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Abstract

Background: In the process of post-transcription, microRNAs (miRNAs) are closely related to various complex
human diseases. Traditional verification methods for miRNA-disease associations take a lot of time and expense, so it is
especially important to design computational methods for detecting potential associations. Considering the
restrictions of previous computational methods for predicting potential miRNAs-disease associations, we develop the
model of FKL-Spa-LapRLS (Fast Kernel Learning Sparse kernel Laplacian Regularized Least Squares) to break through
the limitations.

Result: First, we extract three miRNA similarity kernels and three disease similarity kernels. Then, we combine these
kernels into a single kernel through the Fast Kernel Learning (FKL) model, and use sparse kernel (Spa) to eliminate noise
in the integrated similarity kernel. Finally, we find the associations via Laplacian Regularized Least Squares (LapRLS).
Based on three evaluation methods, global and local leave-one-out cross validation (LOOCV), and 5-fold cross
validation, the AUCs of our method achieve 0.9563, 0.8398 and 0.9535, thus it can be seen that our method is reliable.
Then, we use case studies of eight neoplasms to further analyze the performance of our method. We find that most of
the predicted miRNA-disease associations are confirmed by previous traditional experiments, and some important
mMiRNAs should be paid more attention, which uncover more associations of various neoplasms than other miRNAs.

Conclusions: Our proposed model can reveal miRNA-disease associations and improve the accuracy of correlation
prediction for various diseases. Our method can be also easily extended with more similarity kernels.

Keywords: MiRNA-disease association, Similarity kernel, Fast kernel learning, Sparse kernel, Laplacian regularized least
squares

Background

MicroRNAs (miRNAs) are some of non-coding RNAs
with 20 ~ 25 nucleotides [1]. In the process of
post-transcription, miRNAs are a part of messenger
RNA (mRNA) sequences and affect protein synthesis
[2-4]. Some previous studies have proved that miR-
NAs are related to various diseases including cancers.
For example, the expression level of hsa-mir-21 leads
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to more than 125 diseases, such as Alzheimer Dis-
ease, Diabetes Mellitus, Lymphoma and so on. Thus,
the research of miRNAs is helpful for the diagnosis and
treatment of diseases [5]. The traditional experiments
to detect the associations between miRNAs and dis-
eases are time-consuming and expensive [6]. Therefore, it
is especially important to find potential miRNA-disease
associations by the computational methods [7]. Previous
researches achieved massive miRNA-disease associations
through the traditional experiments, and some databases
have been constructed for miRNA-disease associations.
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Human MicroRNA Disease Database (HMDD) [8] col-
lects 572 miRNAs, 378 Disease and 10368 miRNA-
disease associations. The miR2Disease [9] includes 349
miRNAs, 163 disease and 3273 miRNA-disease asso-
ciations. The dbDEMC contains of 2224 miRNAs, 36
cancer types and 20037 miRNA-disease associations
through the high-throughput methods. Thus, these asso-
ciations promote the development of the computing
methods.

Up to now, it has achieved excellent performance that
people find the potential disease-miRNA associations by
the computational methods [10—14]. Most of these meth-
ods are based on the assumption that miRNAs with high
similarity apt to be related with similar diseases and vice
versa [15, 16]. Xuan et al. [17] proposed HDMP that
achieves a score for one miRNA by weighting k most sim-
ilar neighbors, and a larger score has higher possibility to
associate with a specific disease, but HDMP can’t work for
a new disease without known related miRNAs. Jiang et al.
[18] devised a hypergeometric distribution-based model
to calculate the score of each miRNA for a specific disease,
and the miRNA with larger score tend to cause this dis-
ease. Scores of above two methods are based on miRNA
neighbor information, which ignores entire informations
of miRNA similarity network. Many models find miRNA-
disease associations based on the similarity networks
[19-23]. Chen et al. developed the RWRMDA model
[24], which uses the information of miRNA functional
similarity network and known miRNA-disease associa-
tion network, and utilizes the random walk model to find
the potential miRNA-disease association. However, RWR-
MDA is faced with the same problem as HDMP, because
of the initial nonzero vector. Therefore, Chen et al. [25]
proposed WBSMDA to find the potential association
by integrating the miRNA functional similarity network,
disease semantic similarity and known miRNA-disease
association network. For the similarity between two miR-
NAs/diseases, WBSMDA integrates Gaussian Interaction
Profile (GIP) kernel similarity for miRNA and disease, and
calculates the association probability for miRNA-disease
pair using Within-Score and Between-Score of disease
and miRNA. Gu et al. [26] developed NCPMDA by con-
structing novel similarity kernel for miRNA and disease
via the matrix operation and calculating the space pro-
jection scores of miRNA and disease. The final score
between miRNA and disease is calculated by combining
two space projection scores. The predictive performance
of NCPMDA is superior over the previous methods
when working for a disease without any known related
miRNAs [13].

Many previous models are based on defining a cost
function and minimizing this cost function. Chen et al.
[27] developed RLSMDA, a semi-supervised method,
which minimizes the Regularized Least Squares cost
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function and uncovers the potential miRNAs associated
with various diseases. After that, Chen et al. [28] pro-
posed LRSSLMDA, which is used to reveal the potential
association between miRNA and disease. LRSSLMDA
constructs comprehensive statistical features and graph
theoretic features by combining the miRNA and disease
similarity kernels. Then, Laplacian regularization term
is used to add objective function. Experimental results
demonstrate that LRSSLMDA is a valuable computa-
tional model. In addition, many previous methods are
based on machine learning algorithms [29, 30], matrix
completion [31-33] and graph theory [34]. For example,
Shen et al. [35] proposed CMFMDA that uses WKNKN
to estimate association probability for unknown associa-
tions between miRNA and disease, and uses Collaborative
Matrix Factorization to uncover the potential associa-
tion. You et al. [36] developed PBMDA that constructs
a heterogeneous graph by integrating five networks, gets
all scores of paths for a miRNA-disease pair, and calcu-
lates the miRNA-disease association possibility through
the sum of all path score. PBMDA gets a remark-
able performance to find the potential miRNA-disease
association.

All above methods have achieved remarkable results,
but there are still different limitations or restrictions.
For example, most of the existing methods are based
on the assumption that miRNAs with high similarity
apt to be related with similar diseases. About con-
structing miRNA and disease similarity kernel, most
researches use the functional similarity and GIP kernel
similarity for miRNA, and use the semantic similar-
ity and GIP kernel similarity for disease. To inte-
grate two similarity kernels, lots of works only tend
to accumulate or average [29, 37, 38]. Therefore, there
is an urgent need to propose an effective method
for integrating multiple miRNA and disease similarity
kernels [39].

In this paper, we firstly extract the miRNA functional
similarity, the miRNA sequence similarity and GIP kernel
similarity for miRNA, and the disease semantic similar-
ity, disease functional similarity and GIP kernel similar-
ity for disease. Then, we use the Fast Kernel Learning
method to construct one miRNA similarity kernel and
one disease similarity kernel. Finally, we propose a novel
Sparse Laplacian Regularized Least Squares method to
uncover the miRNA-disease association. Here, three eval-
uation methods are used to assess performance, including
global Leave-One-Out Cross Validation (global LOOCYV),
local Leave-One-Out Cross Validation (local LOOCYV)
and 5-fold cross validation (5-fold CV). In these three
evaluation methods, our method obtains the remarkable
performance (AUCs of 0.9563, 0.8398 and 0.9535, respec-
tively) compared with other nine models. And also, we use
case studies of eight Neoplasms for further analyzing the
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performance of our method. We find that 47 of top 50
candidates are confirmed to have associations with Lym-
phoma in global verification, and all top 50 candidates are
confirmed to have associations with Breast and Colorectal
Neoplasms in local verification. Moreover, we find that
some of the miRNAs need to be paid more attention
to uncover more associations with various neoplasms,
including hsa-mir-106b, hsa-mir-19b, hsa-mir-29¢c, hsa-
mir-1, hsa-mir-29a and so on.

Methods

We firstly use three miRNA similarity kernels and three
disease similarity kernels to uncover potential miRNA-
disease associations, respectively. Then, we combine these
similarity kernels into a miRNA similarity kernel and a
disease similarity kernel using Fast Kernel Learning, and
sparse two similarity kernels after combination. Finally,
we use Laplacian Regularized Least Squares to construct
a loss function and get predicted association matrix from
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miRNA and disease space, respectively. Figure 1 is the flow
chart of our method.

Human miRNA-disease associations dataset

In this paper, the set of miRNAs is denoted by
M = {m;},, and the set of diseases is denoted by
D = {dj};':l, where m and # are the numbers of miR-
NAs and diseases respectively. The associations between
miRNAs and diseases can be downloaded from HMDD
database, which include 5430 associations between 495
miRNAs and 383 diseases. The associations are repre-
sented by a binary matrix ¥ € R”*", where y;; € {0, 1}. if
a miRNA ; is association with a disease d}, y;; is set to 1;
otherwise, y;; is set to 0;

MiRNA similarity

Basing on the assumption that miRNAs with high similar-
ity tend to be associated with the same disease, we extract
three classes of miRNA similarity, including functional
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Fig. 1 The flowchart of our method, FKL-Spa-LapRLS, for the miRNA-disease association prediction
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similarity, sequence similarity and Gaussian Interaction
Profile (GIP) kernel similarity.

MIiRNA functional similarity

In the previous works, the MISIM method [40] proposed
by Cui et al calculated the score of miRNA functional sim-
ilarity. We extract 495 functional similarity score through
MISIM and construct kernel Ki” € R™ ' to repre-
sent the miRNA functional similarity network, in which
K{" (m;, mj) is the functional similarity score between miR-
NAs m; and m;.

MiRNA sequence similarity

All 495 miRNA sequences are downloaded from miRBase
database [41]. We extract miRNA sequence similarity
using the Needleman-Wunsch Algorithm and get ker-
nel K}’ € R™" to represent the miRNA similarity of
sequence network, in which K" (m;, m;) is the similarity
of sequence score between miRNA 7z; and ;.

GIP kernel similarity for miRNAs

GIP the kernel similarity [29, 38, 42] between miRNAs m;
and m; is denoted as K3’ € R and the calculation
method is as Eq. (1)

K3 (mi, mj) = exp (—ym | IPOm;) — IPomy) |I7) (1)

where IP(m;) € R denotes the interaction profiles of
miRNA m; by observing whether miRNA m; is associated
with each disease or not, that is to say, the i-th row of the
associations matrix Y; y,, is used for kernel bandwidth
control, which is set to — 1 in this paper.

Disease similarity

We extract three classes of disease similarity, including
semantic similarity, functional similarity and GIP kernel
similarity.

Disease semantic similarity

In the previous research [37, 40], disease d(i) can be
described as a node in Directed Acyclic Graph(DAG)
based on the MeSH [43] database (https://www.nlm.
nih.gov/bsd/disted/meshtutorial/themeshdatabase/), and
denoted as DAG,, = (d;, T4, Ey,), in which Ty, is the set
of all ancestor nodes of d; including node d; itself and E,
is the set of corresponding links. A semantic score of each
disease t € T;;, can be calculated by Eq. (2).

. 1 lf t=d;
Da;(®) = { max {A * Dg,(t)|t' € children of t} if t #d;
(2)

where A is the semantic contribution factor, which is set
to 0.5 in this paper.
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Then, we define the semantic score of disease d; by
Eq. (3).

DV(dy) = ZteriDdi(t) (3)
Therefore, we denote the disease semantic similarity as
I(fl € R™ and the disease semantic similarity value
between d; and d; is calculated by Eq. (4).
Yrer, om, (D) + Dy ®))
i 9

d M M —
14 (@ 4) DV(dy) + DV(d)

(4)

Disease functional similarity
The associations between disease-gene and gene-gene are
widely used to understand disease similarity [44]. From
the HumanNet [45] database, we download the interac-
tions of genes and one interaction has an log likehood
score (LLS) that measure the probability of a functional
linkage between genes. The LLS scores are normalized by
Eq. (5)
LLS(gi, &) — LLSin 5)
LLS0x — LLS i
where LLS(g;, gj) represents LLS between the i-th and j-th
genes; LLS*(g;, g) represents the LLS score after normal-
ization; LLS,,;, and LLS,,,, indicate the minimum and
maximum LLS scores in HumanNet respectively.

The functional similarity score between two genes is
defined as Eq. (6)

LLS*(gi,g) =

1 ifi=j
FS(gi,gj) ={ LLS* (g,»gﬂ if i #jand e(i,]) € SHumanNET
0 ifi #}ﬂnd e(i,)) ¢ SHumanNET

(6)

where StymanneT indicates the gene-gene associations in
the HumanNet database; e(i,j) indicates the association
between i-th and j-th genes.

Then, the functional similarity score between a gene g
and a gene set G is defined as Eq. (7).

Fg(g) = max(FS(g, g:)) (7)
g,'EG

In many cases, a disease dj; is related to many genes, which
is defined as gene set G;, the associations between dis-
ease and genes are download from SIDD [46]. The disease
functional similarity score is defined as Eq. (8)

2 g6, F6i @) + 2 gec, Fo; (&)

(8)
IGjl + 1G]

Ky (diydy) =

GIP kernel similarity for diseases

Similar to calculation of GIP kernel similarity for miRNA,
GIP kernel similarity for disease is denoted as Kgl € R"™",
calculated as Eq. (9).

KS (diydj) = exp (—ya | IP@;) — IP(d)) |7)  (9)
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where IP(d;) € R™*! denotes the interaction profiles of
disease d; by observing whether disease d; is associated
with each miRNA or not, that is to say, the i-th column of
the associations matrix Y; y,; is used for kernel bandwidth
control, which is set to — 1 in this paper.

Fast kernel learning

Considering that a single similarity kernel cannot cover all
information between miRNAs, we integrate K", K3" for
K3" to get a new integrated similarity kernel K™ € R"*™
using the method of Fast Kernel Learning (FKL) [47]. We
define K™ as Eq. (10).

3
m __ mym
K —E ,ujl(j
j=1

It is believed that K™ should be close to the associations
metrix Y. We define the miRNAs associations similarity as
Eq. (11).

(10)

y" =yy’ (11)

Therefore, we would like to find 4 € R3*! using the
following Eq. (12) to minimize the distance between K™
and Y.

min ||[K™" — Y™||% (12)
wn
2
where [[K" — Y"|[2 = ¥, Y, (Kif;’ - YL{’.’) .
To avoid overfitting in learning procedure, a regulariza-
tion term should be added to equation as Eq. (13).

min [[K™ — Y™[|2 + 2" ||
um

s.t. ,u}" >0,j=1,23

3
=1
j=1

where A is set to 200 in this paper.

We use the matlab R2017a CVX to solve this
optimization problem and obtain the integrate parameter
u™ € RY3 for miRNA functional similarity, miRNA
sequence similarity and GIP kernel similarity. There-
fore, the integrated miRNA similarity kernel is defined as
Eq. (14).

(13)

3
K™= ul"K" (14)
j=1

Similarly, we obtain the integrate parameter u? € R'*3
for disease semantic similarity, disease functional similar-
ity and GIP kernel similarity by FKL, and the integrated
disease similarity kernel is defined as Eq. (15).

3
K=" plkd (15)
j=1
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Laplacian regularized least squares

Given the similarity kernels of miRNAs and diseases,
we use Sparse Laplacian Regularized Least Squares (Spa-
LapRLS) to get a new association matrix, and find poten-
tial miRNA-disease associations. It includes Sparse kernel
model and LapRLS model.

Sparse kernel model

We use a Top-k Neighbor model to reduce noise in inte-
grated similarity kernel. For the miRNA subspace, we
construct a weight matrix w,, € R"* for K, whose
elements are defined as Eq. (16), by the Top-k Neighbor
method.

1 if K™(i,j) > max(T(k, i), T(k,j))
Wi (i, 7) = 105 if K™ (i, j) €[ min(T(k, i), Tk, /)), max(T(k, i), T (k, j))]
0 if K™(i,j) < min(T(k, i), T(k,j))

(16)

where k satisfies condition 0 < k < m; T(k,i) rep-
resents the k-th largest element of the i-th row in K™
and T'(k,j) represents the k-th largest element of the j-th
column in K.

Therefore, we record the denoised miRNA similarity
kernel as Eq. (17)

K = wy o K" (17)

Similarity, we also calculate the denoised disease similar-
ity kernel as K; € R"".

LapRLS for miRNA-disease interaction prediction

Given a pair of similarity kernels for miRNA K} and
disease K7, we first use the Least Squares on the two sub-
space, and add Laplacian Regularization term to avoid
overfitting. For miRNA subspace, the objective function
of LapRLS [48] is defined as Eq. (18)

min ||Y = Eyllf + Bl EyLn ol I (18)

where F,, = Ko, € R™ " is the predictive associa-
1

1
tion matrix from miRNA; L,, = D,,’ (Dm - K;:l) D2,
in which D,, is the diagonal matrix of K}, in the form of
D,,(i,i) = ijl K (i,)); Bm is the regularization coeffi-
cients, which is set to 27° in this paper; a,, is renewed by
the function Eq. (19) in [48].

tm=arg min {||Y—1<;;am||§,+ﬁm||a£1<;Lm1<jnam||§}

Q ERMXN

(19)

The derivation of the optimization algorithm are pre-
sented in [48].

In this way, the predicted associations matrix for all
miRNA-disease pairs from the view of miRNAs are
obtained as Eq. (20).

Fo = K (K + BuLmKE) ™ Y (20)
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Similarly, we can get the predicted associations matrix
for all miRNA-disease pairs from the view of miRNAs as
Eq. (21)

Fy =K (K + BaLaks) ' YT (21)

where F; = Kjag € R™; B, is the regularization
coefficients, which is set to 27 in this paper.
In the end, the predicted associations matrix from the
view of miRNA and disease is defined as Eq. (22)
Fm+FJ
2

where F* € R™*",

F* (22)

Results and discussion

In this section, we study the performance of our method
from different aspects on prediction of unknown miRNA-
disease associations. First, we establish three evaluation
methods and two assessment indicators to evaluate the
accuracy of our method. Second, we analyze the perfor-
mance of our method with different parameters by using
10-fold CV and local LOOCYV. Third, we employ 10-fold
CV and local LOOCV to analyze the performance of
the FKL model. Fourth, we compare the performance of
LapRLS with multiple matrix factorization method. Fifth,
we compare the performance of FKL-Spa-LapRLS with
nine outstanding methods. Finally, for a further validation,
we implement the global and local verifications on eight
neoplasms for case studies.

Evaluation criteria

In this paper, we implement 10-fold CV, global LOOCV
and local LOOCYV to evaluate the prediction accuracy of
our method. In the 10-fold CV, all miRNA-disease asso-
ciations are randomly divided into ten uncrossed groups,
one of which is regarded as test set and the other nine
groups are used for training set in turns. In the global
LOOCY, all 5430 miRNA-disease verified associations are
regarded as objective research sample, and each associ-
ation is left in turns served as a test sample and other
known associations are regarded as training sample. In the
local LOOCY, only considering miRNAs for a specific dis-
ease, for disease d (i), each miRNA related to d (i) is left out
as test set, and other associations are regarded as train-
ing set. All the miRNA-disease associations in test set are
reseted as 0 in the association matrix Y.

In our study, we use Area Under Curve (AUC) and
Area Under the Precision-Recall curve (AUPR) to estab-
lish the assessment criteria for method prediction. AUC is
the area under the receiver operating characteristic (ROC)
created by plotting true positive rate against false posi-
tive rate at various threshold settings. An AUC value of
1 indicates perfect performance and an AUC of 0.5 indi-
cates random performance. AUPR is the area under the
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curve created by plotting precision against recall at vari-
ous threshold setting. The greater the value of AUPR, the
better performance of the model.

Parameter selection

In this section, we use 10-fold CV and local LOOCV to
analyze several parameters, including vy, Y4, Au» Ads B>
Baq and k value.

The y,, and y, are the parameters in the process of con-
structing GIP kernel similarity for miRNA and diseases,
respectively. We just use GIP kernel similarity to pre-
dict potential miRNA-disease associations and use 10-fold
CV to evaluate performance of GIP kernel with differ-
ent parameters. Then, we take y,, and y; from — 10
to 10 with step 1 and calculate AUCs, respectively. The
results are shown in Fig. 2a. It shows that the perfor-
mance of GIP similarity kernel is sensitive to y,, and y,,
and the optimal AUC is obtained when y,, and y,; equal
to 0. However, the K, 3 and K,; 3 are matrices with ones
in all elements according to Egs. (1) and (9) when two
parameters equal to 0. Therefore, we adopt suboptimal
ym = —1 and y; = —1 in this paper. Since most of
elements in GIP similarity kernel are more than 1, we
need to normalize GIP similarity kernel before integrating
multiple kernels.

The A, and A, are the regularization coefficients of
FKL. We use different A,, and 4 to integrate three miRNA
similarity kernels and three disease similarity kernels,
respectively. Then we use integrated similarity kernel and
LapRLS to uncover potential associations and use 10-fold
CV to evaluate performance of FKL with different param-
eters. The 1, and A ; are gradually varying from 0 to 15000
with step 100 in order to find the best value. The results
are shown in Fig. 2b. It can be found that AUC keeps small
fluctuation in the range between 0 to 15000. It demon-
strates that FKL is insensitive to regularization coefficient.
So, A, and X4 are set to 200 in this paper.

The B,, and B, are the regularization coefficients of
LapRLS. We take B,, and By from 2710 to 210, respec-
tively. We adopt 10-fold CV to evaluate performance of
LapRLS with different parameters. The results are shown
in Fig. 2c. It can be found that AUC keeps small fluc-
tuation in the range between 271 to 272, and AUC has
obvious change when B, and B, greater than 272, We
select the optimal 8, and B; by the highest AUC value
and set 8, and By as 27 in this paper.

Meanwhile, k value in the process of sparse kernel is an
important parameter in this paper. We use 10-fold CV and
local LOOCYV to analyze k value. The value of k is taken
from 20 to 250 with step 5, are shown in Fig. 3. It can be
clearly seen that the process of sparse kernel has positive
effect on the discovery of potential miRNA-disease asso-
ciations. In this study, k value is set to 20 in the 10-fold CV
and global LOOCYV, and is set to 40 in the local LOOCV.
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FKL performance analysis

In this section, we analyze the performance of FKL. First,
we compare FKL with single kernel and average kernel by
the 10-fold CV and local LOOCYV. Then, we compare FKL
with two multiple kernels learning method by the 10-fold
CV and local LOOCV.

Comparison with single kernel and average kernel

We compare the prediction performance of FKL with
three single similarity kernels and an average similarity
kernels by using 10-fold CV and local LOOCYV methods.
The experiments are remarked as following.

K" & K¢ Ky
K & KY K
K & K¢ K3 (23)

avg (K", Ky',K") & avg (K{,K§,K§) AVG
K% & K FKL

The comparison results obtained by the 10-fold CV and
local LOOCYV are shown in Fig. 4.

In the 10-fold CV, The AUC of FKL is the high-
est among five curves, and the AUC difference between
the FKL model and the Kj is slight but the differ-
ence in AUPR is obvious. Local LOOCV is a mea-
sure that can express model performance excellently
when we handle a new disease not having known asso-
ciations with miRNA. In Fig. 4, the AUC of average
kernel is greater than FKL kernel. In the process of
KFL, we need to find a optimized p to weight kernels.
Here, we get u = (0.6610,0.3390,1.1562 x 10~?) and
nd = (1,9.1453 x 10719,7.3854 x 10710), that is to say,
the miRNA functional similarity kernel and the miRNA
sequence similarity kernel are more important than GIP
kernel similarity, and disease semantic similarity kernel
is the most important in the three kernels. The model
loses a part of information in the weighting process. How-
ever, a new disease not having any known association
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Fig. 3 The results of our method with different k values. a The AUCs of LapRLS with different k by the 10-fold CV. b The AUCs of LapRLS with
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with miRNA needs more detail information from dif-
ferent aspects. The average kernel method satisfies this
requirement of more detail informations. That is why the
AUC of FKL model is lower than average kernel, but the
AUPR of FKL model is higher than average kernel method.
Moreover, AUPR can evaluate the classifier performance
better when dealing with unbalanced dataset. Therefore,
it demonstrates that the FKL model is most significant in
all kinds of models.

Comparison with other multiple kernel learning methods
Several multiple kernel learning methods have been pro-
posed to predict microRNA-disease associations, includ-
ing Kronecker regularized least squares (KRLS) [39, 49]
and kernelized Bayesian matrix factorization (KBMF)
[32, 50]. We compare FKL with these two methods to
integrate the similarity kernels to predict potential asso-
ciations, respectively. Then, we use 10-fold CV and local
LOOCYV to evaluate performance of these three meth-
ods. The comparison results are shown in Fig. 5. In the
10-fold CV, it can be observed that the best AUC of
0.9584 and the best AUPR of 0.6431 are obtained by FKL.
Comparing with KRLS, FKL achieves AUC improvement
of 0.0162 (0.9584 over 0.9422) and AUPR improvement
of 0.1201 (0.6431 over 0.5230). Comparing with KBME,
FKL achieves AUC improvement of 0.0598 (0.9584 over
0.8986) and AUPR improvement of 0.2005 (0.6431 over
0.4426). In local LOOCY, it can be observed that the best
AUC of 0.8398 and the best AUPR of 0.2480 are also
obtained by FKL. It shows that FKL is excellent at the
aspect of uncovering associations between miRNAs and
diseases.

Comparison with matrix factorization

The matrix factorization (MF) methods are widely
used for different bioinformatics applications, including
Protein-Protein interactions (PPI) prediction, drug-target
interaction (DTI) prediction, drug response prediction,
and so on. Therefore, we compare sparse LapRLS
with four MF methods, including Similarity-Regularized
Matrix Factorization(SRMF) [51], Collaborative Matrix
Factorization (CMF) [52], Neighborhood Regularized
Logistic Matrix Factorization (NRLMF) [53] and Graph
Regularized Matrix Factorization (GRMF) [54]. We use
the same integrated similarity kernels and these five meth-
ods to predict potential associations, and adopt 10-fold
CV to evaluate performance of different methods. The
results are shown in Fig. 6. In 10-fold CV, it can be
observed that the best AUC of 0.9584 and the best AUPR
of 0.6431 are obtained by spa-LapRLS. In local LOOCY, it
can be observed that the best AUC of 0.8398 and the best
AUPR of 0.2480 are also obtained by sparse LapRLS. It
demonstrates that sparse LapRLS is reliable for predicting
miRNA-disease associations.

Comparison with other methods

We furtherly compare the performance of FKL-Spa-
LapRLS with nine computational prediction models (i.e.,
PBMDA [36], MCMDA [31], MaxFlow, NCPMDA [26],
WBSMDA [25], HDMP [17], RLSMDA [27], LRSSLMDA
[28], HGIMDA [55]), and the comparisons are shown in
Table 1. In the local LOOCYV, FKL-Spa-LapRLS gets an
AUC of 0.8398, which is slightly under performance of
NCPMDA (0.8584) and LRSSLMDA (0.8418). However,
in the global LOOCY, our method gets an AUC of 0.9563,
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which is significant superior to the result of other meth-
ods. In the 5-fold, FKL-Spa-LapRLS obtains an AUC of
0.9535, which also has a great outperformance than other
methods. Therefore, FKL-Spa-LapRLS improves the pre-
diction performance of disease-miRNA associations from
different evaluation measures.

Case studies

In this section, we study several important diseases to
further validate the predictive power of our method. We
utilize the known miRNA-disease associations included
in HMDD to find the potential miRNA-disease associ-
ations not included in HMDD, and verify the predicted
results though two independent databases (A(bDEMC [56]
and miR2Disease [9]). In fact, dbDEMC and miR2Disease
are commonly utilized to be benchmark datasets for

many models, such as PBMDA and LRSSLMDA. The
dbDEMC database includes 2224 miRNAs, 36 cancer
types and 20037 miRNA-disease associations by the high-
throughput method, and our model predicts the top
five disease, including Colon Neoplasms, Gastric Neo-
plasms, Pancreatic Neoplasms, Colorectal Neoplasms and
Esophageal Neoplasms. Furthermore, in previous work,
Kidney Neoplasms, Breast Neoplasms and Lymphoma
were used to infer their underlying associated miRNAs.
Therefore, we use case studies of eight diseases to analyze
the performance of FKL-Spa-LapRLS in this section.

We implement two methods, global validation and local
validation, to evaluate the predicted performance of our
method in case studies. In global verification, 5430 known
miRNA-disease associations in HMDD are used as a train-
ing set to discover the potential associations. For each
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disease, we extract top 50 candidate associations that
can’'t be covered by training set. And we get all of 400
candidate associations that are checked by dbDEMC and
miR2Disease databases. In the local validation, all known
associations that are related to a special disease are reset
to unknown ones. We use other known associations as
training set to discover the potential associations. we also
extract top 50 candidate associations for this special dis-
ease. And we obtain all of 400 candidate associations that
are checked by the HMDD, miR2Disease and dbDEMC
databases.

The verification results of eight diseases are listed in
Table 2. In Table 2, the global verification is the number
of confirmed associations by dbDEMC and miR2Disease
in top 50 miRNAs. And the local verification is the num-
ber of identified associations by HMDD, dbDEMC and

miR2Disease. In Table 2, we can find that 47 of top 50
candidates are associated with lymphoma confirmed by
global verification, and local verification confirms that all
top 50 candidates are associated with breast and Colorec-
tal Neoplasms.

The results of case studies and some special miRNAs
are shown in Figs. 7 and 8 (detail results in Additional
files 1, 2, 3, 4, 5, 6, 7 and 8). The green lines are the
confirmed miRNA-disease associations, the red lines are
the unconfirmed miRNA-disease associations, the black
nodes are the eight neoplasms, and the brown nodes are
the predicted miRNAs associated with diseases. There
are 400 associations in Fig. 7, and we can find that most
of the miRNA-disease associations are confirmed by the
global verification. In addition, there are many miRNAs
that are only related to Breast Neoplasms but they have
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Table 1 The comparison results between our method and other
nine computational models

Methods Global LOOCV Local LOOCV 5-fold CV

FKL-Spa-LapRLS 0.9563 0.8398 0.9535

PBMDA 0.9169 0.8341 09172 Table 2 The verification results about eight neoplasms types
MCMDA 0.8749 0.7718 08767 Disease name Global verification Local verification
MaxFlow 0.8624 0.7774 0.8579 Colon Neoplasms 44 48
NCPMDA 0.9073 0.8584 0.8763 Gastric Neoplasms 42 40
WBSMDA 0.8030 0.8031 0.8185 Pancreatic Neoplasms 45 50

HDMP 0.8366 0.7702 0.8342 Colorectal Neoplasms 45 50

RLSMDA 0.8426 0.6953 0.8569 Esophageal Neoplasms 39 46
LRSSLMDA 09178 0.8418 0.9181 Kidney Neoplasms 43 43

HGIMDA 0.8781 0.8077 Breast Neoplasms 39 50

The boldface is the best value in the column Lymphoma 47 48
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nothing to do with other diseases. And there are nine
associations are unconfirmed. The reason is that of total
495 miRNAs in the training set, 202 have been linked to
Breast Neoplasms, so there is a large possibility that the
remaining miRNAs have no association with it. Similarly,
there are 11 miRNAs related to Esophageal Neoplasms
but not confirmed. The reason is that there are already
74 miRNAs associated with the Esophageal Neoplasms
in the training set. On the other hand, there are a few
unconfirmed miRNAs associated with other six diseases.
In Fig. 7, we can see that hsa-mir-106b, hsa-mir-19b and
hsa-mir-29c are associated with six out of eight diseases,
and these miRNAs should be paid more attention to reveal
more associations. Moreover, hsa-mir-1 and hsa-mir-29a
are expected to be associated with five diseases out of
eight diseases, but these associations still have not been
verified by valid experiment. In Fig. 8, we can find that
most of miRNAs work on various diseases. For a spe-
cial disease with unknown associations with miRNAs,
our method can reveal the miRNAs associated with it,
and only 26 associations out of 400 cannot be confirmed

by known experiments. These unconfirmed associations
need to be paid more attention. Especially for hsa-let-
7a, hsa-let-7b, hsa-mir-125b, hsa-mir-126, hsa-mir-145,
hsa-mir-155, hsa-mir-181b, hsa-mir-20a, hsa-mir-21, hsa-
mir-34a, hsa-mir-92a, these miRNAs are associated with
all diseases. And we find that the related miRNAs among
eight Neoplasms are highly similar. Therefore, it is very
important to find more diseases related to these nll
miRNAs.

Conclusions
In this paper, we propose a FKL-Spa-LapRLS model
to uncover potential miRNA-disease associations. We
demonstrate that the KFL model is more importance than
the average kernel method using 10-fold CV and local
LOOCYV, and the process of sparse kernal has a pos-
itive effect on noise elimination in similarity network.
The LapRLS method contributes to accuracy of finding
potential miRNA-disease associations.

FKL-Spa-LapRLS has been compared with nine pre-
diction methods that have got excellent performance
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for prediction of miRNA-disease associations, includ-
ing PBMDA, MCMDA, MaxFlow, NCPMDA, WBSMDA,
HDMP, RLSMDA, LRSSLMDA and HGIMDA. FKL-
Spa-LapRLS has the significantly highest accuracy in
5-fold CV and global LOOCYV, albeit weakly lower
than NCPMDA and LRSSLMDA in local LOOCV. To
further analyze the performance of FKL-Spa-LapRLS,
we implement case studies of eight Neoplasms. We
find that 47 of top 50 candidates are confirmed to
be associated with Lymphoma in global verification
and all the top 50 candidates are confirmed to be
associated with Breast and Colorectal Neoplasms in
local verification, and some miRNAs need to be paid
more attention.

Of course, FKL-Spa-LapRLS also have some limita-
tions that need to be improved in the future. For exam-
ple, our method needs more similarity kernels that are
constructed by many information about gene-disease,
disease-disease and miRNA-miRNA, and it would lose
some detail information in the process of FKL when
handling a new disease without the known associations
with miRNAs.
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