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Abstract Uveitis describes a heterogeneous group of inflammatory eye diseases characterized
by infiltration of leukocytes into the uveal tissues. Uveitis associated with the HLA haplotype B27
(HLA-B27) is a common subtype of uveitis and a prototypical ocular immune-mediated disease.
Local immune mechanisms driving human uveitis are poorly characterized mainly due to the limited
available biomaterial and subsequent technical limitations. Here, we provide the first high-resolution
characterization of intraocular leukocytes in HLA-B27-positive (n = 4) and -negative (n = 2) anterior
uveitis and an infectious endophthalmitis control (n = 1) by combining single-cell RNA-sequencing
with flow cytometry and protein analysis. Ocular cell infiltrates consisted primarily of lymphocytes in
both subtypes of uveitis and of myeloid cells in infectious endophthalmitis. HLA-B27-positive uveitis
exclusively featured a plasmacytoid and classical dendritic cell (cDC) infiltrate. Moreover, cDCs were
central in predicted local cell-cell communication. This suggests a unique pattern of ocular leukocyte
infiltration in HLA-B27-positive uveitis with relevance to DCs.

Introduction

Uveitis describes a heterogeneous group of inflammatory diseases involving uveal tissues in the intra-
ocular cavity of the eye. Non-infectious uveitis is regarded as an autoimmune disorder and is associ-
ated with various immune-mediated systemic diseases. According to the Standardization of Uveitis
Nomenclature (SUN) working group, uveitis is classified based on the anatomical location of uveitis
as anterior, posterior, intermediate, and panuveitis (Jabs et al., 2005). Anterior uveitis (AU) primarily
affects the iris and ciliary body and constitutes its most frequent type (approximately 80 % of cases)
resulting in permanent vision loss through, for example, secondary cataract, glaucoma, or macular
edema (Rothova et al., 1996; Thorne et al., 2016).

Acute anterior uveitis (AAU) associated with the HLA haplotype B27 (B27+ AAU) is the most
common and often severe form of uveitis. Its typical clinical features include acute onset of discomfort,
eye redness, tearing, visual impairment, and excessive cellular infiltration in the aqueous humor (AgH;
ie, the intraocular liquid of the anterior chamber) that is devoid of immune cells under non-diseased
conditions. The prevalence of the HLA-B27 haplotype is approximately 8-10% among Caucasians and
40-70% among AAU patients (Kopplin et al., 2016) and thus represents a strong genetic risk factor
for AAU (Brewerton et al., 1973; Huhtinen and Karma, 2000). The HLA-B27 allele also conveys an
increased genetic risk for other immune-mediated diseases, including spondyloarthropathies (SpA)
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eLife digest Uveitis is a form of inflammation in the eye. It can occur in response to infection,
or when the immune system mistakenly attacks the eye, in what is known as autoimmune uveitis.
In approximately 80 percent of cases, the front part of the eye is affected. During an inflammatory
episode, the liquid inside the front part of the eye fills with immune cells, but the nature of these
cells remains unknown. This is because uveitis is rare, and doctors cannot routinely take samples from
inside the eyes of affected individuals to diagnose the disease. This lack of samples makes research
into this disease challenging.

There are two main groups of immune cells that could be responsible for uveitis: myeloid cells
and lymphoid cells. Myeloid cells form the first line of immune defense against infection by non-
specifically attacking and removing pathogens . Lymphoid cells form the second line of immune
defense, attacking specific pathogens. Lymphoid cells also have long-term memory, meaning they
can ‘remember’ previous infections and fight them more effectively. Lymphoid cells receive instruc-
tions from a type of myeloid cell called a dendritic cell about what to attack. Dendritic cells relay their
instructions to lymphoid cells using molecules called human leukocyte antigens (HLA). Autoimmune
uveitis affecting the front part of the eye is common in individuals with an HLA type called HLA-B27,
suggesting that communication between dendritic and lymphoid cells plays an important role in this
type of inflammation.

To make the most of limited patient samples, Kasper et al. used single cell techniques to examine
the immune cells from the fluid inside the eye. Six samples came from people with autoimmune
uveitis, and one from a person with an eye infection. The infection sample contained mainly myeloid
cells that might attack bacteria responsible for the infection. In contrast, the autoimmune uveitis
samples contained mainly lymphoid cells. Of these samples, four were from individuals with the gene
that codes for the HLA-B27 molecule. These samples had a unique pattern of immune cells, with more
dendritic cells than the samples from individuals that did not have this gene.

This study included only a small number of individuals, but it shows that analysing single immune
cells from the eye is possible in uveitis. This snapshot could help researchers understand the local
immune response in the eye, and find an optimal treatment.

and inflammatory bowel disease (IBD). B27+ AAU is thus regarded as a prototypic ocular immune-
mediated disease and, accordingly, its treatment is based on corticosteroids (Khan et al., 2015;
Rosenbaum, 2015) and classical and biological disease-modifying anti-rheumatic drugs (Heiligenhaus
et al.,, 2012; Bou et al., 2015). Notably, although T-cell inhibition (eg, by cyclosporine A) is beneficial
in other uveitis entities (Nussenblatt et al., 1991), it provides limited efficacy in B27+ AAU (Gémez-
Gémez et al., 2017), suggesting a yet poorly defined role of innate immune cells in its pathogenesis.

Immune cells infiltrating the anterior chamber of the eye can be observed clinically, but are difficult
to obtain for further analyses. In fact, the invasive sampling of AgH is rarely clinically justified. AgqH
fine-needle aspirates are primarily applied for the verification of, for example, infectious uveitis (Chro-
nopoulos et al., 2016) and rarely to unravel the pathogenesis of non-infectious uveitis (Greiner and
Amer, 2008; Chen et al., 2015; de Groot-Mijnes et al., 2015; Zhao et al., 2015). Our knowledge of
AgH-infiltrating leukocytes and underlying mechanisms of uveitis thus remains superficial, despite its
frequency and severity.

In AAU, a role of bacterial triggers has been proposed (Huhtinen et al., 2002a; Huhtinen et al.,
2002b). Therefore, innate immune cells such as monocytes and dendritic cells (DCs) that phagocy-
tose and process foreign antigens are of special interest. In fact, phenotyping of circulating mono-
cytes in patients with immune-mediated uveitis emphasized differences during the disease course (Liu
et al., 2015; Walscheid et al., 2016; Walscheid et al., 2018; Kasper et al., 2018). The microbiome,
intestinal barrier dysfunction, and immune response have also been suggested to contribute to the
pathogenesis of AAU (Rosenbaum and Asquith, 2018). Soluble mediators (Bauer et al., 2020, Abu
El-Asrar et al., 2020; Bauer et al., 2018; Bonacini et al., 2020) and infiltrating leukocytes have been
analyzed (Denniston et al., 2012) previously in the AgH of uveitis patients, but access to samples and
technical challenges remain the main bottlenecks toward better understanding the pathomechanisms
in uveitis.

Kasper, Heming, et al. eLife 2021;10:e67396. DOI: https://doi.org/10.7554/eLife.67396 2 of 20


https://doi.org/10.7554/eLife.67396
https://sciwheel.com/work/citation?ids=9388457&pre=&suf=&sa=0

e Llfe Research article

Immunology and Inflammation

Single-cell RNA-sequencing (scRNA-seq) studies have provided unprecedented high-resolution
insights into immune mechanisms in various tissues (Heming et al., 2021, Wolbert et al., 2020).
Therefore, we here combined scRNA-seq with flow cytometry and protein analysis of soluble cyto-
kines and thereby provide the first partially unbiased characterization of leukocytes in the AgH from
patients with B27+ AAU compared to patients with HLA-B27-negative AU (B27-AU) and acute infec-
tious endophthalmitis. We found that lymphocytes predominate in the intraocular infiltrate in B27+
AAU and specifically showed an elevated frequency of plasmacytoid DCs (pDCs) and classical DCs
(cDCs). In B27+ AAU, DCs featured the most predicted intercellular interactions and increased expres-
sion of AAU- and SPA-related genome-wide association study (GWAS) risk genes that distinguished
this uveitis from active B27-AU. This suggests a specific involvement of DCs in B27+ AAU, and
subtypes of AU thus exhibit specific patterns of local leukocyte responses.

Results

Single-cell analysis of AqH requires optimized sample processing and
recruitment

We here aimed for an unbiased characterization of leukocytes in the AgH in AU flares. We screened
4980 total patients with any intraocular inflammation seen at our uveitis center. We included 11 patients
with current onset of uveitis flare (n = 8) or endophthalmitis (n = 3) into this study, being untreated
with topical corticosteroids for this flare (Supplementary file 1a), corresponding to a recruitment
rate of approximately 0.18 %. In 10 of the AgH samples, cytokine analysis was performed. Cellular
infiltrates were analyzed via scRNA-Seq in AgH samples of four patients with active B27+ AAU, two
patients with active B27-AU, and one patient with active bacterial endophthalmitis (Streptococcus
pneumoniae); five of those samples were analyzed in parallel via flow cytometry (Supplementary file
1a). Deep characterization of AgH-infiltrating leukocytes is thus feasible.

The endophthalmitis patients were significantly older than B27+ AAU patients (analysis of vari-
ance (ANOVA), p = 0.0157; Supplementary file 1a). There were four females in the B27-AU cohort,
and three males and one female in the B27+ AAU cohort. All B27+ AAU patients had associated
SpA, and two of them received adalimumab therapy. Both uveitis groups did not differ significantly
regarding age (ANOVA, p = 0.566), Antinuclear antibodies (ANA) status, frequency of systemic anti-
inflammatory treatment, topical medication, previous ocular surgery, or time since uveitis onset.

Single-cell transcriptomics reconstructs key leukocyte lineages in
aqueous humor

We then performed scRNA-seq of ocular infiltrating cells from fresh AgH fine-needle aspirates (Supple-
mentary file 1a). We defined 5000 input cells as our maximum intended input per sample and used
excess cells beyond that number for flow cytometry analysis. Thereby, we obtained transcriptional
information of 13,550 total individual cells and 1936 average cells (+ 1411 SD) per patient with 830
average genes (+ 402 SD) detected per cell (Supplementary file 1b). This is in accordance with the
expected cell recovery rate of 50 % of the scRNA-seq technique we employed (Zheng et al., 2017).
After quality control, we clustered the single-cell (sc) transcriptomes of all patients combined and
identified 13 individual cell clusters (Figure 1A and B). We manually annotated these clusters based
on the expression of marker genes (Figure 1C, Figure 1—figure supplement 1, Supplementary file
1¢). As previously shown in AgH aspirates of human uveitis patients (Denniston et al., 2012), only
hematopoietic cell clusters were identified. Clusters were broadly classified into cells of myeloid (40 %;
cDCa, cDCb, pDC, mature DC (matDC), granulo, myeloid) and of lymphoid origin (60 %; natural killer
(NK), y& T cells (gdTC), CD8, regulatory T (Treg), CD4, naive B cells (Bc), plasma). Myeloid clusters
separated into cDC clusters tentatively named cDCa (ITGAX, CLEC7A) and cDCb (CLECT0A, MRC1),
pDC (IL3RA/CD123, CLEC4C/CD303) and matDC (TMEM176B, IDO1, FSCN1, LAMP3, CD83), gran-
ulocytes (granulo; S100A12/ S100 A8 high, CCL2 low), and myeloid cells with unclear assignment
(myeloid; ST00A12/5100 A8 low, CCL2 high) (Figure 1C). The marker genes expressed by the cDC
sub-clusters did not fully overlap with previously described cDC type 1/2 markers used to identify
DC subsets from cerebrospinal fluid (DC1: CLEC9A, XCR1, BATF3; DC2: CD1C, FCER1A, CLEC10A)
(Heming et al., 2021) or peripheral blood (DC1: CLEC9A, C10ORF54, HLA-DPA1, CADM1, CAMK2D,;

Kasper, Heming, et al. eLife 2021;10:e67396. DOI: https://doi.org/10.7554/eLife.67396 30f 20


https://doi.org/10.7554/eLife.67396

e Llfe Research article

Immunology and Inflammation

A matoc B
| - 100
cbCa
R <DCb
5 DC CD4 £ 75 pDC
cDCb . ) “w matDC
o o] i
~ " T 8 myeloid
a! W Dca 5 granulo
L0 y c 50 NK
s granulo "¢9 5
=) =] gdTC
cps <]
. i 3 co8
54 myeloid e £ 25 Treg
gdTC Ccp4
naiveBc
naiveBc slasma
10 plasma s o
-10 -5 0 5 2 2 E'
I3 ¢
T 8
UMAP_1 8 &8
a
cDCa . [ ] . Average
ocb{o @ . [ ) . Expression
pDC | * [ ) . 2
matDC { ® . [ ) N
myeloid [ ] . . .. . . o
granulo { - @ ¢ e . . . N
K . @ oo 0
. Percent
gdte ® ° *® Expressed
cp8 . ) .
([ ° P
Treg . [ ) [ X ] . s
CcD4 ° o o0
naiveBc . . . . 75
plasma
Py
YS0iiEgitiyiozosuEieRtizauig
=
Emusgmv-«guaiuuaou2518508~mu§@um
= 40 =4 = w 29 = o = =
o d O % 0 a
=

Figure 1. Single-cell transcriptomics reconstructs leukocyte subsets infiltrating the eye. (A) Uniform manifold
approximation and projection (UMAP) projection of seven pooled samples (control n = 1, B27-AU n = 2; B27+ AAU
n = 4). The single-cell (sc) transcriptomes were manually annotated to cell types based on marker gene expression
and distinguished in 13 cell clusters (color-coded; each dot represents one cell). (B) The mean proportion of cells
(%) in each cluster per group is depicted in a stacked bar plot. (C) Dot plot of selected marker genes grouped by
cluster. The average gene expression level is color-coded, and the circle size represents the percentage of cells
expressing the gene. Threshold was set to a minimum of 10 % of cells in the cluster expressing the gene. DC:
dendritic cell, pDC: plasmacytoid DC, matDC: mature DC; granulo: granulocytes, NK cells: natural killer cells,
gdTC: v § T cells, Treg cells: regulatory T cells, Bc: B cells.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Feature plots of lineage marker genes.

DC2: CD1C, FCER1A, CLEC10A, ADAMS) (Villani et al., 2017). We therefore intentionally named
these clusters cDCa/b to prevent ambiguity.

Lymphoid clusters were classified as CD4+ T cells (CD4; IL7R, CD3G), CD8+ T cells (CD8; CD8A,
CD3G), gdTC (NKG7, TRDC), Treg cells (IL2RA, FOXP3), NK cells (GNLY, NKG7), naive Bc (MS4A1,
CD19, IGHD), and plasma cells (plasma; IGHG1, CD38, SDC1/CD138) (Figure 1C). We thus identified
all major leukocyte lineages in AqH fine-needle aspirates (Figure 1B, Supplementary file 1d).

Diverse uveitis entities exhibit a unique intraocular leukocyte
composition

We next sought to understand how intraocular inflammation differed between uveitis entities. First,
we assessed the endophthalmitis control patient and found almost exclusively myeloid lineage clus-
ters with predominating granulocytes in accordance with an acute anti-bacterial response (Figure 2B;
Figure 2—figure supplement 1, Engstrom et al., 1991).

In contrast, the cellular infiltrates in B27-AU and B27+ AAU patients’ AqH were of more lymphoid
origin, reflecting their autoimmune etiology (Figure 2A and B). When systematically comparing B27+
AAU vs B27-AU samples, inter-patient variability was high (Figure 2A and B), but several populations
still substantially differed between uveitis subtypes (Figure 2C, Supplementary file 1d). While the
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Figure 2. A unique intraocular leukocyte pattern characterizes individual uveitis causes. (A) UMAP projection of pooled B27-AU (n = 2) versus

pooled B27+ AAU (n = 4) samples. The single-cell (sc) transcriptomes were manually annotated to cell types based on marker gene expression and
distinguished in 13 cell clusters (color-coded; each dot represents one cell). (B) The proportion of cells (%) in each cluster is depicted in a stacked bar
plot for individual samples. (C) Dot plot of cluster abundance of B27-AU versus B27+ AAU. The x axis represents the decadic logarithm of fold change
of proportional cluster size. (D) Box plots of proportion of cells (%) of cDCa and pDC from B27-AU and B27+ AAU. The boxes show the median, and
the lower and upper quartile. Whiskers include 1.5 times the interquartile range of the box. The overlaid dots represent individual observations. (E)
Leukocytes of aqueous humor (AgH) samples were analyzed according to their frequency (%) of granulocytes, monocytes/macrophages/DCs, CD4+
and CD8+ T cells, and NK cells. The proportion of each cell population identified via flow cytometry is depicted in a stacked bar plot. DC: dendritic cell,
pDC: plasmacytoid DC, matDC: mature DC; granulo: granulocytes, NK cells: natural killer cells, gdTC: v 6 T cells, Treg cells: regulatory T cells, Bc: B
cells, mono: monocyte, macro: macrophage.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Individualized scRNA-seq results of anterior chamber-derived leukocytes.

Figure supplement 2. Flow cytometric analysis of aqueous humor samples.

CD8 and naive Bc clusters were reduced, the pDC and cDCa clusters were more abundant in B27+
AAU patients (Figure 2C and D), overall indicating an influx or expansion of DC in this uveitis entity.
Next, we sought to confirm our findings using flow cytometry (Figure 2E; Figure 2—figure supple-
ment 2). The expression of canonical lineage markers differs between mRNA and protein quantification
(Peterson et al., 2017), and we therefore used widely applicable pan-lineages in flow cytometry. AqH-
derived cells of some of the patients (Supplementary file 1a) were analyzed to distinguish granulocytes
(CD3'CD11b*HLA-DR’), monocytes/macrophages/DCs (CD3'CD11b*HLA-DR*), CD4" and CD8" T cells
(CD3*CD11b), and NK cells (CD3'CD11b'CD56%). This confirmed the mainly myeloid infiltrate in the
endophthalmitis patient (Figure 2E). B27-AU patients showed an infiltrate dominated by T cells, low
NK cells, and low cells of myeloid origin. In B27+ AAU patients, myeloid cells were more abundant than
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in B27-AU (Figure 2E). Also, the abundance of broad cell classes quantified by scRNA-seq and flow
cytometry showed a positive correlation (Figure 2E, Figure 2—figure supplement 2B). The higher
frequency of granulocytes detected in flow cytometry than in the scRNA-seq might be due to the
higher fragility of these cells during processing for scRNA-seq (Zilionis et al., 2019). Overall, subtypes
of uveitis were thus characterized by a unique pattern of local inflammatory cells.
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Figure 3. Intraocular leukocytes express a subtype-specific transcriptional phenotype. (A) UMAP projection of pooled B27-AU (n = 2) versus

pooled B27+ AAU (n = 4) samples. The single-cell (sc) transcriptomes were manually annotated to cell types based on marker gene expression and
distinguished in five meta-clusters (color-coded; each dot represents one cell). Differentially expressed (DE) genes of B27-AU vs B27+ AAU of each
meta-cluster (B) mergeDC (matDC, pDC, DCa, cDCb), (C) myeloidLin (myeloid, granulo), (D) help (Treg, CD4), (E) toxic (CD8, NK, gdTC), (F) and BcLin
(naive Bc, plasma) are depicted as volcano plots. The threshold for average natural logarithmic fold change (avg logFC) was set to 0.5 and for adjusted

p-value, to 0.001. Selected genes
wide association study (GWAS) ris

are labeled. (G) Heatmap showing differences in average gene expression (B27+ AAU minus B27-AU) of genome-
k genes (Supplementary file 1g). Data were scaled column wise. Columns were clustered using euclidean distance

measure and complete linkage. Yellow color indicates a higher expression in B27+ AAU samples, and blue color indicates a higher expression in
B27-AU samples. Risk genes for anterior uveitis and for spondyloarthropathies (SpA) are labeled in red and black, respectively. DC: dendritic cell, pDC:

plasmacytoid DC, matDC: mature
BcLin, B-cell lineage.
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Specific transcriptional phenotype of intraocular leukocytes in subtypes
of uveitis

Next, we sought to understand how local leukocytes differ transcriptionally between uveitis enti-
ties. To analytically account for low total cell numbers, we merged clusters into five broad cell type
of ‘meta-clusters’ for differential expression analysis (Figure 3A, Supplementary file 1e): helper T
cells (help; Treg, CD4), cytotoxic cells (toxic; CD8, NK, gdTC), merged DCs (mergeDC; matDC, pDC,
cDCa, cDCb), other myeloid cells (myeloidLin; myeloid, granulo), and B-cell lineage (BcLin: naive B,
plasma). We then tested for differentially expressed (DE) genes between B27+ AAU and B27-AU.
Across all clusters, multiple major histocompatibility complex (MHC) class | and class Il related genes
(HLA-A, HLA-DPA1, HLA-DRA, HLA-DRB1, B2M) were expressed at lower levels in B27+ AAU samples
(Figure 3B-F). Furthermore, in B27+ AAU, the help and BcLin meta-clusters downregulated one cyto-
kine receptor (CXCR4). The toxic meta-cluster downregulated signs of cytotoxicity (GZMK, GZMH,
LTA). The BcLin meta-cluster featured an increase of macrophage-inhibitory factor (MIF), known to
inhibit NK cell activity (Apte et al., 1998). The myeloid meta-cluster reduced expression of several
interferon (IFN)-regulated genes (IFITM genes; Figure 3B-F).

Elevated CTNN1 expression in mergeDC (Figure 3B) pointed to an involvement of the WNT/
catenin pathway as previously described for SpA (Xie et al., 2016). Increased expression of Lyz and its
cognate antisense AC020656.1, and CALR (Liu et al., 2016) and its antisense AC092069.1, within the
mergeDC cluster suggested an activation of myeloid cells and simultaneously local counter regulating
mechanisms. Elevated expression of B4GALT1in mergeDC, in detail cDCa and cDCb (Supplementary
file 1f), potentially reflected the migratory capacity of DC (Johnson and Shur, 1999). Notably, the
mergeDC, help, and toxic meta-clusters all upregulated CTORF56, an oncogene previously found
induced in activated lymphocytes in IBD (Uniken Venema et al., 2019) and splenic NK cells (Crinier
et al., 2018).

We also found elevated expression of prefoldin 5 (PFDND5) in myeloid, toxic, and help clusters
(Supplementary file 1e), which was recently described as a specific marker for B27+ AAU associated
with SpA (Kwon et al., 2019). Furthermore, as previously shown in joint biopsies of SpA patients
(Carlberg et al., 2019; Lam et al., 2019) and in association with autoinflammatory diseases (Carlberg
et al., 2019, Lam et al., 2019), elevated expression of CDC42 was detected in mergeDC, myeloid,
and help clusters and of CDC42SE1 in mergeDC, myeloid, help, and toxic clusters (Figure 3B-E).

The risk for developing HLA-B27-associated autoimmune diseases is partially determined by vari-
ants in non-HLA genetic loci (Robinson et al., 2015; Lin et al., 2011; Australo-Anglo-American
Spondyloarthritis Consortium (TASC) et al., 2010; Li et al., 2019; Evans et al., 2011; International
Genetics of Ankylosing Spondylitis Consortium (IGAS) et al., 2013; Trochet et al., 2019, Elling-
haus et al., 2016; Huang et al., 2020). We therefore interlinked our transcriptional data with existing
genetic information, by testing which ‘meta-clusters’ differentially expressed AAU/SpA risk genes
between B27+ AAU and B27-AU (Figure 3G, Supplementary file 1g). Both uveitis-related and SpA-
related risk genes were included in the analysis because all B27+ AAU patients had systemic SpA
(Supplementary file 1). Many SpA-related risk genes were highly expressed in the BcLin cluster (eg,
CLEC16A, IFNLR1), and in the mergeDC cluster (eg, IFNGR2, AHR) in B27+ AAU (Figure 3G, Supple-
mentary file 1g ). Compared to B27-AU, expression of genes involved in the detection of pathogens
(eg, CARDY, TLR4) showed lower expression in the mergeDC cluster in B27+ AAU. Notably, most
AU-related risk genes were preferentially expressed in the B27+ AAU mergeDC cluster (eg, EYS, HLA-
DRB5, ERAP1, and IL18R1). This indicates the relevance of DC in B27+ AAU.

Subtype-specific local leukocyte communication in uveitis
We also attempted to understand how uveitis controlled the local inter-cellular signaling circuitry. We
therefore used a computational tool (CellPhoneDB; Efremova et al., 2020) to predict cell-cell interac-
tions between human leukocytes in uveitis from scRNA-seq data. The pDC and plasma clusters had to
be excluded because of their small size in B27-AU. In the resulting analysis, the granulo and myeloid
clusters had the highest number of predicted interactions (Figure 4—figure supplement 1). In both
uveitis groups, most interactions were between myeloid, granulo, gdTC, and multiple DC clusters.
Myeloid lineage clusters thus express the highest capacity for cell-cell interaction.

Next, we tested for differences of predicted interactions between both subtypes of uveitis. We
calculated the number of predicted interactions in B27+ AAU minus that in B27-AU (Figure 4A).
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Figure 4. Altered local inter-cellular signaling in uveitis. (A) The total count of receptor-ligand interactions between cell clusters of B27-AU and B27+
AAU single-cell (sc) transcriptomes was obtained with CellPhoneDBv2.0 (see Figure 4—figure supplement 1 for separate analyses). The heatmap
shows the differences between B27+ AAU and B27-AU (amount of predicted interactions of all cell types, excluding plasma and plasmacytoid DC

(pDC) due to few cells (<10) of B27+ AAU minus those of B27-AU). (B) Overview of all ligand-receptor interactions of the cDCa cluster with at least one
significant interaction. Circle size indicates the p-values. The means of the average expression level of interacting molecule 1 in cluster 1 and interacting
molecule 2 in cluster 2 are color-coded. (C) Heatmap showing aqueous humor (AgH) cytokine level of B27-AU (n = 3) and B27+ AAU (n = 4) patients (see
Supplementary file 1h showing single values). Data were scaled column wise. Columns were clustered using euclidean distance measure and complete
linkage. (D) Box plots of interleukin (IL)-2, IL-6, interferon (IFN)- v, IL-18, IL-22, IL-1 B, IL-5, IL-17A, and IL-1 receptor antagonist (IL-1RA) (pg/ml) in the

AgH of patients with B27-AU and B27+ AAU. Dots represent individual data. Mann-Whitney U-test (*p<0.05).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Detailed results of the interactome prediction analysis.

Figure supplement 2. Cytokine expression in meta-cluster and cytokine serum level.

B27-AU displayed many interactions between T/NK clusters with myeloid, matDC, and cDCb clusters
(Figure 4A, Figure 4—figure supplement 1A). In contrast, the cDCa cluster showed widespread
interactions in B27+ AAU (Figure 4A, Figure 4—figure supplement 1B.). This suggests that pref-
erential interactions differ between uveitis entities and that the cDCa cluster might be involved in
intraocular inflammation in B27+ AAU.

Notably, when focusing on individual interactions of the cDCa cluster (Figure 4B), MHC class
ll-related transcripts (eg, CD74, HLA-E) were predicted to interact with surface molecules such as
MIF or KLRC1 with immunomodulatory capacity and known association to autoimmunity (Figueiredo
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et al., 2018; Borrego et al., 1998). The predicted interaction of cDCa with pDC clusters in B27+
AAU samples also included the LAIR-LILRB4 and AXL-GAS6 interaction pairs (Figure 4B) that exert
immunosuppressive phagocytosing functions (Scutera et al., 2009; Brown et al., 2009). Overall, our
findings indicate subtype-specific local inter-cellular leukocyte signaling and indicate that DC forms a
central signaling node in uveitis.

Increased level of pro-inflammatory cytokines in AAU patients

Next, we sought to characterize the intraocular immune response through the analysis of soluble
mediators. We therefore quantified a predefined set of cytokines in the AqH of these patient groups
(Supplementary file 1h). Several cytokines were below detection limits, and the most notable feature
of all these samples was a pronounced presence of interleukin (IL)-6 and IL-1 receptor antagonist (IL-
1RA). High levels of immunosuppressive IL1-RA in AgH of uveitis/endophthalmitis patients have also
been shown in B27+ AAU patients (Zhao et al., 2015; de Vos et al., 1994, Planck et al., 2012) and
may reflect the immune-privileged microenvironment in the anterior chamber (Zhao et al., 2015; de
Vos et al., 1994; Planck et al., 2012, Dana et al., 1998). The cytokine milieu in endophthalmitis was
characterized by innate-related IL-6, tumor necrosis factor (TNF)-a, and IL-1B (Supplementary file
1h), which are involved in ocular barrier breakdown and leukocyte recruitment into ocular tissue (Hao
et al., 2016, Feys et al., 1994; Giese et al., 1998).

Across uveitis entities, the interindividual heterogeneity of cytokine patterns was high (Figure 4C
and D). When comparing uveitis entities, the B27+ AAU group showed significantly increased levels
of IL-2, IL-6, IL-18, IL-22, IL-1B, and interferon (IFN)-y (Figure 4C and D).

When comparing this with the scRNA-seq dataset, cytokine expression was identified across all
‘meta-clusters’ (Figure 4—figure supplement 2A), but not all cytokines were detected (eg, IL31, IL5,
IL9, IL21, and IFNAT). Single-cell transcriptomics is generally prone to false negatives (Vieth et al.,
2019), and stromal cells and resident immune cells in the iris can also express proinflammatory cyto-
kines (Miyamoto et al., 1999), which may explain the discrepancy between techniques.

We additionally performed analysis of B27+ AAU and B27-AU serum samples, recruited during the
active uveitis disease stage in the context of another project (Kasper et al., 2018; Kasper, 2020).
There, we found significantly elevated IL-1RA and IFN-y levels in the serum of B27+ AAU as compared
to B27-AU patients (Figure 4—figure supplement 2B,C; Supplementary file 1i). This indicates a
potential role of IFN-y in both intraocular and systemic immune response during uveitis activity in
patients with SpA.

Discussion

Here, we provide the first high-resolution characterization of rare and difficult-to-obtain intraocular
leukocytes in AU. By making scRNA-seq per se applicable to the AgH, we found that intraocular
leukocytes are transcriptionally and compositionally different not only from blood (Zheng et al., 2017)
but also from other tissues affected by autoimmune diseases such as synovial fluid in rheumatoid
arthritis (Stephenson et al., 2018) or cerebrospinal fluid in multiple sclerosis (Schafflick et al., 2020).
By comparing HLA-B27-positive versus -negative AU, we identified a unique composition of intraoc-
ular leukocytes in B27+ AAU. Notably, B27+ AAU showed an elevated frequency of pDc and ¢DC. In
B27+ AAU, cDC had the highest amounts of predicted intercellular interactions and increased expres-
sion of AAU- and SpA-related GWAS risk genes that distinguished this uveitis from active B27-AU.
This indicates the relevance of cDC in promoting intraocular inflammation.

Our findings allow diverse speculations on the pathogenesis of HLA-B27-associated AAU. We
found T cells more activated in B27-AU than in B27+ AAU in accordance with the poor response of
B27+ AAU to T-cell inhibition (Gémez-Gémez et al., 2017). The cell-to-cell network analysis revealed
an involvement of TNFSF13B (BAFF), connecting naive Bc and plasma cells to cDCa. A previous study
has shown enhanced levels of the B-cell factors BAFF and APRIL in AgH of AAU patients during inac-
tive uveitis, pointing to a role of intraocular B cells in AAU (Wildschiitz et al., 2019). Notably, naive
Bc expressing CLEC16A (Rijvers et al., 2020), and plasma cells, expressing several SpA risk genes,
were preferentially enriched in B27+ AAU. Also, plasma cells and the intraocular plasma cluster do
not express MS4A1/CD20 and, accordingly, SpA patients (with or without AAU) mostly do not benefit
from treatment with the anti-CD20 antibody rituximab (Wendling et al., 2012).
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Several lines of evidence—including our study—indicate that SpA-associated B27+ AAU may be
driven by innate immune cells triggered through innate pattern recognition of endogenous or exog-
enous pathogens. One study identified CD14+ monocytes/macrophages and a separate CD14—/low
BDCA-1+ (CD1c) myeloid DC population in AgH of patients with AU (Denniston et al., 2012). This
lends support to a central hub function of DC.

DCs—as professional antigen-presenting cells—orchestrate the interplay between innate and
adaptive immunity. The classification of DCs is complex. Traditionally, three DC subsets were defined
as classical (or myeloid) DC type 1 (cDC1) or type 2 (cDC2), and pDC (Merad et al., 2013). Addi-
tional subdivisions and the definition of monocyte-derived DCs further complexify the field (eg, Villani
et al., 2017, Yin et al., 2017, Collin and Bigley, 2018). We identified four intraocular DC clusters in
two different uveitis entities. As the marker genes identified in our study partially differed from cDC1/
cDC2 in other tissues (Heming et al., 2021; Villani et al., 2017), we used a distinct annotation as
cDCa/b. We also identified a novel DC cluster that expressed genes related to activation and matu-
rity (FSCN1, CD83, LAMP3), and was therefore designated as matDC cluster. LAMP3 was previously
shown to mediate migration from tumor to regional lymph nodes and exert regulatory capacity on
other cells (Zhang et al., 2019). Furthermore, we identified DC5 cells, characterized by their high
expression of AXL and SIGLEC6 (Villani et al., 2017), within the cDCa, matDC, and pDC cluster.
Expression of immune regulatory MIF and AXL in cells of cDCa cluster and their multiple predicted
interactions with other infiltrating immune cells point to an immune regulatory and/or phagocytosing
role of these cells during AAU.

Pathogens are one potential trigger of autoimmune uveitis in mice and intestinal and joint inflam-
mation in rats overexpressing human HLA-B27 antigen (Taurog et al., 1994). Anti-Saccharomyces
cerevisiae antibodies are elevated in patients with SpA and point to an involvement of CARDY or
NOD2 (Maillet et al., 2016). Transcriptional candidate risk genes related to innate immunity (eg,
CARD9, NOD2, TLR4) were expressed at a lower level in the DC populations of B27+ AAU patients,
questioning the role of bacterial and fungal pathogens in intraocular immune response.

In scRNA-seq, the alarmins ST00A8/S100A9 are assigned mainly as marker genes for granulo-
cytes and other phagocytes (Zheng et al., 2017). Furthermore, elevated S100A8/A9 expression
points to an involvement of toll-like receptor (TLR) signaling and activation of innate immune cells.
Thus, elevated S100A8/A9 and ST00A12 levels serve as activity biomarkers of diverse autoimmune
diseases (Pruenster et al., 2016; Baillet et al., 2010; Vogl et al., 2018; Walscheid et al., 2015). In
particular, STO0A8/A9 serum levels are increased constitutively in patients with HLA-B27-associated
uveitis (Kasper, 2020; Wang et al., 2016). In scRNA-seq, the alarmins ST00A8/S100A9 are assigned
mainly as marker genes for granulocytes and other phagocytes (Zheng et al., 2017). However,
expression levels of ST00A8/A9 did not differ between the myeloid lineage clusters of B27-AU and
B27+ AAU samples.

The analysis of the cytokine pattern of AgH and sera in the study confirmed previous observations
describing elevated IL-18 and IFN-y levels in the AgH (Zhao et al., 2015; Lacomba et al., 2000), and
an elevated serum IFN-y level in B27+ AAU patients during active uveitis (Chen et al., 2015; Lacomba
et al., 2000). In particular, IL-18 is a main costimulatory factor for IFN-y expression in T and NK cells
(Okamura et al., 1995). Further, the elevated expression of several IFN-y-related transcripts in B27+
AAU samples matched with previous observations in SpA joint biopsies (Carlberg et al., 2019), indi-
cating a IFN-y-driven immune response during active uveitis.

Limitations of the study

The main limitation of the study is its small sample size combined with a high inter-patient variability
influenced by multiple potential confounders (eg, age, sex, disease duration, medication, comorbid-
ities). However, considering the invasiveness of the procedure, the rarity of the disease, and the high
costs of sc transcriptomics, our study is relatively sizable. Since both flow cytometry and scRNA-seq
were performed with fresh material and since AqH is precious material with limited cell numbers, we
were not able to verify several of the hall markers identified with the unbiased scRNA-seq approach.
Additional studies that verify the identified genes in a larger cohort will be necessary. Furthermore,
the study lacks matched blood data, and we observed an inter-assay variability in some cell popula-
tions (eg, granulocytes) between scRNA-seq and flow cytometry. In future studies, multiplex staining
with antibodies conjugated to a feature barcode oligonucleotide could improve phenotyping of cells,
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entities and insights into local immune-mediated mechanisms.

Materials and methods

Additional

(species) or resource Designation Source or reference Identifiers information
Biological sample Department of Ophthalmology at St Franziskus
(Homo sapiens) Aqueous humor (AgH) Hospital, Minster, Germany Deidentified
Biological sample (H. Department of Ophthalmology at St Franziskus
sapiens) Serum Hospital, Minster, Germany Deidentified
Anti-CD3 (mouse Cat# 317336;

Antibody monoclonal;OKT3; PerCP-Cy5.5) Biolegend RRID:AB_2561628 Dilution (1:20)
Anti-CD4 (mouse monoclonal; Cat# 317444,

Antibody OKT4:BV510) Biolegend RRID:AB_ 2561866 Dilution (1:20)
Anti-CD8a (mouse monoclonal; Cat# 344722;

Antibody SK1; APC) Biolegend RRID:AB_2075388 Dilution (1:20)
Anti-CD11b (rat monoclonal; Cat# 101205;

Antibody M1/70; FITC) Biolegend RRID:AB_312788 Dilution (1:200)
Anti-CD11¢ (mouse monoclonal; Cat# 301625,

Antibody 3.9; Pacific Blue) Biolegend RRID:AB_10662901 Dilution (1:20)
Anti-CD56 (mouse monoclonal; Cat#t A21692;

Antibody N901; PC7) Beckman Coulter RRID:AB_2892144 Dilution (1:100)
Anti-HLA-DR (mouse Cat# IM3636;

Antibody monoclonal; Immu-357;ECD) Beckman Coulter RRID:AB_10643231 Dilution (1:100)

Cat# 130-059-907;
Antibody FcR-blocking reagent, human Miltenyi RRID:AB_2892112 20 pl/Test

Commercial assay
or kit

ProcartaPlex Human Cytokine
Panel 1B (25 plex) 96 tests Kit

Thermo Fisher Scientific

Cat# PX250-12166-901;
RRID:AB_2576119

Luminex analysis

Commercial assay
or kit

Chromium Single Cell 3' Library
& Gel Bead Kit v2 and v3

10 x Genomics

Cat# PN-120237
Cat# PN-1000075

RNA-seq analysis

Commercial assay

or kit AMPure XP beads Beckman Coulter Cat# A63881 RNA-seq analysis
Commercial assay NextSeq 500/550 High Output
or kit Kit v2.5 (150 cycles) lllumina Cat# 20024907 RNA-seq analysis
Commercial assay NovaSeq 6,000 S4 Reagent Kit
or kit v1.5 (300 cycles) lllumina Cat# 20028312 RNA-seq analysis

Software, algorithm

cellranger v3.0.2

10 x Genomics; https://support.10xgenomics.
com/single-cell-gene-expression/software/
pipelines/latest/what-is-cell-ranger

RRID:SCR_017344

RNA-seq analysis

R Project for Statistical

Software, algorithm

Computing; R v4.0.2

https://www.r-project.org/

RRID:SCR_001905

RNA-seq analysis;
statistical analysis

Software, algorithm

Seuratv3.1.5

Stuart et al., 2019;
http://seurat.r-forge.r-project.org/

RRID:SCR_007322

RNA-seq analysis

Korsunsky et al., 2019,

Software, algorithm ~ HARMONY https://github.com/immunogenomics/harmony RNA-seq analysis
Efremova et al., 2020;
Software, algorithm  CellPhoneDB https://www.cellphonedb.org/ RRID:SCR_017054 RNA-seq analysis

Continued on next page
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Source or reference Identifiers information

Software, algorithm

EnhancedVolcano.

Blighe et al., 2018;
https://github.com/kevinblighe/
EnhancedVolcano

RRID:SCR_018931 RNA-seq analysis

Software, algorithm

cerebroApp

Hillje et al., 2020;

https://github.com/romanhaa/cerebroApp RNA-seq analysis

Software, algorithm

FACS Kaluza software v2.1.1

Beckman Coulter; https://www.beckman.com/

coulter-flow-cytometers/software/kaluza RRID:SCR_016182 Flow cytometry

Software, algorithm

FlowJo v10.6.

BD Biosciences; https://www.flowjo.com/

1 solutions/flowjo RRID:SCR_008520 Flow cytometry

Software, algorithm

ProcartaPlex Analyst 1.0 software

Thermo Fisher Scientific; https://www.
thermofisher.com/de/de/home/global/forms/

life-science/procartaplex-analyst-software.html Luminex analysis

Software, algorithm

MedCalc Statistical Software

version 19.3.1

MedCalc Software Ltd, Ostend, Belgium;
https://www.medcalc.org; 2020

RRID:SCR_015044 Statistical analysis

Patients and inclusion criteria

Inclusion criteria (all must be fulfilled) were as follows: patients with clinically non-granulomatous AU
with an anterior chamber (AC) cell grade >2 + according to SUN guidelines or with infectious endoph-
thalmitis (Jabs et al., 2005). Even though patients received topical corticosteroids in previous recur-
rences, at the time of sampling, patients received no topical anti-inflammatory medication.

Patients included in the study were classified into the following groups (Supplementary file 1a).
(1) Patients with HLA-B27-associated AAU (B27+ AAU) and with typical clinical signs of AAU. (2)
Patients with HLA-B27-negative AU (B27-AU), with typical clinical signs but without inflammatory/
immune-mediated systemic disease associated with uveitis. (3) Patients with infectious endophthal-
mitis. Patients with ages, gender, and systemic medical therapies typical for these three entities were
chosen.

Laboratory parameters

The following standard laboratory parameters were tested in all patients: differential blood count,
liver and kidney function tests, C-reactive protein, angiotensin-converting enzyme, soluble interleukin
2-receptor, and serological testing for Treponema pallidum. The patient was excluded from the study
if any of those were remarkable. Patients were analyzed for their HLA-B27 status using established
olymerase chain reaction (PCR) (licensed lab standard).

In addition, patients underwent chest x-ray and consultation with a specialist for internal medicine
or rheumatology to identify any associated systemic immune-mediated disease. Patients were clas-
sified as having HLA-B27-associated uveitis (eventually with associated systemic disease) if none of
the tests except HLA-B27 positivity produced any further findings indicating non-related associated
systemic disease. Patients with a clinical appearance of infectious (eg, herpes simplex virus (HSV)- or
varicella-zoster virus (VZV)-induced) uveitis or uveitis syndromes (eg, Fuchs uveitis syndrome) were not
included in the studly.

Ophthalmic examinations

A standardized ophthalmic database was applied for the analysis that included the following param-
eters: clinical ophthalmic observations on uveitis in the involved eyes were documented according to
the SUN criteria (Jabs et al., 2005). Briefly, best-corrected visual acuity testing (in LogMAR), slit-lamp
examination, Goldmann tonometry, and funduscopy were performed by two independent observers.
Any uveitis-related intraocular complications were recorded (Supplementary file 1a).

AdgH fine-needle aspirates
AgH (100-150 pl) was collected from each study subject using a 30 G needle under local anesthesia
and immediately shipped at 4 °C to the department of neurology at the University Clinic Muenster
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(Germany) for scRNA-seq and/or flow cytometry analysis. Freshly isolated cells were centrifuged once,
counted, and up to 5000 of the input cells were used for scRNA-seq, and the remaining cells were
used for flow cytometry. For protein (luminex) analysis, 60 pl of the AgqH was centrifuged for 5 min at
12,000 xg and stored at -80°C until analysis.

Single-cell RNA-sequencing and analysis

Freshly isolated sc suspensions were loaded onto the Chromium Single Cell Controller using the
Chromium Single Cell 3' Library & Gel Bead Kit v2 or v3 chemistry (both from 10 x Genomics). Sample
processing and library preparation were performed according to the manufacturer’s instructions using
AMPure XP beads (Beckman Coulter). Sequencing was either carried out on a local lllumina Nextseq
500 using the High-Out 75 cycle kit with a 26-8-0-57 read setup and 150 cycles or commercially
(Microanaly, China) on a NovaSeq 6000 using the 300 cycle kit with a paired-end 150 read setup.
Sample library kits version and sequencing information are shown in Supplementary file 1b.

Preprocessing of sequencing data

Processing of sequencing data was performed with the cellranger pipeline v3.0.2 (10x Genomics)
according to the manufacturer’s instructions. Raw bcl files were de-multiplexed using the cellranger
mkfastq pipeline. Subsequent read alignments and transcript counting were done individually for
each sample using the cellranger count pipeline with standard parameters. The cellranger aggr pipe-
line was employed to generate an sc barcode matrix containing all the samples without normalization.
The normalization of each library was subsequently performed in Seurat (see below).

Quality control, normalization, clustering, alignment, and visualization
of scRNA-seq data

Subsequent analysis steps were carried out using Seurat v3.1.5 (Stuart et al., 2019) using R v4.0.2
as recommended by the Seurat tutorials. Briefly, cells were filtered to exclude cell doublets and low-
quality cells with few genes (<200), high genes (>900-3500), or high mitochondrial percentages
(5-7%) in each patient individually. After quality control, the total cell number used for the analysis was
12,305 (Supplementary file 1b). To account for technical variation, data were normalized using regu-
larized negative binomial regression (Hafemeister and Satija, 2019), taking into account mitochon-
drial percentage and cycle score. Dimensionality reduction was done by principal component analysis.
The number of principal components used for the further analysis was determined using an elbow
plot. Cells were clustered using the ‘FindNeighbors’ (based on k-nearest neighbor (KNN) graphs) and
‘FindCluster’ (Louvain algorithm) functions in Seurat. To account for batch effects, different samples
were aligned using Harmony (Korsunsky et al., 2019). The UMAP was then used to visualize cells in a
two-dimensional space. Clusters were annotated based on known marker genes.

Identifying differentially expressed genes

The ‘FindMarker’ function in Seurat, which used the Wilcoxon rank sum test, was applied to normal-
ized and aligned data. The threshold of the adjusted p-value was set to 0.05. Volcano plots were
created with the R package EnhancedVolcano. DE genes identified by Seurat were used as the input.
The threshold for the average log fold change was set at 0.5 and that for p-values at 0.001.

Average expression of GWAS risk gene

Summary statistics were downloaded from the NHGRI-EBI GWAS Catalog (Buniello et al., 2019)
for the studies GCST007362/GCST007361 (Robinson et al., 2015), GCST001345 (Lin et al., 2011),
GCST000563 (Australo-Anglo-American Spondyloarthritis Consortium (TASC) et al., 2010),
GCST007361 (Robinson et al., 2015), GCST007844 (Li et al., 2019), GCST001149 (Evans et al.,
2011), GCST005529 (International Genetics of Ankylosing Spondylitis Consortium (IGAS) et al.,
2013), GCST008910 (Trochet et al., 2019), GCST003097 (Ellinghaus et al., 2016), and GCST010481
(Huang et al., 2020) downloaded on 04/09/2020.

Identifying cellular interactions
Cellular interactions were analyzed using CellPhoneDB (Efremova et al., 2020). Normalized and
aligned scRNA-seq data with the clusters identified by Seurat separated by diagnosis were used for
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analysis. Clusters with less than 10 cells were excluded. Statistical iterations were set at 1000 and
genes expressed by less than 10 % of cells in a cluster were removed. Resulting interactions are based
on the CellPhoneDB repository. Heatmaps were produced by using the integrated heatmap function
and then calculating the difference of the count of significant interactions in condition 1 and condition
2. Dot plots were created with the integrated dot plot function.

Flow cytometry of AqH-derived cells

Flow cytometry analysis was performed on the maximum of recovered cells from the AqH samples
(£10° cells). Cells were first blocked with FcR anti-human blocking reagent (Miltenyi). Afterwards, cells
were stained for 30 min at 4 °C in the dark with a combination of the following anti-human antibodies:
CD3 (perCp-Cy5.5, clone OKT3), CD4 (BV510, clone OKT4), CD8 (APC, clone SK1), CD11b (FITC
clone M1/70), CD11c (Pacific Blue, clone 3.9)—all from Biolegend—and CD56 (Pe-Cy7, clone N901)
and HLA-DR (ECD, clone Immu-357) from Beckman Coulter. Samples were measured on a Gallios
(10 colors, 3 lasers; Beckman Coulter) flow cytometer using FACS Kaluza software v2.1.1 (Beckman
Coulter). Data were analyzed with FlowJo v10.6.1 (BD Biosciences). The gating strategy is illustrated
in Figure 2—figure supplement 2.

Quantification of cytokines in AqH

Cytokines in AgH samples were quantified via luminex analysis using a ProcartaPlex Human Cytokine-
Panel 1B (Thermo Fisher Scientific, Waltham, Massachusetts, USA) that quantifies granulocyte
macrophage-colony stimulating factor (GM-CSF), IFN-a, IFN-y, IL-1a, IL-1B, IL-1RA, IL-2, IL-4, IL-5,
IL-6, IL-7, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17A, IL-18, IL-21, IL-22, IL-23, IL-27, IL-31, TNF-a, and
TNF-B, according to the manufacturer’s instructions. Standards and samples were measured in dupli-
cates using Bio-Plex MAGPIX Multiplex Reader (BioRad, Hercules, California, USA) and cytokines were
quantified in (pg/ul) using ProcartaPlex Analyst 1.0 software (Thermo Fisher Scientific).
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