Helix: October 2016 issue OPEN Stefan M. Pulst, MD, Dr med Correspondence to Dr. Pulst: stefan.pulst@hsc.utah.edu Neurol Genet 2016;2:e107; doi: 10.1212/ NXG.0000000000000107 This issue contains a wide variety of articles covering new genes and mutations, unusual phenotypes, and a reminder that novel genetic technologies need to be paired with the appropriate mechanisms to inform patients of new results or annotations of DNA variants. In an impressive combination of physiologic, morphologic, and genomic methods, Engel and coworkers¹ identify truncating homozygous mutation in *MUNC13-1* as the cause of microcephaly, cortical hyperexcitability, and fatal myasthenia. A likely common pathway for the patient's distinct aspects of the phenotype is the functional interaction of MUNC13-1 and syntaxin 1B. The relatively new method of mendelian randomization (MR) is used by Rhead and colleagues² to study the relationship of vitamin D levels and multiple sclerosis. With the caveats inherent in MR analysis, they conclude that 25-hydroxyvitamin D levels are causally related to multiple sclerosis. For readers unfamiliar with MR, the authors' introduction and discussion provide a concise summary of the promises and limitations of MR to detect causal relationships. Hirst and colleagues³ analyze patients with biallelic mutations in *AP5Z1* usually associated with a spastic paraplegia phenotype (SPG48). They find a much wider phenotypic spectrum including a variety of movement disorders. Consistent with these phenotypic observations, electron microscopy of skin fibroblasts detected PAS-positive multilamellar storage material consistent with a role for AP5 in endolysosomal processing. KCNQ2 encodes a potassium channel subunit that forms a homotetramer or heterotetramer for proper channel function. Millichap and colleagues⁴ further characterize the epileptic encephalopathy associated with KCNQ2 mutation and improvements of seizures with ezogabine in a subgroup of patients. The study also emphasizes the severity of dominant-negative mutations as compared to other KCNQ2 mutation types usually associated with benign familial neonatal epilepsy. A novel cause for late-onset autosomal dominant ataxia with neuropathy in a 5-generation Belgian family is described by Depondt et al.⁵ The mutation occurred in the *MME* gene and was a C143Y amino acid substitution. Of note, recessive mutations in this gene have been described in Japanese patients with axonal neuropathy. Van der Zee and colleagues⁶ describe a homozygous mutation in the *CTSF* (cathepsin F) gene as the cause for autosomal recessive neuronal ceroid lipofuscinosis (Kufs disease). As some members of this family showed marked frontal lobe dysfunction without seizures, the authors screened a large panel of patients with frontotemporal dementia. Two unrelated individuals carried a heterozygous variant and later developed a progressive supranuclear palsy–like phenotype. The role of *CTSF* in frontotemporal dementia will need further analysis in other populations. These full-length articles are complemented by 6 Clinical/Scientific Notes on late-onset Lafora disease due to *EPM2a* mutation,⁷ the analysis of a glucocere-brosidase variant in Parkinson disease (Mallet et al.⁸), the causation of Leigh syndrome by a mutation in *MT-TL2*,⁹ a novel de novo missense mutation in *GNB1* causing dystonia and intellectual disability,¹⁰ and novel *TK2* mutations as a cause of delayed muscle maturation.¹¹ Finally, the medical and ethical mandates to offer carrier testing to women at risk of being carriers of a Duchenne muscular dystrophy mutation are presented by Bogue and Ramchandren. The evolving landscape of improved genetic technologies and the "duty to reassess" and recontact family members is further discussed in the accompanying editorial by Newcomb and Flanigan. 13 **NOTE ADDED IN PROOF** After publication of the identification of *MME* mutations as the cause of SCA43 by Depondt et al.⁵ in this issue, Auer-Grumbach et al.¹⁴ identified dominant *MME* mutations in patients with late-onset axonal neuropathies. From the Department of Neurology, University of Utah, Salt Lake City. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially. ## STUDY FUNDING No targeted funding reported. ## **DISCLOSURE** Stefan M. Pulst has served on the editorial boards of Journal of Cerebellum, NeuroMolecular Medicine, Continuum, Experimental Neurology, Neurogenetics, and Nature Clinical Practice Neurology and as Editor-in-Chief of Current Genomics. Dr. Pulst conducts research supported by the NIH. Target ALS, and the National Ataxia Foundation. He has consulted for Ataxion Therapeutics, has received research funding from ISIS Pharmaceuticals, has served on a speakers' bureau for Athena Diagnostics, Inc., and is a stockholder of Progenitor Life Sciences. He has received license fee payments from Cedars-Sinai Medical Center and has given expert testimony for Hall & Evans, LLC. He has received publishing royalties from Churchill Livingston (The Ataxias), AAN Press (Genetics in Neurology and Molecular Genetic Testing in Neurology, 2nd-5th editions), Academic Press (Genetics of Movement Disorders), and Oxford University Press (Neurogenetics). He holds patents for Nucleic acids encoding ataxin-2 binding proteins, Nucleic acid encoding Schwannominbinding proteins and products related thereto, Transgenic mouse expressing a polynucleotide encoding a human ataxin-2 polypeptide, Methods of detecting spinocerebellar ataxia-2 nucleic acids, Nucleic acid encoding spinocerebellar ataxia-2 and products related thereto, Schwannominbinding proteins, and Compositions and methods for spinocerebellar ataxia. He receives an honorarium from the AAN as the Editor of Neurology® Genetics. Go to Neurology.org/ng for full disclosure forms. ## **REFERENCES** - Engel AC, Selcen D, Shen XM, Harper CM. Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurol Genet 2016;2: e105. doi: 10.1212/NXG.00000000000105. - Rhead B, Bäärnheilm M, Gianfrancesco M, et al. Mendelian randomization shows a causal effect of low vitamin D on multiple sclerosis risk. Neurol Genet 2016;2:e97. doi: 10.1212/NXG.00000000000000097. - Hirst J, Madeo M, Smets K, et al. Complicated spastic paraplegia in patients with AP5Z1 mutations (SPG48). Neurol Genet 2016;2:e98. doi: 10.1212/NXG. 00000000000000098. - Millichap JJ, Park KL, Tsuchida T, et al. KCNQ2 encephalopathy: features, mutational hot spots, and ezogabine - treatment of 11 patients. Neurol Genet 2016;2:e96. doi: 10.1212/NXG.0000000000000096. - Depondt C, Donatello S, Rai M, et al. MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43). Neurol Genet 2016;2:e94. doi: 10.1212/ NXG.00000000000000094. - Van der Zee J, Mariën P, Crols R, et al. Mutated CTSF in adult-onset neuronal ceroid lipofuscinosis and FTD. Neurol Genet 2016;2:e102. doi: 10.1212/ NXG.00000000000000102. - Lynch DS, Wood NW, Houlden H. Late-onset Lafora disease with prominent parkinsonism due to a rare mutation in *EPM2A*. Neurol Genet 2016;2:e101. doi: 10. 1212/NXG.0000000000001011. - Mallet V, Ross JP, Alcalay RN, et al. GBA p.T369M substitution in Parkinson disease: polymorphism or association? A meta-analysis. Neurol Genet 2016;2:e104. doi: 10.1212/NXG.000000000000104. - Veerapandiyan A, Chaudhari A, Traba CM, Ming X. Novel mutation in mitochondrial DNA in 2 siblings with Leigh syndrome. Neurol Genet 2016;2:e99. doi: 10.1212/ NXG.00000000000000099. - Steinrücke S, Lohmann K, Domingo A, et al. Novel GNB1 missense mutation in a patient with generalized dystonia, hypotonia, and intellectual disability. Neurol Genet 2016;2: e106. doi: 10.1212/NXG.000000000000106. - Termglinchan T, Hisamatsu S, Ohmori J, et al. Novel TK2 mutations as a cause of delayed muscle maturation in mtDNA depletion syndrome. Neurol Genet 2016;2: e95. doi: 10.1212/NXG.0000000000000095. - Bogue L, Ramchandren S. Outdated risk assessment in a family with Duchenne dystrophy: implications for duty to reassess. Neurol Genet 2016;2:e103. doi: 10.1212/ NXG.0000000000000103. - Newcomb TM, Flanigan KM. Reassessing carrier status for dystrophinopathies. Neurol Genet 2016;2:e108. doi: 10.1212/NXG.000000000000108. Editorial. - Auer-Grumbach M, Toegel S, Schabhüttl M, et al. Rare variants in MME, encoding metalloprotease neprilysin, are linked to late-onset autosomal-dominant axonal polyneuropathies. Am J Hum Genet 2016;99:607–623. 2