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Abstract

Background

The hyaluronidase enzyme is generally known as a spreading factor in animal venoms.

Although its activity has been demonstrated in several organisms, a deeper knowledge

about hyaluronidase and the venom spreading process from the bite/sting site until its elimi-

nation from the victim’s body is still in need. Herein, we further pursued the goal of demon-

strating the effects of inhibition of T. serrulatus venom (TsV) hyaluronidase on venom

biodistribution.

Methods and principal findings

We used technetium-99m radiolabeled Tityus serrulatus venom (99mTc-TsV) to evaluate the

venom distribution kinetics in mice. To understand the hyaluronidase’s role in the venom’s

biodistribution, 99mTc-TsV was immunoneutralized with specific anti-T.serrulatus hyaluroni-

dase serum. Venom biodistribution was monitored by scintigraphic images of treated ani-

mals and by measuring radioactivity levels in tissues as heart, liver, lungs, spleen, thyroid,

and kidneys. In general, results revealed that hyaluronidase inhibition delays venom compo-

nents distribution, when compared to the non-neutralized 99mTc-TsV control group. Scinti-

graphic images showed that the majority of the immunoneutralized venom is retained at the

injection site, whereas non-treated venom is quickly biodistributed throughout the animal’s

body. At the first 30 min, concentration peaks are observed in the heart, liver, lungs, spleen,

and thyroid, which gradually decreases over time. On the other hand, immunoneutralized
99mTc-TsV takes 240 min to reach high concentrations in the organs. A higher concentration

of immunoneutralized 99mTc-TsV was observed in the kidneys in comparison with the non-

treated venom. Further, in situ neutralization of 99mTc-TsV by anti-T.serrulatus hyaluroni-

dase serum at zero, ten, and 30 min post venom injection showed that late inhibition of
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hyaluronidase can still affect venom biodistribution. In this assay, immunoneutralized 99mTc-

TsV was accumulated in the bloodstream until 120 or 240 min after TsV injection, depending

on anti-hyaluronidase administration time. Altogether, our data show that immunoneutraliza-

tion of hyaluronidase prevents venom spreading from the injection site.

Conclusions

By comparing TsV biodistribution in the absence or presence of anti-hyaluronidase serum,

the results obtained in the present work show that hyaluronidase has a key role not only in

the venom spreading from the inoculation point to the bloodstream, but also in venom biodis-

tribution from the bloodstream to target organs. Our findings demonstrate that hyaluroni-

dase is indeed an important spreading factor of TsV and its inhibition can be used as a novel

first-aid strategy in envenoming.

Author summary

Hyaluronidases are known as the venom components responsible for disseminating tox-

ins from the injection site to the victim’s organism. Therefore, understanding how the

venom distribution occurs and the role of hyaluronidases in this process is crucial in the

field of toxinology. In this study, we inhibited Tityus serrulatus venom (TsV) hyaluroni-

dase’s action using specific anti-Ts-hyaluronidase antibodies. Labeling TsV with a radio-

active compound enabled monitoring of its biodistribution in mice. Our results show

that, upon hyaluronidase inhibition, TsV remains at the injection site for longer, and only

a reduced amount of the venom reaches the bloodstream. Consequently, the venom arri-

ves later at target organs like the heart, liver, lungs, spleen, and thyroid. Considering the

possible application of hyaluronidase inhibition as a therapeutic resource in envenoming

first-aid treatment, we performed the administration of hyaluronidase neutralizing anti-

bodies at different times after TsV injection. We observed that TsV remains in the blood-

stream and its arrival at tissues is delayed by 120 or 240 min after TsV injection,

depending on anti-hyaluronidase administration times. Our data show that hyaluronidase

plays a crucial role in TsV spreading from the injection site to the bloodstream and from

the bloodstream to the organs, thus suggesting that its inhibition can help to improve

envenoming’s treatment.

Introduction

Scorpionism is considered a serious public health threat and was officially recognized as a

neglected tropical disease by the Brazilian Academy of Sciences [1]. In Brazil, scorpion sting

reports have been increasing over the years, reaching 90,000 accidents in 2016, and outnum-

bering the accidents caused by other venomous animals such as spiders and snakes [2].

The yellow scorpion Tityus serrulatus (Ts) (Lutz and Mello Campos, 1922) is considered

the most venomous scorpion in South America [3–5], causing serious envenomation accidents

mainly in southeast Brazil [6] and representing the species of greatest medical-scientific

importance in the country.

The symptomatology of scorpionism involves local pain, which can be associated with nau-

sea, sweating, tachycardia, fever, and stirring. Moderate complications may include epigastric
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pain, cramps, vomiting, hypotension, diarrhea, bradycardia, and dyspnea. Severe envenoming

may present several potentially lethal complications, such as cardio-respiratory failure [7–11].

These symptoms are related to the synergic action of a variety of toxic components present

in the venom. Ts venom (TsV) consists of a complex mixture of components such as mucus,

lipids, amines, nucleotides, inorganic salts, hyaluronidases, serine proteases, metalloproteases,

natriuretic peptides, bradykinin potentiating peptides, antimicrobial peptides, high molecular

weight (Mw) proteins, and ion channel active neurotoxins, which are the major toxic compo-

nents [12–24].

Hyaluronidases are extensively found in the venoms of various animals such as snakes,

scorpions, spiders, and others [25]. Venom hyaluronidases are always referred to as "spreading

factors" [26,27], as they hydrolyze the hyaluronic acid (HA) present in the interstitial matrix,

thus helping the venom toxins to reach the victim’s bloodstream and invade its organism.

Hyaluronidase’s enzymatic action increases membrane absorbency, reduces viscosity, and

makes tissues more permeable to injected fluids (spreading effect). Therefore, hyaluronidase

acts as a catalyst for systemic envenoming [25].

TsV hyaluronidase activity was first demonstrated by Possani’s group [28], and the enzyme

was later isolated and partially characterized by Pessini and collaborators [14]. Horta et al. [16]

further expanded these studies by performing extensive molecular, biological, and immuno-

logical characterization of TsV hyaluronidase. The authors described the sequence of two

enzyme isoforms showing 83% identity, Ts-Hyal-1 and Ts-Hyal-2, by cDNA analysis of the

venom gland. A purified native Ts hyaluronidase was used to produce anti-hyaluronidase

serum in rabbits. Epitopes common to both isoforms were mapped, and it was shown that

they include active site residues. Most importantly, it was demonstrated for the first time that

in vivo neutralization assays with anti-hyaluronidase serum inhibited and delayed mouse

death after injection of a lethal dose of TsV, thus confirming the influence of hyaluronidase in

TsV lethality [16].

The active recombinant hyaluronidase Ts-Hyal-1 from TsV was produced and character-

ized. It is an important biotechnological tool for the attainment of sufficient amounts of the

enzyme for structural and functional studies [29].

Herein, we further pursued the goal of demonstrating the effects of inhibition of TsV hyal-

uronidase on venom biodistribution. Our results show that inhibition of the hyaluronidase

activity of TsV in mice hinders venom spreading from the injection site as well as its biodistri-

bution to the tissues.

Methods

Scorpions and venom extraction

T. serrulatus scorpions were collected in Belo Horizonte, Minas Gerais, Brazil, with proper

licensing from the competent authorities (IBAMA, Instituto Brasileiro do Meio Ambiente e

dos Recursos Naturais Renováveis, protocol number 31800–1). Venom was obtained from

female scorpions regularly milked twice a month by electrical stimulation of telson. After

extraction, venom was solubilized in ultrapure water and centrifuged at 16,000g at 4˚C for 10

min. The supernatant was quantified using Bio-Rad “Protein DC assay” kit [30], and stored at

-20˚C until use.

Experimental animals

Female Swiss CF1 mice (6–8 weeks old, 24–28 g) were obtained from the animal care facilities

(CEBIO) of the Federal University of Minas Gerais (UFMG). Animals had free access to water

and food and were kept under controlled environmental conditions.
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Ethics statement

The Ethics Committee (Comissão de Ética no Uso de Animais, CEUA) of UFMG certifies that

the procedures using animals in this work are in agreement with the Ethical Principals estab-

lished by the Brazilian Council for the Control of Animal Experimentation (CONCEA). Proto-

col number 05/2016. Approved: March 8, 2016.

Anti-hyaluronidase serum

Rabbit anti-hyaluronidase and pre-immune sera used in this work were produced by Horta

et al. [16].

Hyaluronidase activity: In vitro neutralization assay

Hyaluronidase activity was measured according to the turbidimetric method described by

Pukrittayakamee et al. [31] with modifications [16]. The assay mixture contained 12.5 μg of

HA (Sigma-Aldrich), acetate buffer (0.2 M sodium acetate-acetic acid pH 6.0, 0.15 M NaCl),

and test (or control) sample in a final volume of 250 μl. Commercial hyaluronidase from

bovine testis (12.5 μg; Apsen) was used as a positive control, and ultrapure water was used as a

negative control. Assay mixtures were incubated for 15 min at 37˚C, and reactions were

stopped by adding 500 μl of stop solution containing 2.5% (w/v) cetyltrimethylammonium

bromide (CTAB) dissolved in 2% (w/v) NaOH.

Assays were monitored by absorbance at 400 nm against a blank of acetate buffer (250 μl)

and stop solution (500 μl). Turbidity of the samples decreased proportionally to the enzymatic

activity of hyaluronidase. Values were expressed as percentages of hyaluronidase activity rela-

tive to the negative (no addition of enzyme, 0% activity) and positive (addition of commercial

enzyme, 100% activity) controls.

The tested samples were native hyaluronidase purified from TsV (0.5 μg, produced by

Horta et al. [16]), TsV (2 μg), TsV neutralized with rabbit pre-immune serum (2 μg of TsV

incubated for 1 h at 37˚C with 10 μl of pre-immune serum), TsV neutralized with anti-hyal-

uronidase serum (2 μg of TsV incubated for 1 h at 37˚C with 10 μl of anti-hyaluronidase

serum).

Radiolabeling of T. serrulatus venom (TsV)

To label TsV with technetium-99m (99mTc; IPEN São Paulo), a sealed vial containing 200 μg of

SnCl2.H2O solution in 0.25 mol/l HCl (2 mg/ml) and 50 μg of NaBH4 solution in 0.1 mol/l

NaOH (1 mg/ml) was prepared. The pH was adjusted to 7.4 using 1 mol/l NaOH. Next, 25 μl

of TsV (5 g/l in saline 0.9% w/v) was added, and vacuum was applied to the vial, followed by

addition of 0.1 ml of Na99mTcO4 (3.7 MBq). The solution was kept at room temperature for 15

min.

Radiochemical purity evaluation

Radiochemical purity was determined by thin layer chromatography (TLC-SG, Merck) using

acetone as the mobile phase to quantify 99mTcO4
-. Strips radioactivity was determined by a

gamma counter (Wallac Wizard 1470–020 Gamma Counter, PerkinElmer Inc.). 99mTcO2 was

removed from the preparation using a 0.45 μm syringe filter [32].

In vitro stability of 99mTc-TsV

Tests in saline 0.9% (w/v) and in mice plasma were performed to evaluate the stability of the

radiolabeled complex 99mTc-TsV.
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TLC-SG was used to evaluate the stability of the radiolabeled complex diluted in saline. The

labeled solution was kept at room temperature, and aliquots were taken at 1, 2, 4, 6 and 24 h

for determination of radiochemical purity.

A volume of 90μl 99mTc-TsV solution was incubated with 1 ml of fresh mouse plasma at

37˚C under agitation. Radiochemical stability was determined by TLC-SG from samples taken

at 1, 2, 4, 6 and 24 h after incubation.

Blood clearance of 99mTc-TsV

An amount equivalent to 3.7 MBq of 99mTc-TsV was diluted (10% v/v) in phosphate-buffered

saline (PBS; control) or anti-hyaluronidase serum and incubated for 1 h at 37˚C. Then, 50 μl of

the samples were intramuscularly injected into the right tight of healthy Swiss mice (6–8 weeks

old, 24–28 g; n = 6 per group). Mice were anesthetized with a mixture of xylazine (15 mg/kg)

and ketamine (80 mg/kg), and an incision was made in the animals’ tails for blood collection

in pre-weighed tubes at 1, 5, 10, 15, 20, 30, 45, 60, 90, 120, 240, and 1440 min after administra-

tion of the samples. The tubes were weighted, and their radioactivity determined by a gamma

counter. These data were used to plot the percentage of dose injected per gram tissue (% ID/g)

versus time.

Scintigraphic images of mice injected with 99mTc-TsV

Aliquots of 18 MBq of 99mTc-TsV in 10% (v/v) PBS (control) or anti-hyaluronidase serum

(pre-incubated for 1 h at 37˚C) were intramuscularly injected (50 μl) into the right tight of

healthy Swiss mice (6–8 weeks old, 24–28 g; n = 3 per group). Animals were anesthetized at 30,

60, and 120 min after sample administration with a mixture of ketamine (80 mg/kg) and xyla-

zine (15 mg/kg) and placed horizontally under a gamma camera (Nuclide TM TH 22, Mediso).

Images were collected with a Low Energy High Resolution (LEHR) collimator and 256x256x16

dimension matrices with a 300 s acquisition time, using a 20% symmetrical window with a

fixed energy peak at 140 KeV.

Biodistribution of 99mTc-TsV

Aliquots of 3.7 MBq of 99mTc-TsV in 10% (v/v) PBS (control) or anti-hyaluronidase serum

(pre-incubated for 1 h at 37˚C) were intramuscularly injected (50 μl) into the right tight of

healthy Swiss mice (6–8 weeks old, 24–28 g; n = 6 per group). Mice were euthanized at 30, 60,

240, and 1440 min post-injection, and heart, liver, lungs, spleen, thyroid, and kidneys were dis-

sected, dried with filter paper, and weighed. The radioactivity in each tissue was determined

by a gamma counter. A standard dose containing the same injected amount of 99mTc-TsV was

counted simultaneously in a separate tube, which was defined as 100% radioactivity. The

results were expressed as the percentage of injected dose per gram of tissue (%ID/g).

Evaluation of hyaluronidase neutralization as a first-aid treatment

An amount equivalent to 3.7 MBq of 99mTc-TsV diluted in PBS was intramuscularly injected

(25 μl) into the right tight of healthy Swiss mice (6–8 weeks old, 24–28 g; n = 6 per group).

Next, anti-hyaluronidase serum was inoculated (25 μl, intramuscularly) into the same site of
99mTc-TsV injection at different time-points (0, 10, and 30 min post-injection of 99mTc-TsV).

Mice were anesthetized with a mixture of xylazine (15 mg/kg) and ketamine (80 mg/kg), and

an incision was made in the animals’ tails for blood collection in pre-weighed tubes at 1, 5, 10,

15, 20, 30, 45, 60, 90, 120, and 240 min after administration of 99mTc-TsV. The tubes were
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weighted, and their radioactivity determined by a gamma counter. Data were used to plot the

percentage of dose injected per gram tissue (% ID/g) versus time.

Statistical analyses

Sample sizes were calculated using G Power version 3.1. To compare multiple means, the sam-

ple size was calculated considering alpha (α), power effect, effect size (f), and population size

(n). To estimate number of mice needed in the 99mTc-TsV biodistribution assays, parameters

were set at f = 0.7, α = 0.05, power = 0.8, and groups = 4. Data were expressed as mean ± S.E.

M. Graphs were plotted using the software GraphPad PRISM version 5.00 (La Jolla, CA, USA).

All statistical tests were carried out on R version 3.4.4. Significance level was set at 0.05, and

tests were performed two-sided. Effect of serum administration and time on the mean 99mTc-

TsV biodistribution was evaluated using two-way ANOVA. Normality and equal variance sup-

positions were assessed using Shapiro-Wilk and Levene’s tests, respectively. Effects of serum

administration and time on 99mTc-TsV mean blood clearance were analyzed using a linear

mixed model (lme function on nlme package).

Results

Anti-hyaluronidase serum neutralizes TsV hyaluronidase activity in vitro
In the turbidimetric assays, commercial hyaluronidase from bovine testis exhibited high hyal-

uronidase activity (99,98 ± 0,01% activity), which was referred to as 100% activity (positive

control). Ultrapure water had no enzyme activity (-0,003 ± 0,002% activity), which was

referred to as 0% activity (negative control). TsV (99,57 ± 0,16% activity) and native hyaluroni-

dase purified from TsV (99,73 ± 0,11% activity) presented high enzymatic activity, similar to

that observed for the positive control (Fig 1). In the in vitro neutralization assay, pre-incuba-

tion of TsV with anti-hyaluronidase serum completely neutralized hyaluronidase activity

(0,005 ± 0,003% activity). Rabbit pre-immune serum was used to test unspecific neutralization

of the venom content and did not neutralize TsV enzymatic activity (99,39 ± 0,24% activity)

(Fig 1). Western blot results for anti-hyaluronidase and pre-immune sera to TsV are shown in

supporting information (S1 Methods, S1 Fig).

99mTc-TsV presents high radiochemical yields and radiolabeling stability

The radiochemical efficiency of the TsV labeling with technetium-99m was determined by

TLC. The results indicated high radiochemical yield (95.2 ± 2.4%). Radiochemical yields

higher than 90% are recommended for in vivo application of radiopharmaceuticals [33].

Therefore, our 99mTc-TsV complex presented suitable radiochemical characteristics, which

encouraged further in vivo studies.

The radiolabeling stability curve for 99mTc-TsV is shown in Fig 2. Stability tests were per-

formed after 1, 2, 4, 6 and 24 h of incubation of 99mTc-TsV in saline 0.9% (w/v) at room tem-

perature or in fresh mouse plasma at 37˚C. High stability was observed over long periods of

time (>95%), thus indicating suitability for further biodistribution assays.

Neutralization of hyaluronidase impairs TsV spreading

Blood clearance of 99mTc-TsV diluted in PBS or pre-neutralized with anti-hyaluronidase

serum is shown in Fig 3. Following the injection into healthy Swiss mice, the 99mTc-TsV com-

plex showed quick absorption, reaching the highest bloodstream levels after 30 min. After this

time point, 99mTc-TsV concentration in the bloodstream decreases, which indicates biodistri-

bution to the tissues.
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Fig 1. In vitro neutralization assay using rabbit anti-hyaluronidase serum. Hyaluronidase activity (%) was

measured using a turbidimetric assay. Commercial hyaluronidase from bovine testis was used as a positive control, and

ultrapure water was used as a negative control. Enzymatic activities of TsV (2 μg) and native hyaluronidase from TsV

(0.5 μg) were tested. For the in vitro neutralization assay, TsV (2 μg) was incubated with pre-immune serum (10 μl) or

anti-hyaluronidase serum (Anti-Hyal, 10 μl) for 1 h at 37˚C before testing. Anti-hyaluronidase serum neutralized the

hyaluronidase activity in TsV. All values are expressed as the mean ± S.E.M. of duplicates from three independent

experiments.

https://doi.org/10.1371/journal.pntd.0007048.g001

Fig 2. In vitro stability of 99mTc-TsV. Stability of the complex 99mTc-TsV over time in the presence of saline 0.9% (w/

v) at room temperature and in the presence of plasma at 37˚C. All values are presented as the mean ± S.E.M. of

duplicates from three independent experiments.

https://doi.org/10.1371/journal.pntd.0007048.g002
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In contrast, the 99mTc-TsV complex pre-neutralized with anti-hyaluronidase serum reaches

lower levels in the bloodstream compared to the 99mTc-TsV in PBS. This result shows that neu-

tralization of TsV hyaluronidase activity significantly reduces TsV spreading from the injec-

tion site to the blood circulation.

Scintigraphic images of the mice corroborated the blood clearance results and showed that
99mTc-TsV diluted in PBS quickly spreads from the injection site in the right tight muscle to

the whole body between 30 and 120 min after TsV injection (Fig 4A). On the other hand,

when 99mTc-TsV was neutralized with anti-hyaluronidase serum, TsV spreading from the

injection site was visibly reduced at all times evaluated. Noteworthy, the labeled neutralized

TsV remained at the site of injection (right tight muscle) (Fig 4B).

Regarding the kinetics of TsV spreading, high levels of 99mTc-TsV diluted in PBS were

absorbed by the organs, particularly the kidneys and bladder (Fig 4A), while lower levels of
99mTc-TsV neutralized with anti-hyaluronidase serum reached these tissues over time (Fig

4B).

Neutralization of hyaluronidase delays biodistribution of TsV to tissues

Tissues such as heart, liver, lungs, spleen, and thyroid displayed different uptake levels of
99mTc-TsV diluted in PBS and 99mTc-TsV neutralized with anti-hyaluronidase serum (Fig 5).

Higher concentration of 99mTc-TsV diluted in PBS was initially detected in these tissues (30

min), indicating a quick biodistribution of TsV from the injection site to the bloodstream and

Fig 3. Blood clearance of 99mTc-TsV. 3.7 MBq of 99mTc-TsV diluted in PBS (99mTc-TsV + PBS) or neutralized with

anti-hyaluronidase serum (99mTc-TsV + Anti-Hyal serum) was intramuscularly injected in Swiss mice (6–8 weeks old,

24–28 g; n = 6 per group). Radioactivity levels were measured in blood samples at 1, 5, 10, 15, 20, 30, 45, 60, 90, 120, 240, and

1440 min post-injection. Data are represented as the mean percentage of the injected dose of 99mTc-TsV per gram of blood

(% ID/g) ± S.E.M. of the mean. Values represent duplicates from two independent experiments. Statistical analyses were

performed using a linear mixed model. Serum administration (p< 0.0001), time (p< 0.0001), and their interaction

(p< 0.0001) had a statistically relevant effect on the mean 99mTc-TsV blood clearance.

https://doi.org/10.1371/journal.pntd.0007048.g003
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subsequently to the organs. After reaching the organs, labeled TsV concentration decreased

over time, thus suggesting the elimination of the radiolabeled complex from the mice’s body.

In agreement, 99mTc-TsV levels increased in the kidneys, pointing towards renal elimination.

In contrast, the neutralized 99mTc-TsV was initially detected at lower concentrations in the

heart, liver, lungs, spleen, and thyroid, only reaching high levels at 240 min post-injection,

after which time levels begin to decrease again (Fig 5). Thus, hyaluronidase inhibition delays

TsV incorporation into the bloodstream and organs. Moreover, lower concentrations of neu-

tralized TsV reached the kidneys, when compared with 99mTc-TsV diluted in PBS.

TsV hyaluronidase neutralization as a first-aid treatment for scorpion sting

A blood clearance test was performed to evaluate the efficiency of anti-hyaluronidase serum to

neutralize previously injected TsV in situ, thus simulating a first-aid treatment for scorpion

sting.

Animals injected with 99mTc-TsV diluted in PBS (control group) presented a quick absorp-

tion of TsV from the injection site into the bloodstream, followed by a decrease in blood con-

centration (Fig 6), corroborating the results previously observed in the blood clearance assay

(Fig 3). On the other hand, animals treated with anti-hyaluronidase serum injected in the right

tight muscle at 0, 10, and 30 min post-injection of 99mTc-TsV diluted in PBS showed higher

concentrations of labeled TsV in the bloodstream over time at all times tested (Fig 6A–6C).

The increased concentration of neutralized TsV in the bloodstream indicates hindered

Fig 4. 99mTc-TsV spreading in mice over time. Representative scintigraphic images of mice injected with 18 MBq 99mTc-TsV diluted in PBS (A) or neutralized with

anti-hyaluronidase serum (B). Samples were intravenously injected in Swiss mice (6–8 weeks old, 24–28 g; n = 3 per group). Radioactivity levels were measured 30, 60,

and 120 min post-injection. Images show a quick and growing spread of 99mTc-TsV diluted in PBS over time (A). On the other hand, TsV neutralized with anti-

hyaluronidase serum remains at the injection site (right tight muscle) (B). Images are pseudocolored according to the color scale.

https://doi.org/10.1371/journal.pntd.0007048.g004
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Fig 5. Biodistribution of 99mTc-TsV. 99mTc-TsV (3.7 MBq) diluted in PBS (99mTc-TsV + PBS) or neutralized with

anti-hyaluronidase serum (99mTc-TsV + Anti-Hyal serum) was intramuscularly injected in Swiss mice (6–8 weeks old,

24–28 g; n = 6 per group). Radioactivity levels were measured in the heart, liver, lungs, spleen, thyroid and kidneys at

30, 60, 240 and 1440 min post-injection. The results are expressed as the percentage of injected dose/g of tissue (%ID/

g). All values are presented as the mean ± S.E.M. of two independent experiments. Statistical analysis was performed

using two-way ANOVA (factors: serum administration and time). Anti-hyaluronidase serum significantly affected the

mean distribution of TsV to the liver (p< 0.0001), spleen (p = 0.0115), and kidneys (p = 0.0009), while time was a

significant factor for TsV distribution to the heart (p< 0.0001), liver (p< 0.0001), lungs (p = 0.0095), spleen

(p = 0.0008), and kidneys (p < 0.0001). A significant interaction between serum administration and time was observed

in the heart (p = 0.00003), liver (p< 0.0001), spleen (p = 0.0337), and thyroid (p < 0.0001).

https://doi.org/10.1371/journal.pntd.0007048.g005
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Fig 6. Hyaluronidase neutralization as a first-aid treatment for scorpion sting. 3.7 MBq of 99mTc-TsV diluted in

PBS was intramuscularly injected in Swiss mice (6–8 weeks old, 24–28 g; n = 6 per group). Subsequently, anti-

hyaluronidase serum was injected in the same site of 99mTc-TsV injection at different times (Anti-Hyal serum; 0, 10,
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biodistribution to the tissues (Fig 6). Altogether, our data reveal the potential use of hyaluroni-

dase inhibition as a novel first-aid strategy in envenoming.

Discussion

Hyaluronidases are involved in different processes such as inflammation, angiogenesis,

embryogenesis, wound healing, tumor growth and progression, and systemic diffusion of

venom toxins [34–38]. The role of hyaluronidases in venom spreading has been investigated,

as this enzyme is a component vastly described both in vertebrate and invertebrate animal ven-

oms. Specifically, for scorpions, a search in NCBI protein database reveals at least 20 hyaluron-

idase protein sequences already described for 15 different species [39]. However, no study so

far has shown how hyaluronidase activity interferes with venom distribution [16,17,40–44].

Previous studies have demonstrated the role of hyaluronidase in venom dissemination

[36,44], in enhancing the effects of hemorrhagic toxins from snake venoms [27,37], in trigger-

ing allergic reactions to bee and wasp venoms [45–47], and in increasing the effects of other

toxins from spider and scorpion venoms [14,48]. Moreover, Horta and collaborators [16] have

greatly advanced the understanding of hyaluronidase in T. serrulatus through characterization

studies showing the role of this enzyme in venom lethality. However, evidence demonstrating

the role of hyaluronidases in venom spreading and describing the steps from scorpion sting to

venom elimination was still lacking. In the present study, we demonstrated how the inhibition

of TsV hyaluronidase activity using anti-hyaluronidase serum affects venom biodistribution.

Our data show that TsV distribution kinetics is fast and efficient. TsV is distributed from

the injection site to the bloodstream and organs in the first 30 min post-injection (Figs 3, 4A

and 5). The biodistribution is not uniform for all tissues. After that time, the level of TsV

decreases in the organs (Fig 5) and increases in the kidneys (Figs 4A and 5), thus indicating a

renal route of elimination of the radiolabeled complex 99mTc-TsV. This shows that the venom

is quickly biodistributed from the injection site to target organs such as heart, liver, lungs, and

spleen, where it activates receptors and other biological targets. The binding triggers signaling

cascades that culminate in all the symptomatology of scorpion sting, including the potentially

lethal cardiogenic shock and pulmonary oedema. Following biodistribution, renal excretion is

an important route of elimination of TsV from the organism [49,50].

Previous studies have used a toxic fraction isolated from T. serrulatus venom radiolabeled

with 99m-Tc (99m-TcTsTx) for biodistribution assays in young rats [49]. In that study, it was

observed that the isolated fraction is not regularly distributed, it is first detected at low levels in

the organs and reaches its maximum concentration in the brain, heart, thyroid, lungs, spleen,

liver, and blood after 60 to 180 min. In the kidneys, the highest concentration of 99m-TcTsTx is

detected 360 min after injection [49]. The biodistribution and elimination of TsTx are slower

compared to that of the total venom observed in the present study and may be explained by

the low molecular weight of the TsTx fraction (~7 kDa) that lacks hyaluronidase (~ 50 kDa) in

its composition.

Studies of venom biodistribution and neutralization of circulating venom allow a better

understanding of the pathophysiology of envenomation, especially through the determination

of venom levels in tissues [49,51–55]. TsV is composed mainly by low molecular weight

and 30 min post-injection; arrows indicate the injection times). Radioactivity levels in the bloodstream were measured

at 1, 5, 10, 15, 20, 30, 45, 60, 90, 120, and 240 min post-injection of 99mTc-TsV. All data are expressed as the mean

percentage of the injected dose of 99mTc-TsV per gram of blood (% ID/g) ± S.E.M. of the mean. Values are

representative of duplicates from two independent experiments. Statistical analysis was performed using a linear mixed

model. Time (p< 0.0001) and time x Anti-Hyal serum administration interaction (p< 0.0001) had a statistically

relevant effect on the mean 99mTc-TsV blood clearance.

https://doi.org/10.1371/journal.pntd.0007048.g006
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neurotoxic peptides which modulate Na+, K+, Ca2+ and Cl- channels in excitable membranes,

thereby causing a massive release of neurotransmitters and stimulation of the autonomic ner-

vous system. The synergism of various toxins from TsV is responsible for its deleterious effects

[18, 50].

In the present work, we observed that the inhibition of hyaluronidase in TsV caused by

anti-hyaluronidase serum delays the process of venom distribution. Higher levels of TsV are

detected at the injection site, and reduced levels are detected in the organs at early times (30

min) when compared to the control group (Figs 4B and 5). The immunoneutralized venom is

retained in the right tight muscle, and its spread from the injection site to the bloodstream is

reduced (Fig 4B). Over time, the levels of TsV in the organs show delayed increase when com-

pared to control. The highest concentrations of immunoneutralized venom are observed in

the tissues 240 min after injection, which represents a 190-min delay in comparison with the

untreated venom. Lower levels of immunoneutralized TsV were also observed in the kidneys,

in relation to the control, indicating reduced renal clearance (Figs 4 and 5). The delay in the

biodistribution of TsV caused by inhibition of hyaluronidase may compromise the synergistic

action of the venom’s components, which are relevant in the envenoming process, and may

culminate with the reduction of TsV lethality observed by Horta et al. [16].

Revelo et al. [51] demonstrated the effect of T. serrulatus antivenom on the biodistribution

of TsV. High levels of venom were detected in mice serum and organs up to 8 h after subcuta-

neous injection of TsV. In contrast, when antivenom was applied intravenously at times 0 or 1

h after venom injection, venom levels detected in blood and tissues were significantly reduced

[51]. These data show the effectiveness of antivenom in blocking venom biodistribution and

indicate that anti-hyaluronidase antibodies may exist in total antivenom.

Due to the hyaluronidase action facilitating initial venom dissemination, we hypothesized

that anti-hyaluronidase serum could complement anti-serum therapy as a first-aid treatment

for envenomation. Some studies point to the use of hyaluronidase activity inhibition in enven-

oming processes as a first-aid action. As inhibitors of viper venom hyaluronidase have long

been used for this purpose, neutralization of scorpion hyaluronidase could be a similar thera-

peutic approach to arrest the main effects of envenomation [56,57]. Here we proceeded with

inhibition of hyaluronidase after venom injection at times 0, 10, and 30 min, and observed a

higher concentration of labeled TsV in the bloodstream until 120 or 240 min after TsV injec-

tion, depending on anti-hyaluronidase administration time, when compared to the control

group (Fig 6). These results corroborated the 99mTc-TsV biodistribution assays previously neu-

tralized with anti-hyaluronidase serum, which showed that the maximum concentration of

TsV detected in tissues occurs 240 min after injection (Fig 5). Thus, aiming at using hyaluroni-

dase neutralization as a first-aid treatment, our results were effective in showing a delay in the

biodistribution of TsV to target organs and its accumulation in the bloodstream. In a real

envenoming situation, delaying venom biodistribution may compensate for the time required

for the sting victims to seek medical attention and treatment with antivenom serum, especially

in remote locations with poor access to hospitals. This would represent a breakthrough in the

treatment of systemic envenoming by venomous animals, which are considered neglected

issues by the World Health Organization (WHO) due to the lack of adequate access to anti-

venom therapy where they are needed [58].

In addition, the accumulation of TsV in the bloodstream as a result of hyaluronidase activ-

ity neutralization (Fig 6) suggests a correlation between hyaluronidase activity and venom flow

from the bloodstream to the tissues. These results indicate that TsV hyaluronidase is important

not only to allow venom access from the sting/bite site to the bloodstream (Figs 3 and 4) but is

also involved in the biodistribution of TsV from the blood to the organs (Figs 5 and 6).
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In endothelial cells, hyaluronic acid (HA) stimulates cell proliferation, migration, and neo-

vascularization, and regulates endothelial barrier function [59]. As a key component of the gly-

cocalyx in the vascular wall, HA is crucial for vascular integrity and maintenance of blood

vessel continuity [60]. Especially in the glomerulus, HA is pivotal to the integrity of protein

permeability barrier [61,62]. Our results suggest that TsV hyaluronidase is relevant to the

cleavage of the HA present in the endothelial barrier and, therefore, promotes the biodistribu-

tion of TsV from the blood to the tissues.

Studies of this nature can contribute to the development of more effective envenomation

therapies and help clarify the mechanisms of action of components from the TsV. Herein,

hyaluronidase was shown as a key enzyme for the biodistribution of TsV from the venom

injection site to the bloodstream and subsequently to the target tissues. This enzyme promotes

the rapid distribution of TsV toxins through the victim’s body and is pivotal in the envenom-

ing process. Since we have proved the critical role of hyaluronidase in scorpionism, our find-

ings lead the way for new therapeutic strategies.
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