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Abstract

Fuchs’ Endothelial Corneal Dystrophy (FECD) is a genetically complex disorder that affects

individuals above 40 years of age; molecular pathogenesis of its associated genes is poorly

understood. This study aims at assessing the association of flap endonuclease 1 (FEN1)

polymorphisms, c.-69G>A (rs174538) and c.4150G>T (rs4246215) with FECD. Comet

assay analysis reaffirmed that endogenous DNA damage was greater in FECD individuals.

However, genetic analysis in 79 FECD patients and 234 unrelated control individuals prove

that both the FEN1 polymorphisms, c.-69G>A (rs174538) and c.4150G>T (rs4246215),

failed to show any genetic association with the FECD disease phenotype. In silico analysis

and luciferase reporter assay identified ‘G’ allele of the 3’UTR located FEN1 polymorphism

c.4150G>T as the target for binding of hsa-miR-1236-3p. This study indicates that although

FEN1 polymorphisms, c.-69G>A (rs174538) and c.4150G>T (rs4246215) are not geneti-

cally associated with FECD, its transcript regulation reported in other diseases such as lung

cancer which are genetically associated by rs4246215 could be mediated through miRNA,

hsa-miR-1236-3p.

Introduction

Fuchs’ endothelial corneal dystrophy (FECD) is an autosomal dominant, bilateral, age related

disorder, known since 1910 after its published detailed description by Ernst Fuchs.[1] Disease

manifestation involves decreased endothelial cell density and edematous cornea, which pro-

gressively consequent into decreased visual acuity. FECD is a genetically complex disorder

with an increased predilection for females (2.5:1) and affects 3.9% of individuals over forty

years of age in USA, from which it derives the name late-onset FECD.[2–4] On the contrary, a

rarer variant of this disease known as early-onset FECD is also detected in individuals at their

first decade and harboring autosomal dominant mutations in COL8A2 gene.[5] Corneal trans-

plantation is considered as the sole alternative for restoring vision in FECD affected individu-

als.[6] Over the past few years only handful of studies on FECD have been carried out in India

that reported about 10.8% (113/1048) of total Endothelial Keratoplasty performed over a span
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of five-six years are due to FECD cases solely;[7, 8] indicating a prominent contribution of

FECD in the total endothelial dystrophy cases in our country.

Linkage analysis and genome wide association studies have identified a plethora of genes

and their genetic variations as risk factors associated with late-onset FECD (LO-FECD).[9–15]

One of the disease pathomechanism involves increased oxidative stress and resultant apoptosis

of corneal endothelial cells.[16, 17] In a recent study, one of the two polymorphisms, c.-

69G>A (rs174538) and c.4150G>T (rs4246215), studied in Flap endonuclease 1 (FEN1) gene

was genetically associated with LO-FECD in Polish population.[18] As a genome stabilization

factor, FEN1 is one of the component in DNA damage repair mechanism during long-patch

base-excision repair (BER).[19] It has been established through previous studies that changes

in FEN1 gene expression can increase the susceptibility of DNA damage during oxidative

injury.[20, 21] The current study aims at assessing the genetic association of the two FEN1
polymorphisms 69G>A and c.4150G>T in Indian population. It also aims at investigating the

functional role of the associated variant by evaluating its involvement in DNA damage and

having a regulatory role as a miRNA target site.

Materials and methods

Participants and genetic analysis

A population of 234 controls and 79 patients, of Indian origin, were recruited at L. V. Prasad Eye

Institute (LVPEI) at Bhubaneswar, India after acquiring written consent from the participants.

This study was approved by the Ethics review board from Institutional Ethics Committee (IEC)

and Institutional Biosafety Committee (IBSC), National Institute of Science Education and

Research (NISER) and Institutional Ethics Committee (IEC), LV Prasad Eye Institute (LVPEI).

Recruitment of study participants was done as per the previously published report [22] and in

accordance with the Declaration of Helsinki. Genomic DNA extracted from peripheral blood

leucocytes of these individuals was used to genotype FEN1 polymorphisms, rs174538
using 5’ CTCTCGCCCTTAGAAATCGC 3’ and 5’ GGCAACCAGTCCCTCCAG 3’
and rs4246215 using 5’ TATGTCAGGCTCAAACCAC 3’ and 5’ CAGCCAGTAA
TCAGTCACAA 3’ by Sanger sequencing (Fig 1).[22]

Comet assay. Endogenous DNA damage of the peripheral blood mononuclear cell

(PBMC) samples was quantified by performing alkaline comet assay with the frozen blood leu-

cocytes from the participants following previously published literature [23] and expressed as

the natural log of Olive tail moment (Ln-OTM) of the comets after analysing individual fluo-

rescent comet images on CASPLab v1.2.3beta2 comet analysis software (University of Wro-

claw, Institute of Theoretical Physics, Poland).

In silico prediction of miRNA sites in 3’UTR of FEN1
In order to analyse the putative miRNA binding sites at the 3’UTR of FEN1, the most fre-

quently used computational algorithms such as miRWalk 2.0 (http://zmf.umm.uni-heidelberg.

de/apps/zmf/mirwalk2/index.html), miRanda (http://www.microrna.org/microrna/home.do);

TargetScan (http://www.targetscan.org); PicTar (http://www.pictar.org), RNA22 (https://cm.

jefferson.edu/rna22/)32, FindTar3 (http://bio.sz.tsinghua.edu.cn) and SegalLab (https://genie.

weizmann.ac.il/index.html) and SNPinfo database (http://snpinfo.niehs.nih.gov/) were used.

Luciferase reporter assay

Target site for miRNA binding was assessed in vitro by reporter assays using pMIR-report

luciferase vector (Invitrogen) containing CMV promoter and pGL4.74 Renilla vector as
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reporter control plasmid. Target oligos (67bp) for mIR-1236 as identified through bioinfor-

matics analysis on the 3’UTR of FEN1 gene (Table 1), were synthesized and annealed in 1X

annealing buffer (30mM HEPES pH7.4, 100mM potassium acetate and 2mM magnesium ace-

tate) at 90˚C for 5 mins, followed by an hour incubation at 37˚C. The annealed oligos were

cloned into XhoI-NotI double digested pMIR-report vector at 3’UTR of the luciferase gene.

The resultant pMIR-1236 clones (1μg) along with hsa-miR-1236-3p mimic (10pmoles, Invitro-

gen) and pGL4.74 vector (5ng) were transiently co-transfected into HEK293 at 80% con-

fluency using Lipofectamine 2000 (Invitrogen). 24hr post-transfection, cells were harvested

and the reporter activity of the transfected cells were measured using Dual-luciferase reporter

assay system (Promega). Reporter activity for each assay group were measured in Varioskan

Flash spectral scanning multimode reader (Thermo Scientific, USA). After normalization with

Renilla reporter activity as transfection control, values obtained for each group were plotted as

percent relative luciferase activity in comparison to empty pMIR vector.

Relative transcript expression analysis

RNA from peripheral blood leucocytes was extracted (Nucleospin RNA blood kit, Mackerey-

Nagel) and converted to cDNA using 3:1 (v/v) random hexamers and anchored oligo (dT)

reverse transcription primers (Verso cDNA conversion kit, ThermoFisher Scientific). Expres-

sion of FEN1 transcript in control and FECD samples was analyzed in triplicates, taking

GAPDH expression as internal control, on ABI 7500 Real time-PCR system, using SYBR-

green method. Primers used for qRT-PCR are, FEN1 5’ GGAGAGCGAGCTTAGGACCG 3’
and 5’CAACACAGAGGAGGGATGACTGG 3’ and GAPDH 5’ GAAGTCAGGTGGAGCGA
GG 3’ and 5’ GCCCAATACGACCAAATCAGAG 3’. Transcript expression of FEN1 in

c.4150TT homozygotes was compared against c.4150GG individuals.

Fig 1. Representative sequence chromatographs of FEN1 polymorphisms (A) c.-69G>A and B) c.4150G>T.

https://doi.org/10.1371/journal.pone.0204278.g001

Table 1. Oligomers designed for miRNA target analysis. For cloning into pMIR-report vector, these oligomers include restriction enzyme overhangs (denoted in lower-

case), miRNA target site (in BOLD) and position of c.4150G>T SNP (G/T).

Oligo name Sequence (5’ - 3’)

WT1236/G tcgagTGAAAGTGATAGATAGCAACAAGTTTTGGAGAAGAGAGAGGGAGATAAAAGGGGGAGACAgc

WT1236/T tcgagTGAAAGTGATAGATAGCAACAAGTTTTGGAGAAGAGAGAGGGAGATAAAAGGGGGATACAgc

MT1236/G tcgagTGAAAGTGATAGATAGCAACAAGTTTTGGATTTTTTTGAGGGAGATAAAAGGGGGAGACAgc

https://doi.org/10.1371/journal.pone.0204278.t001
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Statistical analysis

To estimate the genetic power for the enrolled cases and control groups post hoc, G�Power

v3.1.9.2 statistical power analysis software (University of Düsseldorf, Germany) was used.

With the effect size of 0.5 (intermediate effect) and alpha error at 0.05, the genetic power of the

sample size was estimated to be at 90.73%. The difference in age and gender distribution across

cases and controls were computed by carrying out Student t- test and Fisher’s exact test

respectively.

SPSS 23.0 statistical software for MacOS (IBM SPSS, Inc., Chicago, IL, USA) was used for

assessing the genotyped polymorphisms for their association with FECD by employing Chi-

squared test and logistic regression with age, gender and endothelial counts as covariates.

Genotypic variables were coded as 0, 1 and 2 where the homozygous risk alleles in each case

were weighed as 2. Haplotype frequency and association analysis, linkage disequilibrium (LD)

estimation, LD plot generation and tests for deviance from Hardy Weinberg Equilibrium

(HWE) was performed on Haploview4.2 (Broad Institute, Cambridge, MA, USA). Association

of polymorphisms below the threshold of 5% was considered significant for this study.

Unpaired T-test with Welch’s correction was performed to analyse the differences between

the LnOTM values of comets from each sample types and differences in normalized FEN1
expression fold changes between the genotypes.

Results

FECD samples show significant DNA damage

Whole blood from 28 FECD patients and 24 individuals with healthy cornea were selected for

comet assay considering the limited supply of post-operative corneal endothelial tissues from

the study participants and genomic homogeneity between PBMCs and corneal cells in accor-

dance with previously reported studies.[23, 24] Representative images of the comets segregated

on the basis of affected status can be seen in Fig 2A. Endogenous DNA damage, expressed as

Ln-OTM, was significantly higher in FECD cases (P value = 0.005, n = 28) as compared to

their unrelated controls (n = 24, Fig 2B).

FEN1 polymorphisms are not associated with FECD risk in Indian cohort

Based on the comet data and previously reported genetic association study of FEN1 with

FECD in Polish population, we aimed to assess the genetic involvement of FEN1 gene in con-

ferring insufficient DNA repair and genotyped two polymorphisms present in its regulatory

untranslated regions, c.-69G>A (rs174538; 5’UTR) and c.4150G>T (rs4246215; 3’UTR) in 79

Fig 2. FECD lucocytes show increased endogenous DNA damage. (A) Representative images of comets from control

and FECD peripheral leucocytes are shown. (B) Ln-OTM values of the comets are plotted to compare the DNA

damage in FECD cases (n = 28) against controls (n = 24). Error bars indicate standard error (SE) in both directions.

https://doi.org/10.1371/journal.pone.0204278.g002
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FECD cases and 234 control individuals in Indian population. About 68% of the cases were

female populated; thereby substantiating the fact that FECD is a female-biased disease reported

worldwide. However, only 43% females were present in the control group. This generated statis-

tically significant difference in gender distribution between the two groups (P value = 0.001).

For genetic association tests, age-gender corrected samples were used. The mean age of the

cumulative study population is 63.2 years. Considering the essential age-sensitive bracket for

FECD ranging from 40–85 years, individuals ranging from 43–80 years for patients and 42–85

years for control groups have been included in this study to keep the age distribution unbiased

(P value = 0.09; Table 2). Mean endothelial cell count was significantly low in FECD patients

(1476 ± 284.3, P value<0.001) suggesting that these individuals suffer from progressive stage of

endotheliopathy.

Distribution of alleles in both the subject groups were under Hardy Weinberg equilibrium

(HWE). Genotypic and allelic frequencies for FEN1 c.-69G>A and FEN1 c.4150G>T are as

detailed in Table 3. With a genetic power of the current study at 90%, both the polymorphisms

failed to project a genetic association with FECD. Neither of the minor alleles (rs174538: A,

rs4246215: T) differed significantly between the two groups. Various association tests for the

model of inheritance like dominant, recessive, and additive also confirmed the same; thereby

eliminating FEN1 polymorphisms, c.-69G>A and c.4150G>T as genetically associated with

FECD.

FEN1 polymorphism c.4150T acts as a target for hsa-miR-1236-3p

Although FEN1 is not genetically associated with FECD, we simultaneously explored the possi-

bility of any functional trait conferred by its 3’UTR variant, rs4246215 by scanning for putative

miRNA binding sites on or around this SNP using computational algorithms like miRWalk,

miRanda, TargetScan, PicTar2, RNA22, FindTar, and Segal Lab based on their alignment,

energy, and mirsvr scores (Table 4). We identified about 274 miRNAs from TargetScan and

nine miRNAs from MiRanda from the initial screening. Out of these, eight candidates were

common between minimum of five algorithm outputs and only hsa-miR-1236-3p spans the

SNP of interest. The binding site for hsa-miR-1236-3p includes ‘G’ allele from the polymorphic

site and a seed region, GAAGAGA situated 19 bases upstream of it.

To validate this finding, we performed luciferase assay by transfecting HEK293 cells with

constructs comprising of 60bp region from 3’UTR of FEN1 gene, harboring target sites for

hsa-miR1236-3p. Each of the three types of pMIR-constructs, WT1236/G, WT1236/T and

MT1236/G, were individually co-transfected along with excess of hsa-miR1236-3p mimic into

HEK293 cells. Regulatory effect was assessed by measuring the percent-luciferase activity in

these cells. In presence of ‘G’ allele, we observed a significantly reduced reporter activity

(26.6%, P = 0.008) than the cells with ‘T’ allele or mutant constructs. This suggests that both

the miRNA target sequence (GAAGAGA) and ‘G’ allele at c.4150G>T polymorphic site is

required for hsa-miR-1236-3p mediated downregulation of luciferase activity (Fig 3). This

result indicates that rs4246215 can act as a functional variant when associated with a disease by

regulating the expression FEN1 gene.

Table 2. Demographics and clinical characteristics of the study population.

Variables Cases Control P Value

Number of Individuals 79 234

Number of females (%) 54 (68) 101 (43) 0.001

Mean Age in years (SD) 61.08 (9.73) 63.32 (7.82) 0.09

Endothelial Count Mean (SD) 1476 (284.3) 2301 (349.1) < 0.0001

https://doi.org/10.1371/journal.pone.0204278.t002
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Allele specific FEN1 regulation was further validated through qRT-PCR with comparison

between genotype specific blood samples. We observed a 2.5-fold over-expression of FEN1 in

c.4150TT homozygotes when compared with c.4150GG genotype individuals (Fig 4). This cor-

roborates with the luciferase data and indicates that miRNA binding near rs4246215 sup-

presses the FEN1 expression.

Discussion

The current study highlights two important features: (1) it accurately negates the previous

study that associates FEN1 with FECD and finds experimental error as a reason for this dis-

crepancy and (2) discovers a novel miRNA candidate that targets the 3’UTR of FEN1 gene.

Our comet assay analysis on peripheral leucocytes reaffirmed that FECD individuals have high

endogenous DNA damage than controls; however, reported polymorphisms of FEN1 may not

be genetically involved for this phenotype. In contrast to the erroneous Polish report, both of

the FEN1 polymorphisms, c.-69G>A and c.4150G>T, did not show association with FECD in

Indian population. Further analysis of these polymorphisms revealed a putative miRNA bind-

ing site on the 3’UTR, which could regulate its expression. Deregulated FEN1 expression was

associated with rs4246215 in lung cancer tissues [23]. This study indicates that although FEN1

Table 3. Genetic association of polymorphisms in FEN1 gene with FECD. Allelic and genotypic distribution of SNPs, rs174538 and rs4246215 across patients and con-

trols are tabulated. Polymorphism rs4246215 shows recessive mode of inheritance with the disease.

SNP Type Control% FECD % Tests P Value OR (95%CI)

rs174538 GG 69.2 68 ADD 0.68 0.99 (0.55–1.79)

(c.-69G>A) AG 30.2 30 DOM 1 0.96 (0.53–1.73)

AA 0.5 1 REC 0.46 2.5 (0.15–40.73)

GENO 0.60

Major Allele G 83.3 84.8 ALLELIC 0.79 0.89 (0.52–1.50)

Minor Allele A 16.7 15.2 PERM 10K 0.87

rs4246215 GG 71 72 ADD 0.41 0.95 (0.52–1.71)

(c.4150G>T) GT 24 25 DOM 0.54 1.71 (0.36–8.01)

TT 4 2 REC 0.27 0.95 (0.52–1.71)

GENO 0.29

Major Allele G 84.9 82.2 ALLELIC 0.48 1.22 (0.72–2.07)

Minor Allele T 15.1 17.9 PERM 10K 0.67

ADD: Additive, DOM: Dominant, REC: Recessive, GENO: Genotypic, PERM 10K: 10,000 permutation test, OR: Odds Ratio, CI: Confidence interval.

https://doi.org/10.1371/journal.pone.0204278.t003

Table 4. Predicted miRNA targets on the 3’UTR of FEN1 gene. EntrezID: 2237, RefseqID: NM_004111.

miRNA MIMATid miRWalk miRanda Pictar2 RNA22 Target-scan FindTar3 Segal

Lab

SNPinfo

hsa-miR-532-3p MIMAT0004780 1 1 0 1 1 1 1

hsa-miR-515-5p MIMAT0002826 1 1 0 1 1 1 1

hsa-miR-548k MIMAT0005882 1 1 0 1 1 1

hsa-miR-519e-5p MIMAT0002828 1 1 0 1 1 1

hsa-miR-2116-3p MIMAT0011161 1 1 0 1 1 1

hsa-miR-610 MIMAT0003278 1 1 0 1 1 1

hsa-miR-4297 MIMAT0016846 1 1 0 1 1 1

hsa-miR-942-5p MIMAT0004985 1 1 0 1 1 1

hsa-miR-1236-3p MIMAT0005591 1 1 1

https://doi.org/10.1371/journal.pone.0204278.t004
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polymorphisms, c.-69G>A (rs174538) and c.4150G>T (rs4246215) are not genetically associ-

ated with FECD, its transcript regulation in FECD and other diseases such as lung cancer

could be mediated through miRNA.

Upon performing a BLAST analysis on the primer pair utilized in the Polish study, it

revealed that in addition to the intended 3’UTR of FEN1, an unintended region of FEN1 pseu-

dogene on chromosome 1 which shares 98% sequence homology with the FEN1 gene on chro-

mosome 11 would amplify. This error was confirmed when RFLP and Sanger sequencing of

the same sample produced different genotypes. This makes the Polish data grossly erroneous

Fig 3. miRNA mediated reporter activity on 3’UTR regions of FEN1 gene. Normalized luciferase activity in HEK293

cells transfected with hsa-miR-1236-3p mimic is shown to demonstrate the effect of allelic changes on luciferase

activity. Trasnfected cells carrying contructs with ‘G’ allele exhibit reduced luciferase activity (26.6 ± 3.2) in presence of

hsa-miR1236-3p as compared to those with ‘T’ allele (96.1 ± 2.5) or scrambled hsa-miR-1236-3p binding sequence

with G allele at SNP position (MT1236/G; 101 ± 6.9). Luciferase acticity of cells transfected with empty pMIR-report

vector (EV) were taken as control (100 ± 2.88). Error bars indicate standard error and � indicate P value = 0.008.

https://doi.org/10.1371/journal.pone.0204278.g003

Fig 4. FEN1 transcript expression in PBMCs of c.4150TT homozygotes was 2.5-fold upregulated than c.4150GG

individuals.

https://doi.org/10.1371/journal.pone.0204278.g004
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and should be interpreted with caution. Our re-designed primer pair for rs4246215 correctly

amplified this region and confirmed its non-association with FECD in Indian population.

The Polish report by Wojcik et al. 2014, was the first to report a genetic association of FEN1
polymorphisms with FECD. Although the current study identified that their results might be

erroneous, but it cannot disprove the possibility that FEN1 polymorphisms may be associated

with FECD in Polish population. As elaborated by Myles et al., disease-associated SNPs differ

between human populations across the globe owing to the differences in their variations in

risk allele frequencies.[25] This provides the impetus to perform region-specific genetic associ-

ation tests to identify the disease-associated SNPs. A re-investigation is therefore warranted to

correctly understand the role of FEN1 gene in Polish individuals affected with FECD.

Although these FEN1 polymorphisms are not genetically associated with FECD, researchers

have associated c.4150G>T (rs4246215) with deregulated FEN1 transcript expression in lung-

and breast cancer tissues [23, 26]. Genetic association analysis in patients diagnosed with hepa-

tocellular, esophageal, gastric, colorectal, and glial cell cancers have reported that the homozy-

gous c.4150T allele limits cancer progression [27–29]. Lung tissues of c.4150TT homozygotes

showed reduced DNA damage and FEN1 transcripts as compared to c.4150GG. Researchers

hypothesized that increased FEN1 mRNA expression in lung [23] and gastrointestinal [28]

cancers in c.4150TT homozygotes could be due to unsuccessful binding of miRNA. Through

bioinformatics analysis, we identified that hsa-miR-1236-3p could be a potential regulator of

FEN1 transcription. Reporter assay and genotype-specific expression analysis of FEN1 gene

validated that hsa-miR-1236-3p specifically targets the major allele “G” at c.4150G>T SNP

position. This report provides a better understanding of designing therapeutic targets to allow

FEN1 expression in affected tissues.

The current study disproves the genetic association of FEN1 polymorphisms with FECD

and cautions the readers to appropriately interpret the association results reported in Polish

population. It also identifies a novel miRNA candidate that might target one of the 3’UTR SNP

and regulate FEN1 expression.
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