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Abstract: Anemia is a frequent finding in children with celiac disease but the detailed pathophysio-
logical mechanisms in the intestine remain obscure. One possible explanation could be an abnormal
expression of duodenal iron transport proteins. However, the results have so far been inconsistent.
We investigated this issue by comparing immunohistochemical stainings of duodenal cytochrome B
(DCYTB), divalent metal transporter 1 (DMT1), ferroportin, hephaestin and transferrin receptor 1
(TfR1) in duodenal biopsies between 27 children with celiac disease and duodenal atrophy, 10 celiac
autoantibody-positive children with potential celiac disease and six autoantibody-negative control
children. Twenty out of these 43 subjects had anemia. The expressions of the iron proteins were
investigated with regard to saturation and the percentage of the stained area or stained membrane
length of the enterocytes. The results showed the stained area of ferroportin to be increased and the
saturation of hephaestin to be decreased in celiac disease patients compared with controls. There
were no differences in the transporter protein expressions between anemic and non-anemic patients.
The present results suggest an iron status-independent alteration of ferroportin and hephaestin
proteins in children with histologically confirmed celiac disease.

Keywords: celiac disease; anemia; iron transporter

1. Introduction

Celiac disease is an immune-mediated disorder driven by ingested gluten [1]. A fre-
quent and sometimes the only clinical finding in untreated patients is anemia, generally
considered to be caused by damaged duodenal mucosa and the resulting malabsorption of
iron [2,3]. Nevertheless, there is a poor correlation between the presence of anemia and the
severity of histological damage [2,4,5]. Moreover, duodenal absorption of only about 10%
of the dietary iron fulfills the daily needs [6], indicating that the reduced mucosal surface
area is not the sole explanation for anemia. In fact, it may be present in so-called potential
celiac disease, referring to subjects with endomysial (EmA) or transglutaminase 2 (TGA)
celiac autoantibodies but with a normal small bowel morphology [5,7–9], suggesting that
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the pathophysiologic mechanisms behind iron deficiency and anemia are more complex
than previously thought.

In healthy conditions, iron is absorbed from the gut by a sophisticated and tightly
regulated process [6,10]. In the apical membrane of enterocytes, the duodenal cytochrome
B (DCYTB) reduces iron to a ferrous form. A divalent metal transporter (DMT1) transfers
ferrous iron into the enterocyte where it is either utilized in mitochondria, stored as ferritin
or transported to the circulation via basolateral ferroportin. Before being able to bind
to the plasma iron carrier transferrin, iron must be reconverted into a ferric form by
basolateral hephaestin. The enterocytes may also reuptake iron for their own metabolic
functions through transferrin receptor 1 (TfR1). A key regulator of iron absorption and
metabolism is hepcidin, which reduces the iron uptake in enterocytes and its release from body
storages [11,12]. The details of this regulation, however, are not fully understood [13–16].

It has been suggested that the abnormal expression of the iron transporter proteins
could provide an explanation for anemia in celiac disease. So far only a few studies have
tested this hypothesis with inconsistent findings [17–20]. We therefore aimed to investigate
possible altered transporter protein expression by staining the DMT, DCYTB, ferroportin,
hephaestin and TfR1 in duodenal biopsies of children with histologically confirmed or
potential celiac disease and autoantibody-negative controls.

2. Materials and Methods
2.1. Patients and the Study Design

The study was conducted at Tampere University Hospital, Tampere, Finland and
the National Institute for Mother and Child Health, Bucharest, Romania. Twenty-seven
children (age < 17 years) with EmA and/or TGA and a duodenal lesion comprised the
celiac disease group. Ten children with positive EmA and TGA but a non-diagnostic
histology comprised the potential celiac disease group. Six children who were endoscopied
due to unexplained gastrointestinal symptoms but who had normal duodenal villi and
negative EmA/TGA were used as controls. All 43 children were further divided into those
with or without anemia.

The study was conducted according to the Helsinki Declaration. The study protocol
and patient recruitment were approved by the Ethics Committee of the Pirkanmaa Hospital
District, Finland and the Ethics Committees of the University of Medicine and Pharmacy
“Carol Davila” and the National Institute for Mother and Child Health “Alessandrescu-
Rusescu”, Romania. Written informed consent was obtained from all study participants
and their guardians.

2.2. Celiac Disease Serology and Small Bowel Mucosal Morphology

EmA titers were measured by an indirect immunofluorescence method using a human
umbilical cord as a substrate [21]. A dilution of 1:5 was considered positive and positive
sera were further diluted 1:50, 1:100, 1:200, 1:500, 1:1000, 1:2000 and 1:4000. The EliA Celikey
test (Phadia, Uppsala, Sweden) was used to determine TGA. The cut-off for seropositivity
was set at >7.0 U/L according to the manufacturer’s instructions.

A minimum of four representative forceps biopsies were taken from the duodenum.
The paraffin-embedded specimens were cut, stained with hematoxylin and eosin and
evaluated for celiac disease diagnosis by an experienced pathologist. Only correctly
oriented histological sections were accepted for the histological analyses [22]. Subjects with
crypt hyperplasia and a villous atrophy in the duodenal mucosa (Corazza–Villanacci B1-
B2) were diagnosed with celiac disease whereas children with a non-diagnostic histology
(Corazza–Villanacci A) formed the potential celiac disease and control groups [23,24].

2.3. Laboratory Parameters and Hepcidin

The following associated laboratory parameters were measured by standard methods:
hemoglobin (reference value (Rf) from 100–141 to 130–160 g/L depending on age and
sex [25]), plasma soluble transferrin receptor (sTfR, Rf from 1.6–5.2 mg/L to 2.0–6.8 mg/L),
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mean corpuscular volume (MCV; Rf from 72–88 to 87–146 fl [25]), serum total iron (Fe,
Rf 6–25 mmol/L), plasma ferritin (Rf > 10 mg/L), transferrin iron saturation (Rf 15–50%),
serum folate (Rf 10.4–42.4 nmol/L) and serum vitamin B12 (Rf 140–490 pmol/L). In ad-
dition, serum bioactive hepcidin (hepcidin-25) levels were measured using a commercial
solid-phase enzyme-linked immunosorbent assay (EIA-5258, DRG Diagnostics, Marburg,
Germany) according to the manufacturer’s instructions [5].

2.4. Immunohistochemistry

For the immunohistochemistry, 5 µm-thick sections were cut from the formalin-fixed,
paraffin-embedded duodenal specimens. After deparaffination and rehydration antigens were
exposed by heat-induced epitope retrieval. Thereafter, a non-specific staining was blocked
followed by overnight incubation with primary antibodies (Supplementary Table S1). After
washing the primary antibodies, the specimens were incubated overnight with a secondary
antibody prior to the blocking of the endogenic peroxidase and a visualization of the
staining with either ImmPRESS or VECTASTAIN Elite ABC reagent (Vector Laboratories
Inc, Peterborough, UK). Finally, sections were counterstained with hematoxylin.

2.5. Digital Analysis of the Stained Sections

All slides were scanned as whole-slide images using a SlideStrider scanner at a
resolution of 0.16µm per pixel (Jilab Inc., Tampere, Finland). The images were stored as
JPX files and viewed with a JVSview program from where they were exported to a Fiji
Image J program for further analysis [26]. Of the DCYTB sections, both the entire visible
epithelial apical membrane and the DCYTB stained membrane were drawn and measured.
The stained membrane length was divided by the whole membrane length to assess the
percentage of the apical membrane covered with the protein. Thereafter, from DMT1,
ferroportin, hephaestin and TfR1 stained sections of the epithelium were selected, other
parts cut out and the images consisting of only the epithelium were stored as TIF files
(Supplementary Figures S1 and S2). Subsequently, the files were transferred to a Matlab
program (The MathWorks Inc. Natick, Massachusetts) where they were transformed
from RGB to HSV images to access the color saturation independently of the lightness.
To measure only the primary antibody staining, a red color was chosen from the hue
channel within values 0–0.1 and 0.9–1. The saturation channel was then thresholded
according to all sections in each stained protein series using Otsu’s method [27]. Finally,
the value of the mean saturation of each section divided by the maximum saturation of the
protein series and percentage of the stained area were measured for each section.

2.6. Statistical Analysis

All statistical analyses were performed using IBM SPSS Statistics version 26.0 (IBM
Corp. Armonk, NY). The clinical characteristics and prevalence of anemia are presented
as percentage distributions. The skewness of the quantitative data was assessed by the
Shapiro–Wilk method and most of the variables were not normally distributed. For sim-
plicity, all data are thus expressed as medians with quartiles except for age, which is
given with a median and a range. Staining results as mean/maximum saturation and the
stained area were compared between groups using a non-parametric Mann–Whitney U
test. Correlations between hepcidin, plasma transferrin receptor 1, serum ferritin and the
DCYTB stained apical border percent and in other proteins’ mean/maximum saturations
and stained areas were calculated using Spearman’s rank (rS) correlation. p values < 0.05
were considered significant.

3. Results

There was no significant difference between children with celiac disease and potential
celiac disease in age, gender or median hepcidin values or, despite a non-significant trend,
in the frequency of anemia or low MCV (Table 1). The former group nevertheless had a
higher frequency of increased sTfR values and lower ferritin (Table 1) as well as a higher
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median EmA (1:1000 vs 1:50, p < 0.001) and TGA (120 U/l vs. 17 U/l, p = 0.001). The controls
(two boys, two girls, 50% anemia) were slightly older (median 10.6 (range 3.3, 15.3) years)
than the celiac and potential celiac patients.

Table 1. Clinical characteristics and laboratory values of 37 children with celiac disease (CD) and
potential CD.

Variable
CD, n = 27 Potential CD, n=10

p Value
n % n %

Girls 18 67 8 80 0.431
Anemia 14 52 3 30 0.236

High sTfR 12 46 1 10 0.043
Low MCV 10 35 1 10 0.140

Median Q1, Q3 Median Q1, Q3

Age, yrs (range) 6.8 2.7, 14.4 6.1 4.1, 16.9 0.555
Ferritin, mg/L 7.0 4.8, 15.5 20.5 11.3, 29.8 0.017

Hepcidin, ng/mL 13.7 12.6, 15.2 15.4 13.2, 18.2 0.286
MCV, mean corpuscular volume; Q1 and Q3, lower and upper quartiles; sTfR, soluble transferrin receptor. Data
was available from all cases except 126 and 217. 126 and 227

The stained area of ferroportin was increased in the celiac disease patients compared
with the controls and a similar although non-significant trend was observed in the satura-
tion of the staining (Table 2). In hephaestin the saturation was significantly decreased in
celiac disease compared with the controls with a similar trend in the stained area. No sig-
nificant differences between the study groups were observed in either saturation or the
stained area of the other iron transporters (Table 2), nor were there any differences in either
the saturation or the stained area of any of the iron transporters between children with or
without anemia (Table 3).

Table 2. Iron transporter protein saturations and the stained areas of enterocytes in the duodenal biopsies of the study
subjects.

Iron Transporter Protein CD
N = 27

Potential CD
N = 10

Controls
N = 6

CD vs.
Potential CD

CD vs.
Controls

Potential CD
vs. Controls

Median Q1, Q3 Median Q1, Q3 Median Q1, Q3 p Value p Value p Value

DCYTB
Stained apical border, % 54 36, 76 50 24, 79 50 33, 73 0.679 0.751 0.662

DMT1
Mean/max saturation, % 42 36, 51 43 35, 52 37 33, 50 0.999 0.342 0.828

Stained area, % 59 56, 62 60 49, 67 57 48, 65 0.827 0.653 0.745
Ferroportin

Mean/max saturation, % 64 62, 66 64 59, 69 61 59, 63 0.827 0.072 0.329
Stained area, % 66 54, 75 68 40, 78 45 22, 57 0.999 0.024 0.129

Hephaestin
Mean/max saturation, % 27 25, 29 28 26, 31 31 27, 37 0.234 0.028 0.195

Stained area, % 1 0, 22 4 1, 21 16 8, 38 0.266 0.080 0.195
TfR1

Mean/max saturation, % 52 48, 54 50 49, 55 53 51, 62 0.821 0.325 0.233
Stained area, % 59 49, 69 42 33, 68 64 47, 73 0.257 0.437 0.233

CD, celiac disease; DCYTB, duodenal cytochrome B; DMT1, divalent metal transporter 1; TfR1, transferrin receptor 1. Q1, Q3 upper and
lower quartiles. Data available in each analysis were from at least 90% of the patients.

There was a positive correlation between ferritin values and TfR1 saturations (rS 0.594,
p = 0.015) and the stained area (rS 0.761, p = 0.001) in children with celiac disease. A moder-
ate negative correlation was also found between sTfR values and hephaestin saturation
(rS –0.349, p = 0.046) when evaluated in all study subjects whereas this was not observed
when evaluated separately in celiac disease patients. No other correlations between the
hepcidin, ferritin or sTfR values and the stainings of the iron transporter were detected
(data not shown).
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Table 3. Iron transporter protein saturations and the stained areas of enterocytes in the duodenal biopsies of children with
and without anemia.

Iron Transporter Protein All Study Children, n = 43 Children With CD, n = 27

Anemia, n = 20 No Anemia, n = 23 p Value Anemia, n = 14 No Anemia, n =
13 p Value

Median Q1, Q3 Median Q1, Q3 Median Q1, Q3 Median Q1, Q3

DCYTB
Stained apical border, % 54 13, 78 56 37, 73 0.999 53 10, 79 63 42, 70 0.689

DMT1
Mean/max saturation, % 43 37, 51 39 36, 54 0.582 43 39, 51 39 37, 53 0.446

Stained area, % 59 56, 62 59 54, 66 0.388 59 56, 61 59 57, 63 0.744

Ferroportin
Mean/max saturation, % 64 59, 65 64 60, 68 0.372 64 62, 65 65 62, 69 0.128

Stained area, % 65 46, 74 65 44, 77 0.875 65 55, 74 66 51, 77 0.624

Hephaestin
Mean/max saturation, % 27 1 26, 29 28 25, 32 0.594 27 2 25, 29 27 25, 31 0.663

Stained area, % 5 1 1, 22 3 0, 23 0.795 3 2 0, 19 1 0, 25 0.744

TfR1
Mean/max saturation, % 50 1 49, 54 52 49, 55 0.452 50 3 49, 54 53 48, 55 0.750

Stained area, % 55 1 42, 62 61 43, 70 0.292 55 3 55, 64 61 50, 70 0.469

CD, celiac disease; DCYTB, duodenal cytochrome B; DMT1, divalent metal transporter 1; TfR1, transferrin receptor 1. Q1, Q3 upper and
lower quartiles. Data available in each analysis were from at least 90% of the patients except 1 17, 2 12 and 3 11 patients.

4. Discussion

The main finding of the present study was an increased expression of ferroportin
and a decreased expression of hephaestin in children with histologically confirmed celiac
disease compared with the non-celiac controls. There were no other significant differences
between the study groups in the expression of iron transporter proteins. In addition,
no differences in any of these proteins were detected when anemic and non-anemic children
were evaluated separately.

The expression of the iron transporter proteins and/or their coding mRNAs in celiac
disease have previously been reported in three studies comprising adult patients and
in one pediatric study [17–20]. In line with our results, Sharma et al. showed an iron
status-independent increase in protein levels of ferroportin but also of DMT1 in untreated
adult celiac disease [17]. Additionally, they found increased DMT1 and ferroportin mRNAs
in iron deficient celiac disease patients and also in anemic non-celiac controls. Tolone et al.
later reported that DMT1 mRNA was increased in celiac disease children with mild but
not with severe atrophy compared with controls with normal duodenal mucosa [20]. How-
ever, they included both potential celiac disease patients and suspected gastroesophageal
reflux disease patients in the control group. Additionally, Matysiak-Budnik reported an
upregulation of TfR1 protein levels in adults with untreated celiac disease [19]. Barisani
et al. reported increased mRNAs and protein levels of DMT1, ferroportin, hephaestin
and TfR1 in adult celiac disease patients but, in contrast to the protein levels in ours and
Sharma’s studies, these findings were iron status-dependent [18]. However, unlike others,
Barisani et al. included both untreated patients and patients on a gluten-free diet in the
celiac disease group. No earlier studies have reported the decreased hephaestin expression
observed here.

These partially inconsistent results between the studies may be attributable to the
differences in the number and clinical characteristics of the participants and/or by the
variable use of primary antibodies and staining protocols. On the other hand, there may
in fact be significant differences between children and adults in intestinal iron transporter
protein expression [28]. As our results lacked major outliers and were also consistent within
and between the study groups, we believe the present findings to reflect the true state of
iron transporter protein expression in the duodenal mucosa of children with untreated
celiac disease.
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Our findings would suggest that changes in ferroportin and hephaestin expression
do not explain the intestinal pathophysiology of anemia in celiac disease but may rather
reflect the immaturity of the epithelium [29] of the atrophic duodenal mucosa. Interest-
ingly, Tolone et al. found a distinct polymorphism in the DMT1 gene to be significantly
more frequent in anemic than in non-anemic children with celiac disease; in fact, the poly-
morphism conferred a four-fold risk for the development of anemia [20]. Furthermore,
a polymorphism in the transmembrane serine protease 6 gene can be overrepresented in
celiac disease patients and its presence predicts an inadequate response to iron supple-
mentation [30,31] whereas polymorphisms in the human hemochromatosis protein gene
may provide protection against anemia in celiac disease [31–33]. Thus, genetic variants
affecting iron metabolism may at least partially determine a predisposition to anemia in
celiac disease.

As an additional novel finding of the present study, we observed a moderately positive
correlation between the TfR1 saturation and stained area and the serum ferritin levels in
children with celiac disease. Additionally, a negative correlation between the saturation of
hephaestin and sTfR levels was shown among all of the children although this was not seen
in celiac disease patients when evaluated separately. As sTfR usually increases and ferritin
decreases in subjects with iron deficiency, an opposite correlation pointing towards a com-
pensatory increase of intestinal iron absorption would have been expected [34]. However,
both the origin and function of circulating ferritin and sTfR are currently unknown [10]
and thus their connection with the duodenal iron transporters needs to be further studied.

5. Conclusions

To conclude, the iron status-independent changes observed here in ferroportin and
hephaestin in children with histologically confirmed celiac disease likely reflect the imma-
ture nature of the epithelium in the atrophic disease state and do not explain the intestinal
pathophysiology of anemia in children with celiac disease. Further investigations with a
larger number of study subjects and in both children and adults are needed to understand
the complex mechanisms of abnormal iron metabolism leading to anemia in celiac disease.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-664
3/13/3/776/s1. Supplementary Table S1. Specific characteristics of the staining procedures, Supple-
mentary Figure S1. The process for measuring the saturation and stained area of iron transporter
proteins in enterocytes as exemplified by ferroportin staining in a patient with a subtotal villous
atrophy and anemia. Supplementary Figure S2. The process for measuring the saturation and stained
area of iron transporter proteins in enterocytes as exemplified by ferroportin staining in a control
child with anemia.
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