exploiting the inherent multidimensional
structure, Y is rearranged into a third-order tensor Y shown as Figure 2. Then the (m, n, l)-th
(m = 1, . . . , M; n = 1, . . . , N; l = 1, . . . , L) element is given by

Y (m, n, l) =
K

∑
k=1

Ãt (m, k) Ãr (n, k) S (l, k) +
1
Q
N (m, n, l) (9)

where Y (m, n, l) denotes the (m, n, l)-th element in Y and similar to others, and N ∈ CM×N×L is the
rearranged noise tensor. According to Definition 1, it is obvious that Y = [Y ]T(3) and N = [N ]T(3).
In HOSVD-wise format, Equation (9) can be expressed as

Y = IK×1Ãr×2Ãt×3S +
1
Q
N (10)

where IK is the K× K× K identity tensor.

(1,1,1)y

[ ( , , )]m n ly = y

Figure 2. The tensor diagram of received data.

3. Robust Covariance Tensor-based Angle Estimation Method

Because the conventional subspace-based methods or tensor decomposition technique [24–29,31,33,34]
considers the influence of mutual coupling and spatial colored noise independently, they unavoidably have
performance degradation or fail to work with the coexistence of unknown mutual coupling and spatial
colored noise. Let us formulate a novel robust covariance tensor-based angle estimation method to remove
the influence of both mutual coupling and spatial colored noise in tensor domain.
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3.1. Spatial Colored Noise Suppression and Mutual Coupling Elimination

In Equation (10), the mutual coupling has an impacts on the transmit direction matrix Ãt

and receive direction matrix Ãr, i.e, Ãt and Ãr are no longer Vandermonde matrices. Fortunately,
the mutual coupling matrices are banded symmetric Toeplitz, and two sub-matrices can be extracted
from transmit and receive direction matrices for decoupling. By defining two selection matrices as
J3 =

[
0(N−2P)×P, I(N−2P), 0(N−2P)×P

]
and J4 =

[
0(M−2P)×P, I(M−2P), 0(M−2P)×P

]
, we have

{
âr (θk) = J3ãr (θk) = βrkār (θk)

ât (θk) = J4ãt (ϕk) = βtkāt (ϕk)
(11)

where βtk = 1 + ∑P
p=1 2ctp cos (pπ sin ϕk), βrk = 1 + ∑P

p=1 2crp cos (pπ sin θk), ār (θk) and āt (ϕk) are
column vectors composed of the first N − 2P and M− 2P elements of ar (θk) and at (ϕk), respectively.
From Equation (11), it is easy to know that for each target, βtk and βrk are constant, which indicates that
the direction matrices Âr (θ) = [âr (θ1) , âr (θ2) , . . . , âr (θK)] and Ât (θ) = [ât (θ1) , ât (θ2) , . . . , ât (θK)]

have the Vandermonde structure. Thus, the influence of mutual coupling is eliminated after the
decoupling operation. The decoupling operation in Equation (11) can be extended to Equation (10) in
tensor domain, which shows

Ŷ = Y×1J3×2J4 = IK×1Âr×2Ât×3S +
1
Q
N̂ (12)

where N̂ = N×1J3×2J4 is a part of N̂ , which corresponds to the spatial colored noise of
(M− 2P)(N − 2P) elements after the decoupling operation in matrix domain. According to
Equation (12), it can be indicated that the effect of mutual coupling has been eliminated in tensor
domain, and the tensor noise N̂ also holds the same characteristic with N . Thus, the decoupling
in Equation (12) also hold the influence of spatial colored noise, which makes the performance
degradation. In order to further eliminate the spatial colored noise, it is necessary to analysis the
covariance of the colored noise. Let a, b ∈ {1, 2, . . . , L}, we get

E
{

nanH
b

}
= E

{
vec

(
FaWH

)
vecH

(
FbWH

)}
= E

{
vec

(
INFaWH

)
vecH

(
INFbWH

)}
= E

{
[W∗ ⊗ IN ]

[
vec (Fa) vecH (Fb)

] [
WT ⊗ IN

]}
=

{
0, a 6= b
E
{
[W∗ ⊗ IN ] [IM ⊗C]

[
WT ⊗ IN

]}
, a = b

(13)

=

{
0, a 6= b
Q (IM ⊗C) , a = b

Based on Equation (13), it can be concluded that the covariance matrix of the spatial colored noise
with different pulse period is 0, i.e., the spatial colored noise is temporal uncorrelated. Motivated by
this feature, the tensor Ŷ is divided into two sub-tensors Z1 and Z2, which are shown as

Z1 = Ŷ×3J3 = IK×1Âr×2Ât×3S1 +
1
Q
N 1 (14)

Z2 = Ŷ×3J4 = IK×1Âr×2Ât×3S2 +
1
Q
N 2

where J3 = [IL−1, 0L−1×1], J4 = [0L−1×1, IL−1], S1 = J3S, N 1 = N̂×3J3, S2 = J4S, and N 2 = N̂×3J4.
According to the characteristic of the spatial colored noise in Equation (13), we have

RZ = E
{
[Z1]

T
(3) [Z2]

∗
(3)

}
=
[
Ât � Âr

]
RŜ
[
Ât � Âr

]H
+ 1

Q2 RN =
[
Ât � Âr

]
RŜ
[
Ât � Âr

]H (15)
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where RŜ = E
[
ST

1 S∗2
]
, and according to Equation (13), RN = E

{
[N 1]

T
(3) [N 2]

∗
(3)

}
=

E
{
[n̂1, n̂2, . . . , n̂L−1] [n̂2, n̂3, . . . , n̂L]

H
}
= 0, which indicates that the spatial colored noise is eliminated.

Thus, similar to [26], the de-noising method in Equation (15) can be extended in tensor format. Using
the characteristic of the spatial colored noise, a new fourth-order tensorR ∈ CN×M×N×M is constructed
with the (n, m, q, p)-th (n, q ∈ {1, 2, . . . , N − 2P} ; m, p ∈ {1, 2, . . . , M− 2P}) element as

R (n, m, q, p) =
L−1

∑
l=1
Z1 (n, m, l)Z∗2 (q, p, l) (16)

According to the structure ofR, the relationship between RZ andR can be written as

RZ =



R (1, 1, 1, 1) R (1, 1, 2, 1) . . . R (1, 1, N, 1) R (1, 1, 1, 2) . . . R (1, 1, N, M)

R (2, 1, 1, 1) R (2, 1, 2, 1) . . . R (2, 1, N, 1) R (2, 1, 1, 2) . . . R (2, 1, N, M)
...

...
. . .

...
...

. . .
...

R (N, 1, 1, 1) R (N, 1, 2, 1) . . . R (N, 1, N, 1) R (N, 1, 1, 2) . . . R (N, 1, N, M)

R (1, 2, 1, 1) R (1, 2, 2, 1) . . . R (1, 2, N, 1) R (1, 2, 1, 2) . . . R (1, 2, N, M)

R (2, 2, 1, 1) R (2, 2, 2, 1) . . . R (2, 2, N, 1) R (2, 2, 1, 2) . . . R (2, 2, N, M)
...

...
. . .

...
...

. . .
...

R (N, M, 1, 1) R (N, M, 2, 1) . . . R (N, M, N, 1) R (N, M, 1, 2) . . . R (N, M, N, M)


(17)

0.98,0.00,0.00 From Equation (17), it is clearly seen that the spatial colored noise is suppressed inR,
which indicates that the covariance tensor R is without the influence of both mutual coupling and
spatial colored noise. Similar to the model in Equation (10),R can be rewritten as

R = RS×1Âr×2Ât×3Â∗r×3Â∗t (18)

where RS ∈ CK×K×K×K is the Hermitian folding of RS̃ in the same way as Equation (17), i.e.,

RS (:, k1, :, k2) =

{
0, k1 6= k2

RS̃ (k1, k2) , k1 = k2
, k1, k2 ∈ {1, 2, . . . , K}. The decomposition of fourth-order

tensor in Equation (18) is commonly known as the ’Tucker4’ decomposition, where the corresponding
core tensor isRS.

3.2. Tensor-Based Signal Subspace Estimation and Angle Estimation

In order to exploit the subspace technique for angle estimation, the signal/noise subspace
is required to estimate firstly. Although the traditional SVD technique is easy to implement for
estimating the signal/noise subspace, the multidimensional structure inherent in R is ignored.
Fortunately, the HOSVD technique is an effective way to estimate the signal subspace with capturing
the multidimensional structure information in tensor. The HOSVD of the measurement R is given
by [31]

R = G×1U1×2U2×3U3×4U4 (19)

where G ∈ C(N−2P)×(M−2P)×(N−2P)×(M−2P) is the associated core tensor, U1 ∈ C(N−2P)×(N−2P),
U2 ∈ C(M−2P)×(M−2P), U3 ∈ C(N−2P)×(N−2P), U4 ∈ C(M−2P)×(M−2P) are unitary matrices, which are
composed of the left singular vectors of the mode-n (n ∈ {1, 2, 3, 4}) matrix unfolding of R as
[R](n) = UnΣnVH

n . Note that the rank of R is K, hence R can be approximated by its truncated
HOSVD as

Rs = Gs×1U1s×2U2s×3U3s×4U4s (20)
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where Uis (i = 1, 2, 3, 4) is consist of the singular vectors corresponding to the K dominant singular
values of Ui. Note thatR is Hermitian, we have U1s = U∗3s, U2s = U∗4s. Gs = R×1UH

1s×2UH
2s×3UH

3s×4UH
4s

accounting for the reduced core tensor. Insertion of Gs into Equation (20) yields

Rs = R×1

(
U1sUH

1s

)
×2

(
U2sUH

2s

)
×3

(
U1sUH

1s

)∗
×4

(
U2sUH

2s

)∗
(21)

By Hermitian unfolding ofRs, a new cross-correlation matrix R̃ is formed to be

R̂ =
[(

U1sUH
1s

)
⊗
(

U2sUH
2s

)]
RZ

[(
U1sUH

1s

)
⊗
(

U2sUH
2s

)]H
(22)

Since the rank of RZ is K, it can be approximated by its truncated EVD as RZ ≈ UsΛsUH
s , where

Us contains the singular vectors corresponding to the K-dominate singular values. Obviously, Us spans
the same subspace by the columns of

[
Ãt � Ãr

]
. Inserting RỸ into Equation (22), we get

R̂ =
[(

U1sUH
1s

)
⊗
(

U2sUH
2s

)
Us

]
Σ
[(

U1sUH
1s

)
⊗
(

U2sUH
2s

)
Us

]H
(23)

After truncating EVD of Rs, a new signal subspace Ûs is obtained as

Ûs =
[(

U1sUH
1s

)
⊗
(

U2sUH
2s

)]
Us (24)

Equation (24) describes the relationship between the signal subspace obtained via matrix-based
method and that estimated via tensor-based method, from which we can observe that Us is weighted
by
[(

U1sUH
1s
)
⊗
(
U2sUH

2s
)]

. Due to the weighting effect, the noise in the tensor measurement is
suppressed to obtain an enhanced signal subspace. Obviously, Ûs spans the same space as Us.
Therefore, there exists a full-rank matrix T that

Ûs =
[
Ât � Âr

]
T (25)

3.3. Joint DOD and DOA Estimation

After obtaining the tensor-based signal subspace without the influence of both mutual coupling
and spatial colored noise, the conventional ESPRIT method can be applied to estimate the
DODs and DOAs [6,7]. Let â = ât (ϕk) � âr (θk), and define Jt1 =

[
I(M−2P−1), 0(M−2P−1)×1

]
,

Jt2 =
[
0(M−2P−1)×1, I(M−2P−1)

]
, Jr1 =

[
I(N−2P−1), 0(N−2P−1)×1

]
and Jr2 =

[
0(N−2P−1)×1, I(N−2P−1)

]
.

Then we can get the following rotational invariance properties{
e−jπ sin ϕk [Jt1 ⊗ IN−2P] â = [Jt2 ⊗ IN−2P] â
e−jπ sin θk [IM−2P ⊗ Jr1] â = [IM−2P ⊗ Jr2] â

(26)

Let Φt = diag
{

e−jπ sin ϕ1 ande−jπ sin ϕ2 , . . . , e−jπ sin ϕK
}

, Φr =

diag
{

e−jπ sin θ1 , e−jπ sin θ2 , . . . , e−jπ sin θK
}

. Combined with Equation (25) and Equation (26), we can get
the least squares (LS) estimation of Φt and Φr via{

Φ̂t =
(
[Jt1 ⊗ IN−2P] Ûs

)†
[Jt2 ⊗ IN−2P] Ûs

Φ̂r =
(
[IM−2P ⊗ Jr1] Ûs

)†
[IM−2P ⊗ Jr1] Ûs

(27)

where the relations between Φ̂t, Φt and Φ̂r, Φr are Φ̂t = TΦtT−1, and Φ̂r = TΦrT−1, respectively.
Once Φ̂t has been estimated, the estimation e−jπ sin ϕ̂k can be obtained via the eigenvalue of Φ̂t. Let T̂
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be the estimated eigenvectors of Φ̂t, then the estimation e−jπ sin θ̂k can be obtained via the diagonal
element of T̂Φ̂rP̂−1. Finally, the k-th (k = 1, 2, . . . , K) DOD and DOA are given by{

ϕ̂k = arcsin[−angle(υk)/π]

θ̂k = arcsin[−angle(νk)/π]
(28)

Because Φ̂t and Φ̂r share the same eigenvectors, the estimated DODs and DOAs are
paired automatically.

The proposed method is summarized as follows.

Step.1 Stack the matched data into a third-order tensor Y as Equation (9);
Step.2 Construct two sub-tensors Y1 and Y2 through Equation (12) and Equation (14), then form the

cross-covariance tensorR through Equation (16);
Step.3 Perform HOSVD ofR to get Uns, (n = 1, 2, 3, 4), and get R̃ via Equation (22);
Step.4 Perform EVD of Rs to get Ũs, obtain Φ̂t and Φ̂r via Equation (27), and compute EVD of Φ̂t to

get Φt and T̂.
Step.5 Calculate Φr via T̂Φ̂rT̂−1 and finally get the DODs and DOAs via Equation (28).

4. Remarks and Algorithm Analysis

4.1. Related Remarks

Remark 1. The estimation algorithms in [24–26] are only effective with uniform white noise, while the denoising
methods in [28–34] may suffer from mutual coupling. Consequently, their performances would degrade to deal
with the co-existence mutual coupling and spatial colored noise. However, the proposed method can circumvent
the limitations above to achieve better performance than these early reported algorithms.

Remark 2. The main drawback of the MUSIC-Like algorithm is the ambiguity [23], since the columns in
the mutual coupling matrices may be linear dependent. From Equation (12) we can observe that the direction
submatrices exhibit a Vandermonde-Like structure to remove the ambiguity in the proposed method.

Remark 3. The HOSVD of a tensor is calculated by SVDs of all the unfolded matrices. However, since
U1s = U∗3s, U2s = U∗4s, we only need to compute the truncated SVDs of the mode-1 and mode-2 unfolding ofR,
resulting in a significant computational saving.

4.2. Computation Complexity

Now we analysis the complexity of the proposed method in terms of the number of complex
multiplications. The complexity of forming R is M2N2 (L− 1) and performing truncated HOSVD
of R requires 2(M − 2P)3(N − 2P)3. The computation load of calculating R̂ is 2(M − 2P)2K +

2(N − 2P)2K + 2(M− 2P)2(N − 2P)2. Computing EVD of R̂ needs
(
(M− 2P)3(N − 2P)3) complex

multiplications. The computational complexity of Equation (27) is 2 (M− 2P− 1) (N − 2P)K2 +

2 (N − 2P− 1) (M− 2P)K2 + 2
(
K3). Estimating DOD and DOA through Φ̂t and Φ̂r needs K3

complex multiplications. I summary, the total complexities of the proposed method, the ESPRIT-Like
method [24], the PM-Like method [25] and the HOSVD method [26] are presented in Table 1. Clearly,
the complexity of the proposed method is a slight heaver than the HOSVD method, the ESPRIT-Like
method and the PM-Like method. However, it provides much better estimation performance than all
these other methods, which will be shown in the simulation section.
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Table 1. Comparison of the complexity in joint DOD and DOA estimation

Method Computational Complexity

ESPRIT-Like (M− 2P)2 (N − 2P)2 L + 2 (M− 2P− 1) (N − 2P)K2 + 2 (N − 2P− 1) (M− 2P)K2

+3K3 + 2 (M− 2P)3 (N − 2P)3

PM-Like (M− 2P)2 (N − 2P)2 L + 2 (M− 2P) (N − 2P)K2 + 2 (M− 2P− 1) (N − 2P)K2

+ (M− 2P) (N − 2P)K ((M− 2P) (N − 2P)− K) + 2 (N − 2P− 1) (M− 2P)K2 + 3K3

HOSVD (M− 2P)2 (N − 2P)2 K + 0.5 (M− 2P− 1) (N − 2P)K2

+0.5 (N − 2P− 1) (M− 2P)K2 + K3 + 2 (N − 2P)3 (M− 2P)3

Proposed
M2N2 (L− 1) + 2(M− 2P)2K + 2(N − 2P)2K + 2(M− 2P)2(N − 2P)2+
2 (M− 2P− 1) (N − 2P)K2 + 2 (N − 2P− 1) (M− 2P)K2+
3K3 + 3(M− 2P)3(N − 2P)3 + (M− 2P)3(N − 2P)3

5. Simulation Results

In the simulation, the bistatic MIMO radar is configured with M = 10 transmit elements and
N = 12 receive elements. The transmit code length is Q = 256 and the pulse repeat frequency
is fs = 20 KHz. Suppose that there are K = 3 uncorrelated targets located at the directions
(θ1, ϕ1) = (−30◦, 10◦), (θ2, ϕ2) = (20◦, 0◦), (θ3, ϕ3) = (0◦, and−20◦). The corresponding RCS are
α1 = α2 = α3 = 1 and the Doppler shifts are { fk}3

k=1 = {200, 400, 850}Hz, respectively. The spatial
colored noise is modeled as a second-order autoregressive (AR) process with the coefficient
z = [1,−1, 0.8] [31,33]. The SNR in the simulation is defined by SNR = 10log10‖Xl − Fl‖2/‖Fl‖2 [dB],
where Xl and Fl are the matrices in Equation (5). In the following simulations, two measures are
applied for performance assessment [33]. The first one is the root mean square error (RMSE), defined as

RMSE =
1
K

K

∑
k=1

√√√√1
ζ

ζ

∑
i=1

{(
θ̂i,k − θk

)2
+ (ϕ̂i,k − ϕk)

2
}

where θ̂i,k and ϕ̂i,k represent the estimations of θk and ϕk for the i th Monte Carlo trial, respectively. ζ is
the total number of Monte Carlo trials. The other one is the probability of the successful detection (PSD)
defined as PSD = D

ζ × 100%, where D denotes the total numbers of successful trial and a successful
trial is recognized if the absolute errors of all the estimated angles are smaller than 0.1◦.

In the first step simulation results from Figures 3–5, we consider the transmit and receive
arrays with a weak mutual coupling defined by the mutual coefficients ct = [1, 0.1174 + j0.0577]
and cr = [1,−0.0121− j0.1029], respectively. The number of snapshots is 50. Figure 3 illustrates the
estimation results of the proposed method with SNR = 0dB, from which we can observe that the
DODs and DOAs are accurately obtained and correctly paired, which proves the effectiveness of the
proposed method.

Figures 4 and 5 show the RMSE and the PSD performance comparisons of the proposed method
with the ESPRIT-Like method [24], the PM-Like method [25] and the HOSVD method [26], respectively.
It can be concluded from Figure 4 that the proposed method provides much better estimation
perfprmance than the ESPRIT-Like method, the PM-Like method and the HOSVD method in the
low SNR region. The reason is that the proposed method can eliminate the effect of the mutual
coupling and spatially colored noise simultaneously, and the other methods only consider the effect of
the mutual coupling. It is shown in Figure 5 that all the methods exhibit a 100% successful detection in
the high SNR region. As the SNR decreases, the PSD of each method starts to drop at a certain point,
which is defined as the SNR threshold [33]. The proposed method provides lower PSD threshold and
better detection performance than all the compared methods.
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Figure 3. Estimation results of the proposed method with SNR = 0 dB.
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Figure 4. RMSE performance comparison versus SNR in the presence of weak mutual coupling.
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Figure 5. PSD performance comparison versus SNR in the presence of weak mutual coupling.
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In the second step simulation results shown in Figure 6 to Figure 7, we consider the transmit
and receive arrays with a strong mutual coupling, and the mutual coupling coefficients are fixed
at ct = [1, 0.8 + j0.5, 0.2 + j0.1], and cr = [1, 0.6 + j0.4, 0.1− j0.3]. The number of snapshots is 50.
Figures 6 and 7 illustrate the RMSE and PSD curves of various methods versus SNR. According to the
results, the RMSE and PSD performances of all the methods gradually improved with the increasing
SNR. However, the ESPRIT-Like method, the PM-Like method and the HOSVD method provide higher
RMSE than the proposed method in low SNR region. On the other hand, the proposed method has
estimation performance similar to that achieved by the HOSVD method in high SNR region. This is
because that the spatially colored noise is not the important factor to effect the estimation performance
when the SNR is high enough. From Figure 7, it is obvious that the proposed method has better PSD
than the other methods, i.e., it outperforming all the compared methods.

-10 0 10 20
SNR(dB)

10-4

10-2

100

102

R
M

S
E

(°
)

ESPRIT-Like
PM-Like
HOSVD
Proposed method

Figure 6. RMSE performance comparison versus SNR with strong mutual coupling.
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Figure 7. PSD performance comparison versus SNR with strong mutual coupling.

6. Conclusions

In this paper, a robust covariance tensor-based angle estimation method is developed for
bistatic MIMO radar with the co-existence mutual coupling and spatial colored noise. The proposed
method can capture the multidimensional nature of the matched array data. At the same time,
it can eliminate the effect of mutual coupling and colored noise in the tensor domain. As a result,
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the proposed algorithm provides better estimation performance than the existing estimation algorithms.
The robustness and superiority of the proposed method are clearly verified by simulation results.
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