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Abstract

The ventral striatum (VS) is a central node within a distributed network that controls appeti-

tive behavior, and neuromodulation of the VS has demonstrated therapeutic potential for

appetitive disorders. Local field potential (LFP) oscillations recorded from deep brain stimu-

lation (DBS) electrodes within the VS are a pragmatic source of neural systems-level infor-

mation about appetitive behavior that could be used in responsive neuromodulation

systems. Here, we recorded LFPs from the bilateral nucleus accumbens core and shell

(subregions of the VS) during limited access to palatable food across varying conditions of

hunger and food palatability in male rats. We used standard statistical methods (logistic

regression) as well as the machine learning algorithm lasso to predict aspects of feeding

behavior using VS LFPs. We were able to predict the amount of food eaten, the increase in

consumption following food deprivation, and the type of food eaten. Further, we were able to

predict whether the initiation of feeding was imminent up to 42.5 seconds before feeding

began and classify current behavior as either feeding or not-feeding. In classifying feeding

behavior, we found an optimal balance between model complexity and performance with

models using 3 LFP features primarily from the alpha and high gamma frequencies. As

shown here, unbiased methods can identify systems-level neural activity linked to domains

of mental illness with potential application to the development and personalization of novel

treatments.
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Author summary

As neuropsychiatry begins to leverage the power of computational methods to understand

disease states and to develop better therapies, it is vital that we acknowledge the trade-offs

between model complexity and performance. We show that computational methods can

elucidate a neural signature of feeding behavior and we show how these methods could be

used to discover neural patterns related to other behaviors and reveal new potential thera-

peutic targets. Further, our results help to contextualize both the limitations and potential

of applying computational methods to neuropsychiatry by showing how changing the

data being used to train predictive models (e.g., population vs. individual data) can have a

large impact on how model performance generalizes across time, internal states, and

individuals.

Introduction

The VS is a central node in the brain circuits influencing goal-directed and habitual behaviors

with subregions like the nucleus accumbens (NAc) core and shell that mediate information

between cognitive control regions of the prefrontal cortex and regions of learning and memory

in the amygdala, hippocampus, and the ventral tegmental area [1–3]. As regions of conver-

gence within the mesolimbic pathway, the NAc core and shell have been targeted by neuromo-

dulation-based treatments for appetitive disorders including substance use disorders, eating

disorders, and obesity [4–6]. Targeting the VS for eating disorders and obesity is supported by

the known connectivity of the NAc with energy homeostasis circuits within the hypothalamus

and brain stem [7,8] and the role of an-/orexigenic states modulating VS activity through cen-

tral and peripheral ligands [9–12]. In both preclinical and clinical investigations DBS targeting

these subregions has altered appetitive behavior [13–16], but variable treatment outcomes

combined with the known risks of DBS have limited more widespread use. In other neuropsy-

chiatric conditions, DBS outcomes have been improved and side-effects limited by using rele-

vant neural activity to trigger stimulation, closed-loop DBS [17–19], or modify stimulation

parameters, adaptive DBS [20]. However, a source of neural activity that contains information

relevant to appetitive behaviors is needed to apply these advanced DBS approaches to appeti-

tive disorders.

Local field potential (LFP) oscillations recorded from DBS electrodes are a promising

source of neural systems-level information and VS oscillations could contain information

about appetitive behavior. Although there has been evidence that high frequency components

of NAc LFPs could be generated within the piriform cortex [21] the entrainment of single-unit

firing to LFPs in the NAc suggests that VS LFPs are, at a minimum, a reflection of local striatal

processing [22–24]. Therefore, it is likely that LFPs recorded from the NAc contain informa-

tion pertaining to motivated behaviors.

Although a wealth of information likely exists within VS LFPs about appetitive behaviors

like binge eating, it is important to determine how much information is needed to decode

these behaviors and to determine what the trade-offs are between model performance and

model simplicity. The model used by Wu et al. [19] took advantage of changes in delta power

during the beginning of feeding in mice to trigger closed-loop DBS and reduced binge size.

This is a good example of a low complexity population-based model (1 LFP feature trained

from 6 animals) maximizing simplicity at the expense of performance (69% sensitivity and

64% specificity). Our work examined how altering model complexity changes performance in

classifying feeding behavior in a rat model of binge eating. Here, we used unbiased statistical
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and machine learning approaches to predict imminent binge eating epochs and classify con-

current behavior using LFP recordings from bilateral NAc core and shell. Further, we used a

machine learning approach to determine if VS oscillations recorded during binge eating ses-

sions contained information that could predict the quantity of food consumed, the increase in

binge size following food deprivation, and the type of food consumed (low vs. high palatabil-

ity). Primarily, this work characterizes how different sets of training data (complex vs. simple;

individualized vs. population-based) can affect the performance of models across individuals,

time, and internal conditions. Although shown here in a rat model of binge eating, we expect

these relationships to generalize to other appetitive behaviors and neuropsychiatric disorders,

thus providing a framework for the development of more effective closed-loop algorithms and

adaptive neuromodulation-based treatments.

Materials and methods

Ethics statement

All experiments were carried out in accordance with the NIH Guide for the Care and Use of

Laboratory Animals (NIH Publications no. 80–23) revised in 1996 and approved by the Insti-

tutional Animal Care and Use Committee at Dartmouth College. CO2 gas was used for eutha-

nasia followed by a secondary thoracic puncture. Isoflourane/oxygen combination was used

for anesthesia during surgery (5% isoflourane during induction and 2% for maintenance).

Experimental design

Male Sprague-Dawley rats (n = 12) were purchased from Charles River (Shrewsbury, MA) at

60 days of age were individually housed using a reverse 12-hour light/dark schedule with

house chow and water available ad libitum.

All animals were implanted with electrode arrays and were conditioned to binge eat using

limited access to palatable food (1 month). Following completion of a DBS intervention pub-

lished separately [25] and a 2 week washout period, rats re-established a baseline of binge-like

feeding. Once a stable baseline was established, baseline binge sessions (Base) were recorded

(LFP and video). Binge sessions were also recorded following 24- and 48-hour food depriva-

tion (Dep24 and Dep48) with intervening periods (at least 24 hours) of ad libitum access to

house chow. Animals were also deprived of food for 24 hours before recording a 2-hour house

chow session (Chow) to ensure that the animals consumed enough food to provide a compara-

ble amount of LFP data during feeding to the three sessions with access to the high-fat/high-

sugar diet (See General methods: Surgery and binge eating).

These paired LFP and video recordings were used to address two types of questions: 1)

Whole session questions—can VS activity averaged over an entire session be used to predict

behavioral outcomes from that session (e.g., predict calories consumed)?; and 2) Within ses-

sion questions—can VS activity be used to classify behavior as it occurs or to predict if it is

about to occur? These two types of questions were assessed using tailored analysis approaches

that have different sample size considerations and will be described in the corresponding sub-

sections of Statistical analysis.

General methods

Surgery and binge eating. Following habituation to the animal facility, rats were anesthe-

tized with isoflourane/oxygen (5% isoflourane for induction and 2% for maintenance) and

underwent stereotaxic implantation with a custom electrode array with single wires targeting

both the NAc core and shell bilaterally: 1.6 mm anterior; ±1 and 2.5 mm lateral; and 7.6 mm
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ventral to bregma. Following recovery from surgery (~1 week), rats began a well described

[26–28] schedule of limited access to a palatable high-fat/high-sugar diet (sweet-fat food),

which contained 4.6 kcal/g and 19% protein, 36.2% carbohydrates, and 44.8% fat by calories

(Teklad Diets 06415, South Easton, MA). The sweet-fat food was provided to the rats in addi-

tion to house chow and water within stimulation chambers for 2-hour sessions with 4–5 ses-

sions irregularly spaced per week.

Behavioral measures. The food was weighed before and after all recording sessions to cal-

culate the amount of food consumed during the session; weight was converted to kilocalories

to allow direct comparison between food types (sweet-fat food vs. house chow). Session videos

were manually scored for feeding, approach (movement towards food), and rest intervals.

Timestamps were normalized by session length in order to compare feeding dynamics across

sessions of unequal length (see S1 Text: Supplemental Methods: Behavioral measures).

Local field potential recording and processing. Rats were tethered in an 18”x12”x24”

chamber through a commutator to a Plexon data acquisition system while time-synchronized

video was recorded (Plexon, Plano, TX) for offline analysis. All LFP signal processing was

done using custom code written from Matlab R2017a as previously reported [25] with power

and coherence calculated within the following frequency bands: delta (1–4 Hz); theta (5–10

Hz); alpha (11–14 Hz); beta (15–20 Hz); low gamma (45–65 Hz); and high gamma (70–90 Hz)

(see S1 Text: Supplemental Methods: Signal processing).

Verification of electrode placement. Rats were euthanized at the end of the experiment

using CO2. Brains were removed, sectioned with a cryostat, mounted on slides, and stained

with thionine for histologic verification of electrode placement [16]. No animals required

exclusion based on electrode location.

Statistical analysis—Whole session

To determine how much of the individual heterogeneity in feeding behavior could be pre-

dicted from VS activity, the values of each LFP feature were averaged across all bins according

to behavioral scoring (i.e., feeding vs. resting) from a given session (Fig 1C). To compare

across animals and to account for day-to-day variation in signal, the LFP features were nor-

malized by subtracting the average feeding value from the average rest value (Fig 2A). These

rest-normalized LFP features were then used to predict behavioral variables (baseline food

intake and food type). To predict the change in consumption with food deprivation—from

Base to Dep24 or Dep48 session—the difference between the rest-normalized values of the two

sessions were used as predictor variables (e.g., Base [feeding-rest]—Dep24 [feeding-rest]).

Although there were only 12 animals, by using up to two recordings per animal sample sizes

were able to be increased (n = 24 for both baseline food intake and change in consumption

with food deprivation; n = 21 for food type, one animal didn’t have any house chow sessions

and another only had one); however, lasso is specifically for regressions in which p>> n and

thus these samples sizes only limited the number of folds used in cross-validation.

The Matlab package Glmnet [29] was used to implement lasso with 100 iterations of 5-fold

cross-validation. Since there were insufficient samples to construct a naïve test-set, model per-

formance was estimated from the distributions of performances during cross-validation. For

predicting baseline food intake and the change in consumption from baseline (continuous out-

comes) performance was estimated as mean absolute error (MAE) and for predicting food

type (binary outcome) performance was estimated as accuracy (%), both performance mea-

sures were reported with 95% confidence intervals. The performance distributions from cross-

validation were then compared to distributions representing by-chance performance created

by shuffling the assignment of predictor and outcome variables using Monte Carlo sampling.
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The actual and permuted distributions were compared using the Mann-Whitney U test and

the U test statistic was converted into a Cohen’s d (S1 Text: Supplemental Methods: Effect

size).

Statistical analysis—Within session

Each 5-second bin and its corresponding LFP features belonged to only one behavioral cate-

gory: feeding, pre-feeding, or not-feeding. Pre- and not-feeding were not manually scored;

rather, bins were assigned to those categories relative to the scored behaviors. Pre-feeding bins

were defined as those occurring 45 seconds prior to feeding initiation and were discarded if

they overlapped with a previous feeding epoch. All bins that were neither feeding nor pre-feed-

ing were categorized as ‘not-feeding’.

Training pre-feeding vs. not-feeding models. Pre-feeding vs. not-feeding models were

first trained and tested using pre-feeding bins that immediately preceded the start of feeding to

determine if brain activity immediately before feeding was differentiable from brain activity

during other behaviors. These models were then also tested on pre-feeding bins centered up to

45 seconds before feeding (Fig 3A). To account for the variability introduced through random

sub-sampling and imputation of the bins used, all of these steps were repeated 20 times and

Fig 1. Predicting aspects of feeding behavior. A. Temporal dynamics of feeding behavior characterized on a population level across the four groups: baseline binge-

like feeding of palatable chow (Base); binge-like feeding of palatable chow after 24-hours of food deprivation (Dep24) and 48-hours of food deprivation (Dep48); and

limited access to house chow after 24-hours of food deprivation (Chow). Session lengths were normalized and the percent of animals feeding was smoothed for

visualization. B. Kilocalories (kCal) consumed across conditions. More calories were consumed in Dep48 (n = 8) than Base (n = 12), and in both Dep24 (n = 12) and

Dep48 than Chow (n = 8). Red bar indicates group average. � p< 0.05, �� p< 0.01 The change in kCal consumed was also used to calculate change in voracity (Fig 1-

1A) which was then used to identify features potentially contaminated by chewing artifact (Fig 1-1B). C. Overview of analysis flow. Recordings were broken into non-

overlapping 5 second bins and were assigned to one of 4 categories: not-feeding, rest, feeding, and pre-feeding. Power and coherence were calculated from each bin

and averaged together according to category. Average brain activity of each animal during feeding was then normalized by activity during rest and used as predictor

variables with behavioral metrics from that animal used as outcome variables. Outcome variables were then permuted to create distributions of ‘by-chance’

performances. D-E. Performance of models in predicting behavioral metrics; black distributions are performances of models using actual outcome variable

assignment and white distributions are performances of models using permuted outcome variables. Distribution statistics reported as mean±95% confidence interval

and effect size between Actual and Permuted given as Cohen’s d. D. Mean absolute error (MAE) of predicting baseline food consumption in grams (gm). Actual = 2.6

±0.08 gm; Permuted = 3.2±0.05 gm; d = 0.43. E. MAE of predicting percent change (%) in food consumption in Dep24 and Dep48 compared to Base (%): Actual = 0.8

±0.01%; Permuted = 1.2±0.01%; d = 1.1. F. Percent accuracy (%) in predicting if house chow or palatable food was being consumed: Actual: 59±1%; Permuted: 50

±1%; d = 0.52.

https://doi.org/10.1371/journal.pcbi.1006838.g001
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the performance reported as averages with 95% confidence intervals (see S1 Text: Supplemen-

tal Methods: Pre-feeding vs. not-feeding).

Training feeding vs. not-feeding models. Logistic regressions, fit using the Matlab func-

tion fitglm(), were used to train models to classify bins as feeding or not-feeding (see S1 Text:

Supplemental Methods: Feeding vs. not-feeding). The process of imputing and splitting the

data into test and training sets was repeated 20 times for each condition (Base, Dep24, Dep48,

and Chow).

Evaluating model performances. Model performances were measured using the naïve

test-sets to calculate the classification probabilities of the new data with the function predict(),
constructing a receiver operator characteristic (ROC) curve, and then calculating the area

under the ROC curve (AUC) with the function perfcurve(). Performance was then averaged

over the 20 iterations and reported with 95% confidence intervals. As before, Monte Carlo

Fig 2. Classifying imminent feeding from other behavior with VS oscillations. A. Overview of analysis flow. Data was binned and power and coherence extracted as in

Fig 1. Orange box: Eighty percent of all pre-feeding bins immediately before feeding bins and all other bins outside of feeding (not-feeding and rest) are used for model

training and the other 20% are used for testing. Using the same data, the assignment of category to predictor variables is permuted and trained on 80% of the data and

tested on the left out 20%. This analysis produces two receiver operator (ROC) curves representing the performance of models built from actual and permuted data. To

build rare event detectors (feeding is only ~18% of the data) the adaptive synthetic sampling approach for imbalanced learning was found to be the best option (Fig 2-

1A-B). To be able to compare across models it was also necessary to determine the number of samples were required to achieve stable model performance (Fig 2-1A-D).

B. Average performance of differentiating pre-feeding immediately before feeding begins and bins outside of feeding (not-feeding and rest); performance distribution

statistics reported as AUC mean ± 95% confidence interval and the effect size between Actual and Permuted given as Cohen’s d: Actual = 0.81±0.03; Permuted = 0.55

±0.06; d = 2.68. C. Average areas under the ROC curves ( �AUC�) obtained for 20 iterations of model building using models built from the pre-feeding bins immediately

preceding feeding and tested on all other pre-feeding bins grouped by amount of time before feeding up to bins centered 42.5 seconds before feeding. D. Percent of pre-

feeding data which overlaps with approach behavior; pre-feeding bins centered up to 12.5 seconds before feeding have at most 30% overlap with approach behavior. E-F.

Normalized representative LFP features plotted through time around feeding. Features were normalized by either total power or by average coherence of the channel(s) of

interest and averaged across all bins and animals around the beginning and end of feeding epochs. Shading indicates ±1 standard deviation. Black traces represent

averages before and after feeding and blue traces represent averages during feeding. Dashed blue and solid black lines indicate average feature activity for either feeding

bins or all other bins including those outside of these plots. E. Core left core right high gamma coherence increases during feeding. F. Shell left high gamma power

decreases during feeding. Although both E and F exhibit a mean shift; a decrease in feature variance around feeding was also found (Fig 2–2).

https://doi.org/10.1371/journal.pcbi.1006838.g002
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sampling was used to shuffle the assignment of predictor and outcome variables in order to

assess by-chance accuracy and the effect size between the distributions of actual and permuted

performances was calculated by converting the U test statistic into a Cohen’s d (see S1 Text:

Supplemental Methods: Effect size).

Relating model complexity to performance. The complexity of models used to differen-

tiate brain activity during feeding from brain activity during not-feeding was adjusted across

three domains: 1. the number of individual animals included; 2. the number of LFP features

included; and 3. the number of conditions represented (Base, Dep24, Dep48, and Chow).

Two-sample t-tests were used to compare the performance between models with different

manipulations of the following domains followed by the Bonferroni correction.

1. Individuals: To determine how many individual animals were required to create a popu-

lation-based model that could generalize across animals, all permutations from 1/12 to 11/12

animals were used to train models. Population models (>1 animal used to train the model)

were tested on the data of left-out animal(s) (see S1 Text: Supplemental Methods: Complexity

vs. performance).

2. LFP Features: The performance of the logistic model built from all LFP features was con-

sidered the “gold standard” for determining how many features were required to create a

model that was stable across individuals and conditions. The lasso algorithm reduced the num-

ber of features used to ~40. To test the lower bounds of simplicity, the performance of logistic

models built from all possible permutations of up to three features: 58 monads, 1,653 dyads,

Fig 3. Number of individuals needed to build models. A. Schema of factors influencing model complexity and affected facets of model

performance. Dashed outline indicates that a given factor is being manipulated in current analysis and that the performance is being measured

accordingly. B. (Inset) The number of individuals and performance stability across individuals is assessed by comparing the average performance of

population models (i) built using 80% of all animals’ data and tested on the remaining 20% (All = 0.87±0.01; d = 3.27), using a leave-one out

(LOO = 0.78±0.06; d = 3.13) approach, and using permuted data in a leave-one out approach (Permuted = 0.51±0.02) to the average performance

of individual models (ii) built from 80% of each animals’ data and testing on that animals’ left out 20% (Self = 0.89±0.06; d = 3.13) alongside

permuted individual models (Permuted = 0.52±0.02). (iii) The subtraction of individual model performance on classifying the left out data of that

individual from the performance of population models on the same data shows that individual models almost always outperform population

models, using both All and LOO datasets. C. Average performance of models built from all possible combinations of including 1 to 12 individuals

and tested on population data. Circle indicates mean and vertical bar indicates 95% confidence interval.

https://doi.org/10.1371/journal.pcbi.1006838.g003

Balancing model complexity and performance: using LFPs to decode feeding behavior in rats

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006838 April 22, 2019 7 / 19

https://doi.org/10.1371/journal.pcbi.1006838.g003
https://doi.org/10.1371/journal.pcbi.1006838


and 30,856 triads. “Top-tier” models were those with performances not significantly different

from the best performing model within each group as assessed using two-sample t-tests fol-

lowed by the Bonferroni correction for multiple comparisons (i.e., top-tier monad models

were monad models that did not perform significantly worse than the best monad model).

3. Conditions: Models were trained using data from either just baseline or all four condi-

tions, but in both cases more bins were used than needed to achieve stable model performance

as determined by learning curves (S2 Fig; see S1 Text: Supplemental Methods: Complexity vs.

performance).

Visualizing LFP feature changes around feeding epochs. Features of interest (from

monad, dyad, and triad models) were extracted from all recordings around feeding epochs

from 62.5 seconds before feeding to 32.5 seconds into feeding, and from 12.5 seconds before

feeding ended to 52.5 seconds after feeding ended (feeding epochs were only used if they lasted

at least 45 seconds to avoid using data twice). For times outside of feeding, only data that did

not overlap with previous or subsequent feeding epochs were used. The data from all baseline

recordings were used to calculate the average LFP feature value in each 5 second bin around

feeding epochs and were plotted through time with one standard deviation.

Results

Whole session results

Characterization of feeding dynamics across session types. There was a bimodal pattern

of feeding behavior during the baseline conditions that was not maintained across the food

deprived conditions (Fig 1A) in which more animals were feeding during the beginning of the

recording. The temporal dynamics of feeding in animals given house chow after 24 hours of

food deprivation was more similar to the deprived animals given palatable food rather than

baseline; however, during the Chow condition the animals ate significantly fewer calories than

both Dep24 and Dep48 conditions (t(19) = 3.73, p = .008, two-sample t-test; and t(16) = 5.82,

p = .0002, two-sample t-test; Fig 1B). During the sweet-fat food sessions, 48 hours of food dep-

rivation were required to significantly increase the number of calories consumed compared to

baseline (t(19) = -4.25, p = .003, two-sample t-test; Fig 1B).

Decoding the amount of food consumed and food type from VS oscillations. Using the

rest corrected brain activity during baseline sessions (Fig 1C) models were built that outper-

formed permuted data in predicting the amount of food eaten at baseline (MAE = 2.6±0.08

gm; d = 0.43; Fig 1D). Next, changes in rest corrected brain activity from Base to Dep24 or to

Dep48 were used to predict the changes in the amount of food consumed across the corre-

sponding sessions (MAE = 0.8±0.01%; d = 1.1; Fig 1E). Last, rest corrected brain activity was

used to predict the type of food being eaten following 24-hour food deprivation—house chow

vs. sweet-fat food (accuracy = 59±1%; d = 0.55; Fig 1F).

Within session results

Predicting imminent feeding. LFP features from the bins immediately preceding feeding

epochs in the baseline session were used to build models (Fig 2A) that predicted whether initi-

ation of feeding was imminent (AUC = 0.81±0.03; d = 2.68; Fig 2B). When these models were

applied backwards through time, they were able to successfully differentiate bins as preceding

feeding (i.e. pre-feeding bins centered up to 42.5 seconds before feeding began) from all other

bins outside of feeding epochs (Fig 2C). These models were not merely detecting approach

behavior since only one third of the pre-feeding bins had any overlap with approach behavior

and none of the bins more than 12.5 seconds before feeding overlapped with approach while

the model was still able to differentiate beyond 12.5 seconds (Fig 2D).
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The identity of the LFP features that were most frequently used by lasso to predict immi-

nent feeding were plotted over time to investigate the temporal link between changes in these

LFP features and feeding behavior. Both a power (shell left high gamma; Fig 2E) and coherence

feature (core left-core right high gamma; Fig 2F) tended to transition from the non-feeding

average towards the feeding average during the pre-feeding interval (42.5 seconds before feed-

ing). After feeding had ceased, the LFP features began to transition back to their non-feeding

level.

Relating model complexity to performance using models classifying

feeding vs. not-feeding

To explore model complexity, three domains of the data used for model building were manip-

ulated (Fig 3A): number of individuals, number of LFP features, and number of conditions

(Base, Dep24, Dep48, and Chow). By using the same naïve test-sets for assessing performance,

the effects of different training data on model performance could be compared directly.

Manipulation of the number of animals in population-based models. Population-based

models built from and tested on data from all animals was able distinguish brain activity dur-

ing feeding from not-feeding better than would be expected by chance alone (AUC = 0.87

±0.01; d = 3.27; Fig 3Bi). All models were built using 80% of each individual animal’s data

from baseline sessions (Fig 2A) and the models were tested on the left-out 20%. However, it is

conceivable that because the left-out 20% came from the same recordings as the 80% used for

training, these models could be slightly overfit. To account for this, a leave-one-out (LOO)

approach was used by leaving an entire animal out of the model building to be used as the test-

set. As expected, the performance of LOO models decreased significantly (t(258) = 2.96 p =

.003, two-sample t-test), but they still outperformed the by-chance permuted models

(AUC = 0.78±0.06; d = 3.13; Fig 3Bi). As the number of animals left out was increased (Fig 3Bi

Inset) the performance continued to decline (Fig 3C).

Individualized vs. population-based models. The above data indicate that if enough

individuals are used to train population-based models, then the model will generalize across

individuals, outperforming chance. However, it is possible that a model built from an individ-

ual will be able to perform better for that individual compared to a model built from a popula-

tion. To test this, individualized models were built using 80% of a single animal’s data and

then tested on that animal’s left-out 20%. These models performed better than the permuted

models (AUC = 0.89±0.06; d = 3.13; Fig 3Bii) and performed better than the population-based

models tested on the same left-out data in 9/12 individuals when all animals were in a popula-

tion model (Fig 3 Biii All) and 11/12 individuals when all but that individual was used to train

the population-based model (Fig 3Biii LOO).

Manipulation of the number of LFP features at baseline. The next step was to determine

how many LFP features are necessary to build successful and stable models by manipulating

the number of features included in model building from all single feature models to all three

feature models (Fig 4A Inset). When classifying baseline feeding vs. not-feeding, the best mod-

els built from a single feature performed better than chance and although increasing the num-

ber of features used to two or three increased performance, these simple models never

achieved the performance of either the lasso (~40 features) or full logistic (58 features) model

(Fig 4A). Further, when these simpler models were applied to testing data from the other con-

ditions (Dep24, Dep48, and Chow) the performance dropped with the more complex triadic

models providing the best performance stability across conditions, approaching the stability of

the full logistic models (Fig 4B). Last, the features used by the best dyad and triad models and
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those used by lasso were not all top performing features when used in monadic models, sug-

gesting redundancy between LFP features in predicting feeding behavior (S4 Fig).

Fig 4. Number of LFP features needed to classify feeding. A. Average performance of models built and tested on

population baseline data as the number of features used is manipulated (Inset): single features (Monad), two features

(Dyad), and three features (Triad), using lasso (Lasso), and all 58 features (Logistic).The top dyad and triad were not

composed of the top two and three monad models, suggestive of the redundancy of LFP features (Fig 4–1). B. Average

performance of all population baseline Monads, Dyads, Triads, and full Logistic across conditions (Inset). Averages

represented by circles and 95% confidence intervals by vertical bars.

https://doi.org/10.1371/journal.pcbi.1006838.g004

Fig 5. Performance of Population (black) and Individual (grey) models built from Baseline (A) and all condition

(B) data and tested across states. A. Testing performance of population and individual models built from baseline

data on all conditions (Inset). Population models built from Base do better than individual models when predicting

behavior during any other condition than Base. B. Testing performance of population and individual models built

from all conditions on all conditions (Inset). When models are built from all conditions, individual models do better

than population models across conditions. � p< 0.05, �� p< 0.01, ��� p< 0.001. Averages represented by circles and

95% confidence intervals by vertical bars.

https://doi.org/10.1371/journal.pcbi.1006838.g005
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Manipulation of conditions used to train and test models: impact on individual and

population model performance. Given that individualized models tended to outperform

population-based models when trained and tested in the baseline condition the performance

of these models was also determined when data from the other three conditions were used as

the test-set. The population-based models significantly outperformed the individual models

(Dep24 t(26) = -4.03, p = .0035; Dep48 t(26) = -3.53, p = .012; and Chow t(26) = -3.63, p =

.0097; Fig 5A). To determine if the model performances could be improved across the condi-

tions, new individualized and population-based models were built using data from all four

conditions (Fig 5A Inset). These individualized models significantly outperformed the popula-

tion-based models (Base t(26) = 3.56, p = .012; Dep24 t(26) = 3.94, p = .0044; and Dep48 t(26)

= 9.69, p = 3.3E-9; Chow t(26) = 3.52, p = .013; Fig 5B). In summary, the population-based

models built from the baseline condition generalized better across the other conditions com-

pared to the individualized models. However, if individualized models are trained on data

from all conditions, then they can outperform the population-based models in classifying feed-

ing vs. not-feeding across conditions.

Manipulation of the number of LFP features used to build models across conditions.

Finally, the above findings were integrated by determining the minimal number of LFP fea-

tures required in an individualized model built from all conditions to match the performance

of the corresponding, “gold standard”, logistic model using all 58 LFP features (Fig 6 Inset).

Testing on Base and Chow data revealed that only two features were required to attain a per-

formance that was not significantly different from the gold standard logistic model (Base t(14)

= 3.07, p = .13; Chow t(14) = 1.74, p = 1; Fig 6A and 6D). The Dep24 condition required 48 fea-

tures used by lasso (Dep24 t(14) = 3.19, p = .10; Fig 6B) to perform at a comparable level to the

full logistic. However, testing all possible combinations of LFP features from 4 to 48 was

beyond the computational capacity of this study.

When data from all conditions were used for training and testing it was found that many of

the models performed equally well (S1 Table). Despite the flexibility in the exact features used

in these models, features within the alpha and high gamma ranges were the most common

contributors to the top performing models (Table 1). For the simpler models—monads and

dyads—most predictors were power features while in the more complex triads coherence fea-

tures became equally represented (S1 Table).

Discussion

Here we show that VS oscillations can be decoded and used to predict aspects of feeding

behavior such as the amount and type of food consumed. Further, these oscillations can be

used in real-time to predict imminent or current feeding in a rat model of binge eating, regard-

less of varying hunger levels and food palatability. By manipulating the complexity of the train-

ing data used and then assessing how these manipulations affect model performance, this

work creates a theoretical framework to guide the implementation of predictive algorithms

used in closed-loop and adaptive neuromodulation systems. Specifically, this work suggests

that devices could be pre-loaded with a model built from a group of individuals using a hand-

ful of oscillatory features and have fair performance when applied to individuals outside of the

training group. However, to achieve optimal performance in a specific individual, personalized

models using neural data from that individual acquired over time would be needed.

Predicting amount of food consumed and food type from VS oscillations

The binge eating model used in this study resulted in variation in food intake between individ-

uals (as previously described [30]) and also in the increased intake following food deprivation.
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That this variation could be partially predicted using LFP features from the VS is not

Fig 6. Manipulating number of features and using all conditions to find simplest individualized models (Inset)

and using the full 58 feature logistic regression (Log) as the performance to match. For predicting behavior at Base

(A) and Chow (D) two features are sufficient to achieve maximal performance. For Dep24 (B) three features are

sufficient and for Dep48 (C) Lasso is required. A. Only Monads have significantly lower performance than the full Log,

t(14) = 4.04, p = .019. B. Monads, t(14) = 5.07, p = .0027, and Dyads, t(14) = 3.58, p = 0.049, p = have significantly

lower performance than Log. C. Monads, t(14) = 3.85, p = .028, Dyads, t(14) = 6.12, p = .00042, and Triads, t(14) =

5.51, p = .0012, have lower performance than Log. D. Only Monads have significantly lower performance than Log, t
(14) = 3.70, p = 0 = .038. � p< .05, �� p< .01, and ��� p< .001. Averages represented by circles and 95% confidence

intervals by vertical bars.

https://doi.org/10.1371/journal.pcbi.1006838.g006

Table 1. Frequency contributions in top performing monad, dyad, and triad models (models that are not signifi-

cantly worse than the top performer). There are 2 monads, 8 dyads, and 32 triads within the top-tier (Table 1–1). Fre-

quency range percentages of dyads and triads do not add to 100% since each model can contain more than one

frequency range.

Monad Dyad Triad

Delta — 38% 44%

Theta — — —

Alpha 50% 88% 84%

Beta — 13% 13%

Low Gamma — — 44%

High Gamma 50% 63% 72%

https://doi.org/10.1371/journal.pcbi.1006838.t001
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surprising given the connectivity of these VS regions (e.g., nucleus accumbens) to the distrib-

uted feeding network [31,32]. Further, it is feasible that information about the type of food

consumed (low vs. high palatability) could also be extracted from VS oscillations given that the

NAc is implicated in the hedonic reactivity towards food [33,34] and in processing nutritive/

caloric value [35].

Population-based vs. individualized models

The presented data suggest that models classifying feeding behavior perform best when they

are built and tested within a given individual and condition, otherwise performance drops

when these individualized models are tested in other conditions—even if within the same ani-

mal. However, this drop can be mitigated in two ways: 1. use data from multiple conditions

within an individual; or 2. use data from multiple individuals within a condition (or from mul-

tiple conditions). Following either of these strategies will increase the probability of selecting

and properly weighting LFP features that generalize across animals and conditions. Clinically,

it is important that models are able to perform well across a heterogeneous population as well

as across the variable conditions through which individuals will transition over time. There-

fore, when building models for use in algorithms that control closed-loop or adaptive neuro-

modulation systems it will be vital to consider these strategies.

Machine learning and DBS

Recently, there has been increasing interest in applying machine learning and other computa-

tional methods to guide the selection and implementation of psychiatric treatments. This work

can be categorized into three domains: 1. predicting treatment outcomes; 2. defining treatment

parameters; and 3. actively optimizing treatment through time. Treatment outcomes have

been successfully predicted using both structural and functional connectivity measures in Par-

kinsonian patients [36] as well as using LFPs in a rodent model of binge eating [25]. In a high

throughput manner, machine learning has also been used to optimize combinations of DBS

parameters and medications [37] and to determine which DBS parameters lead to desired

changes in brain activity [38]. Last, there is a push towards the development of neuromodula-

tion systems that use machine learning to monitor stimulation evoked dopamine signaling

and adjusting stimulation parameters to optimize treatment [39] or to determine the time and

brain state during which stimulation has the largest effect [40]. With the exception of Kumar

et al.’s work, all of these implementations of machine learning used population-based datasets

(i.e. data pooled across subjects). For some predictions—e.g., optimizing stimulation target—

using individual datasets is impractical; however, when tuning stimulation parameters or try-

ing to determine effective stimulation timing our work suggests individualized data will pro-

duce the best models if that data is sampled from across time and, ideally, across varying

conditions (e.g., stress/anxiety, mood, hunger, etc.).

Number of predictors required for stable performance

This work highlights an important trade-off between the number of features used to build a

model and that model’s performance across individuals and conditions. Our results suggest

that single feature models are unlikely to perform with enough accuracy to be clinically useful.

However, a relatively simple model (~3 features) can approach the performance and stability

of complex models (58 features); although these exact numbers may vary when predicting dif-

ferent behaviors/symptoms, this work suggests that simpler models can contain enough infor-

mation pertaining to a given behavior/symptom with the benefit of limiting the computational

and power requirements.
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A predictable pattern of brain activity precedes feeding initiation

As shown (Fig 2), VS oscillations can differentiate times when an animal is about to feed (�45

seconds before feeding begins) from not-feeding. Interestingly, models built to classify feeding

were also able to classify pre-feeding—even slightly outperforming pre-feeding models. This

was because although many of the same LFP features were used in both models, the features

are more clearly delineated (i.e., higher signal to noise ratio) between feeding and not-feeding,

likely representing a “ramping” of LFP features as feeding begins.

When this hypothesis was examined (Fig 2E and 2F), a ramping phenomenon was observed

in features that more successfully classified pre-feeding bins when trained on feeding vs. not-

feeding data. For example, NAc shell left high gamma power begins to increase to its feeding

level before feeding begins, stabilizes during feeding, then drops back to not-feeding levels as

feeding ends. In other features there is decreased variance during feeding (Fig 2–2), mirroring

a widespread pattern seen cortically in response to obtaining rewards [41], as a marker of stim-

ulus perception/detection [42,43], and has been correlated with performance on visual dis-

crimination [44,45] and motor preparation/initiation [46,47]. Visualizing several of these LFP

features over time makes it clear that they develop over different timescales, likely underpin-

ning the accuracy of predicting imminent feeding increasing closer to the start of feeding as

more features have diverged from their not-feeding levels (Fig 2C).

Confounds and noise

Given that motor preparation and initiation manifest as decreased neural variability it is possi-

ble that the models predicting imminent feeding were merely detecting the motor activity of

approaching the food. However, by 12.5 seconds before feeding none of the data used for

model building contained approach behavior (Fig 2D) and the models were able to classify

pre-feeding brain activity out to 42 seconds before feeding without a corresponding drop in

performance at 12.5 seconds (Fig 2C). When models were built using feeding data—with no

approach behavior—performance was actually slightly better at classifying pre-feeding.

Together these results suggest that although approach behavior may also exhibit a detectable

change in LFPs, this change is not a primary source of information for our models.

An additional concern is that without electromyography of the masseters we are unable to

completely remove the possibility of chewing noise influencing models built from feeding

data. However, if the feeding vs. not-feeding models were chewing detectors, then the models

should only be able to detect behaviors with chewing noise. Instead the feeding models were

also able to classify pre-feeding activity which is devoid of chewing noise.

Finally, we know from histology that all of our electrodes were in the structures targeted,

but it is likely that variations in the neuronal architecture of these structures across animals

and variations in the exact stereotactic localization of electrodes within these structures exists.

For generalized models we are able to mitigate the potential effects due to electrode localiza-

tion by randomly determining which animals were used to train the models. Yet, it is possible

that the reason why individualized models tend to do best is because of differences in electrode

position and it is also possible that the variance in a given animal’s model being successful in

predicting the other animals’ behavior is explained by the variance in electrode localization. In

terms of clinical application, it is not practical to expect electrodes to share exact stereotactic

coordinates and even if they did, the neuronal architecture the electrode is within will likely

vary between patients. Therefore, it is important that we consider the implications of datasets

that include the variations likely to be seen in clinical datasets when trying to determine the

balance between model complexity and performance.
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VS oscillations as a source of information for closed-loop and adaptive

neuromodulation

Appetitive disorders like binge eating disorder have been associated with dysregulation of the

mesolimbic pathway which includes the VS. Understanding the nature of network pathology

is critical to the development of treatments that can therapeutically alter network activity, ame-

liorating the problematic behavior/symptom. Neuromodulation-based interventions that use

network activity to trigger stimulation and modify parameters have proven effective in the

treatment of Parkinson’s disease [20]. DBS for epilepsy has incorporated electrodes in order to

detect pre-seizure electrophysiologic activity and use stimulation to prevent seizure generation

[17]. Future treatments of appetitive disorders could similarly utilize meaningful electrophysi-

ology features in order to provide feedback to optimize treatment efficacy and limit the side

effect profile. A recent study demonstrated the theoretical feasibility of using a closed-loop sys-

tem to trigger stimulation and decrease binge size in a mouse model of binge eating [19]. As

noted in the introduction, the model used had limited performance, likely due to only using a

single LFP feature, but the success of the intervention highlights another point to consider

when determining model complexity vs. model performance tradeoffs: what model perfor-

mance is required to meaningfully impact the outcome of interest?

Conclusions

Ventral striatal oscillations can predict feeding behavior during sessions of limited access to

palatable food in rats. Similar unbiased computational methods will continue to identify new

systems-level neural markers and produce models capable of predicting behaviors that are rel-

evant to an array of neuropsychiatric conditions.
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S1 Text. Contains all Supplemental Methods and supporting references.
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S1 Fig. Features potentially contaminated by chewing noise A. Distribution of percent

changes in voracity from baseline to food deprived conditions (Dep24 and Dep48). B. Regres-

sion between percent change in shell left core left theta coherence and percent change in vorac-

ity from baseline to food deprived conditions; p< 0.01; R2 = 0.3.

(TIF)

S2 Fig. Learning curves used to determine minimum number of trials required to make

models whose performance stability are comparable. Circles indicate average AUC and ver-

tical bars represent 95% confidence intervals. Grey boxes indicate at which trial number per-

formance becomes insignificantly different from performance of models with most data. A.

Testing population models using ADSYN imputation and between 6 and 500 trials per animal;

150 per animal (1800 total) are needed to achieve performance of models using all 500 per ani-

mal (6000 total). B. Testing population models using weighted outcome variables and between

6 and 500 trials per animal; 350 trials per animal (4200 total) would be needed to match perfor-

mance of full models. C. Testing individual models (grey lines) using between 30 and 500 tri-

als; the most any individual needed was 350 trials to match the performance of models made

with all 500 trials. D. Testing pre-feeding models using between 4 and 350 trials each; 13 trials

per animal were needed to match the performance of 350 trials per animal.

(TIF)
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S3 Fig. Monad feature performance with features used for top performing Dyad and Triad

indicated and features with 100% survival in the top performing Lasso models highlighted

in red. Average AUC indicated by a circle and 95% confidence interval by a vertical bar.

(TIF)

S4 Fig. Shell right low gamma power exhibits a marked decrease in variation during feed-

ing. Power was normalized by total power of shell right and averaged across all trials and ani-

mals around the beginning and end of feeding epochs. Shading indicates ±1 standard

deviation. Black traces represent averages before and after feeding and blue traces represent

averages during feeding. Dashed blue and solid black lines indicate average feature activity for

either feeding trials or all other trials outside of these plots.

(TIF)

S1 Table. Top-tier monads, dyads, and triads with features and performances (area under

the curve, AUC). Locations: Sell left (SL), shell right (SR), core left (CL), core right (CR). Fre-

quencies: delta (d), theta (t), alpha (a), beta (b), low gamma (lg), and high gamma (hg). Power

features have one location and frequency (e.g. shell right alpha power is SRa) and coherence

have two locations and one frequency (e.g. high gamma coherence between shell left and core

right is SLCRhg). Feature order (Feature 1 vs. Feature 2) is not important.

(DOCX)
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