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Abstract: The purpose of this study was to examine whether Limonium tetragonum, cultivated in a
smart-farming system with LED lamps, could increase exercise capacity in mice. C57BL/6 male mice
were orally administered vehicle or Limonium tetragonum water extract (LTE), either 30 or 100 mg/kg,
and were subjected to moderate intensity treadmill exercise for 4 weeks. Running distance markedly
increased in the LTE group (100 mg/kg) by 80 ± 4% compared to the vehicle group, which was
accompanied by a higher proportion of oxidative fibers (6 ± 6% vs. 10 ± 4%). Mitochondrial DNA
content and gene expressions related to mitochondrial biogenesis were significantly increased in
LTE-supplemented gastrocnemius muscles. At the molecular level, the expression of PGC-1α, a
master regulator of fast-to-slow fiber-type transition, was increased downstream of the PKA/CREB
signaling pathway. LTE induction of the PKA/CREB signaling pathway was also observed in C2C12
cells, which was effectively suppressed by PKA inhibitors H89 and Rp-cAMP. Altogether, these
findings indicate that LTE treatment enhanced endurance exercise capacity via an improvement in
mitochondrial biosynthesis and the increases in the formation of oxidative slow-twitch fibers. Future
study is warranted to validate the exercise-enhancing effect of LTE in the human.

Keywords: Limonium tetragonum water extract; smart-farming system; endurance exercise; mitochondrial
biogenesis; slow myofiber formation; exercise mimetic

1. Introduction

Due to sedentary behavior and dietary changes, the risk for the development of over-
weight/obesity and the associated metabolic diseases is continuously increasing. Therefore,
aerobic exercise as a way of lifestyle intervention has emerged as an effective means to
prevent metabolic problems [1]. Exercise also decreases the risk of cardiovascular [2] and
neurocognitive disease [3], as well as the risk of contracting some types of cancer [4], while
increasing bone mineral density [5], quality of life [6], and even lifespan [7]. Adult skeletal
muscle is composed of two types of myofibers, type I and type II, that possess different
metabolic and contractile properties. Type I myofibers exhibit a high level of myosin heavy
chain (MyHC) isoform I, robust oxidative capacity, abundant mitochondrial content, and
are resistant to fatigue [8]. In contrast, type II fibers (MyHC IIb) have less mitochondria and
oxidative capacity than type I fibers, and demonstrate fast-twitch contraction [9]. Metabolic
and contractile properties of MyHC IIa and MyHC IIx are in-between those of MyHC I
and MyHC IIb [8]. Mature skeletal muscle is highly plastic, as its fibers can adjust their
MyHC isoform expression and mitochondrial content in response to exercise, electrical
stimulation, disease, and other factors [10]. For example, resistance exercise promotes
protein synthesis resulting in hypertrophy of fast-twitch fibers, whereas endurance exer-
cise triggers mitochondrial biogenesis and affects the expression of muscle-fiber-specific
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proteins, thereby promoting fast-to-slow fiber-type switching [11]. Conversely, aging, a
sedentary lifestyle, obesity, and type 2 diabetes decrease oxidative capacity of skeletal
muscles [12]. In humans, endurance in daily life normally refers to the physical strength
of a person to do certain things for a prolonged time, but it also means the ability to resist
fatigue. Therefore, an improvement in endurance is proportional to fatigue resistance, and
fast-to-slow myofiber-type transition can improve both endurance capacity and resistance
to fatigue.

While the signaling pathways that govern muscle fiber-type conversion have yet to
be fully elucidated, a number of studies have identified peroxisome proliferator-activated
receptor (PPAR) gamma coactivator 1-alpha (PGC-1α) as a pivotal regulator of fast-to-slow
fiber-type switching [13]. PGC-1α transcription is regulated by the binding of several
transcription factors such as activating transcription factor 2 (ATF2) [14], forkhead Box
O1 (FoxO1) [15], cyclic AMP response element-binding protein (CREB) [16], and myocyte
enhancer factor 2 (MEF2) [17]. Upon cold exposure, cAMP-activated protein kinase A (PKA)
phosphorylates p38 mitogen-activated protein kinase (p38 MAPK), which further phospho-
rylates and promotes the binding of ATF2 to the promoter of PGC-1α [14]. In turn, PGC-1α
binds to and regulates several transcription factors, including PPARγ [16], PPARα [18],
nuclear respiratory factor 1 [19], estrogen-related receptor alpha and gamma [20], and
forkhead Box O1 [21], and enhances the expression of a series of genes related to mitochon-
drial biogenesis and oxidative phosphorylation. The transcriptional activity of PGC-1α is
governed by the coordinated sequential actions of AMP-activated protein kinase (AMPK)
and Sirt1. Upon exercise, AMPK phosphorylates PGC-1α at Thr177 and Ser538 [22], which
primes it for subsequent deacetylation by Sirt1 at thirteen lysine residues [23].

Limonium tetragonum is a salt-tolerant biennial halophyte of the Plumbaginaceae
family that grows widely in salt marshes and on muddy seashores along the southwestern
coastal areas of South Korea. L. tetragonum possesses anti-oxidative properties and has been
reported to have multiple beneficial effects against various pathologies such as high-fat diet-
induced obesity [24] and alcohol-induced liver damage in mice [25], and diethylnitrosamine-
induced liver fibrosis in rats [26]. In vitro studies have demonstrated that L. tetragonum
extract suppresses the melanogenesis of B16-F10 melanoma cells [27] and the proliferation
of HSC-T6 hepatic stellate cells, and inhibits matrix metalloproteinase activity in HT1080
fibrosarcoma cells [28]. Several bioactive flavonoids, flavonoid glycosides, and catechins
which may produce pharmacological effects have been isolated from the ethyl acetate
soluble fraction of L. tetragonum extract [29]. Due to L. tetragonum’s constituents and
bioactivity, we further hypothesized that L. tetragonum may be able to increase exercise
performance, which has yet to be explored. In this study, we prepared the water extract
of L. tetragonum (LTE) using plants that had been cultivated in a smart-farm factory using
LED grow lights, as opposed to those that grew naturally along the coast of South Korea.

We administered LTE to C57BL/6 mice along with chronic exercise training program,
and then assessed the effect of combining exercise and LTE treatment on exercise endurance
and mitochondrial oxidative capacity relative to exercise alone.

2. Materials and Methods
2.1. Cultivation of L. tetragonum in a Smart-Farming System

L. tetragonum seeds were identified and collected by Suk-Kyu Kim (Halopharm Co.,
Iksan, Korea) in the coastal area of Muan-gun, Korea. Seeds were cultivated for 40 days in
a plant factory at the LED Agri-bio Fusion Technology Research Center (Jeonbuk National
University, Iksan, Korea). The growth room temperature of 21 ± 1 ◦C was controlled by
air conditioning and circulation fans. LED light conditions (red:blue = 6:4 ratio) were
set to 150 µmol/m2/s at 20 cm with a 16 h (light)/8 h (dark) cycle. Relative humidity
was maintained at 60 ± 5% during the cultivation period. Electrical conductivity and pH
were kept at 2.2 ± 0.2 ms·cm−1 and 6.0 ± 0.5, respectively. All of these conditions were
monitored by an environmental control system.
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2.2. Preparation of LTE

The leaf of L. tetragonum was washed and then dried overnight in an oven at 60 ◦C.
The dried leaf of L. tetragonum was extracted for 1 h in hot water (100 ◦C) according to a
solid to liquid ratio of 1:25 (w/v) using a reflux condenser. The extract was filtered with
Whatman filter paper No.1, lyophilized (batch method), and stored at 4 ◦C before use. The
percentage yield of the dried extract was 28.2% w/w.

2.3. Analysis of LTE Using Liquid Chromatography–Mass Spectrometry (LC–MS)

For qualitative analysis of LTE’s phytochemical composition, a sample solution with
a concentration of 1 µg/mL was prepared by dissolving the initial mobile phase of LTE,
which was then injected into an LC-MS system. LC-MS analysis was performed with
a Dionex Ultimate 3000 HPLC system (Thermo Fisher Scientific, Waltham, MA, USA)
coupled with a MaXis 4G Q-TOF mass spectrometer (Bruker Daltonics Inc., Germany)
that was equipped with an electrospray ionization (ESI) interface and was operated in
negative mode. Chromatographic separation was achieved using a Synergi Hydro-RP
(150 mm × 2.0 mm, 4.0 µm, 80A; Phenomenex, Torrance, CA, USA) and water containing
0.1% acetic acid and methanol as the mobile phase, at a flow rate of 0.3 mL/min, with
a gradient elution. The column temperature was maintained at 40 ◦C and the injection
volume was 3 µL. The MS scan range was m/z 50–800 and the source parameters were
set to: capillary voltage, −4500 V; end plate offset, −500 V; 2 bar nebulizer gas pressure;
drying gas flow rate, 5 L/min; and dry temperature, 250 ◦C.

2.4. Animals and LTE Treatment

Only male mice were used in this study, as the estrous cycle is known to influence
metabolism and exercise performance [30]. Twenty-week-old male C57BL/6N mice were
purchased from Samtako (Osan, Korea) and housed in cages under standard conditions
(22 ± 2 ◦C, 50–60% humidity, 12 h light–dark cycle) throughout the experiment. All mice
were fed a standard laboratory chow diet ad libitum. LTE dissolved in phosphate-buffered
saline (PBS) was administered once a day for 4 weeks to each test group via oral gavage at
a dose of either 30 or 100 mg/kg. All animal experiments were performed in accordance
with the Guide for the Care and Use of Laboratory Animals published by the US National
Institutes of Health (NIH Publication No. 85–23, revised 2011). The protocol for the current
study was approved by the Institutional Animal Care and Use Committee of Jeonbuk
National University (Approval No. JBNU 2021-0125).

2.5. Moderate Intensity Treadmill Running Capacity

Treadmill running was performed as described in our previous study with slight
modifications [31]. Mice were acclimated to a single lane treadmill (Jeung Do Bio & Plant,
Seoul, Korea) by performing a daily 30 min run at 10 m/min for 7 days prior to the exercise
performance tests. Mice were then subjected to a daily moderate intensity treadmill running
exercise test for 4 weeks. The moderate intensity running test began at a speed of 10 m/min
for 10 min, followed by an increase in 2 m/min every 10 min to a maximum of 16 m/min
until exhaustion. Exhaustion was defined as the inability to return to the treadmill running
despite mild stimulation with a wooden cane. Running time and distance were recorded
for each mouse during the last two weeks of the running test period.

2.6. Histology

Immediately after sacrifice, skeletal muscle tissues were placed in 30% sucrose solution
and embedded with liquid nitrogen-cooled isopentane. For succinate dehydrogenase (SDH)
staining, frozen sections of tissue (10 µm) were incubated in 0.2 M sodium phosphate-
buffered solution (pH 7.6) containing 0.6 mM nitro blue tetrazolium and 50 mM sodium
succinate (Sigma-Aldrich, St. Louis, MO, USA) for 30 min at 37 ◦C. Slides were washed
with DiH2O and mounted with aqueous mounting media. For staining of myosin heavy
chain isoforms, serial muscle sections were preincubated in a blocking solution of stock goat
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serum. The primary MyHC antibodies (MyHC I (#BA-D5), MyHC IIa (#SC-71) and MyHC
IIb (#BF-F3), DSHB, Iowa City, IA, USA) were incubated overnight at 4 ◦C. After washing,
secondary antibodies (Alexa Fluor 350-conjugated goat anti-mouse IgG2b (#A21140), Alexa
Fluor 488-conjugated goat anti-mouse IgG1 (#A21121) and Alexa Fluor 594-conjugated goat
anti-mouse IgM (#A21044), Thermo Fisher Scientific) were incubated for 1 h at 37 ◦C. For
fiber-type specification, a region of the sections that contained approximately 200 fibers was
selected. Images were acquired using a Leica DM750 microscope (Leica, Wetzlar, Germany).
These fibers were then manually classified as immune-positive or immune-negative. We
also calculated the cross-sectional area of the fibers using iSolution DT 36 software (Carl
Zeiss, Oberkochen, Germany).

2.7. Indirect Calorimetry

Mice were housed in an Oxymax/CLAMS metabolic cage system from Columbus In-
struments (Columbus, OH, USA) with one mouse/chamber. Mice were placed in metabolic
cages for one day to adapt and avoid stress during analysis. After 24 h of acclimatization,
mice were monitored continuously for 72 h with ad libitum feeding in an environmental
room set at 20–23 ◦C with a 12–12 h (7:00 pm–7:00 am) dark–light cycle. The respiratory
exchange ratio (VO2/VCO2) was measured using an Oxymax system. Data collected over
the last 24 h of the experiment was used for analysis.

2.8. Biochemical Analysis

Plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST)
were analyzed using appropriate kits (Biovision, Milpitas, CA, USA).

2.9. Cell Culture

C2C12 cells were obtained from the American Type Culture Collection (ATCC, Manas-
sas, VA, USA). C2C12 myoblasts were maintained in a DMEM-supplemented culture with
10% FBS at less than approximately 80% confluence. Differentiation of C2C12 cells was
initiated by replacing 10% FBS with 2% horse serum (Gibco Life Technologies, Waltham,
MA, USA). The differentiation medium was changed every 2 days and cells at day 5
were considered as differentiated myotubes. LTE was exposed to cells for 5 days in the
differentiation medium.

2.10. Western Blotting

Cell or tissue homogenates (20 µg) were separated using 10% SDS-PAGE and trans-
ferred to PVDF membranes. After blocking with 5% skim milk, blots were probed with
primary antibodies against CREB (#9197), p-CREB (#9198), ATF2, p-ATF2, P38, p-p38 (Cell
Signaling Technology, Beverly, MA, USA), T-OxPhos (ab110413), Mfn1 (#ab567602) (Ab-
cam, Cambridge, UK), OPA1 (#612606, BD Biosciences, Franklin Lakes, NJ, USA), HSP90
(#ADI-SPA-836-F, Enzo Life Sciences, Plymouth Meeting, PA, USA), PGC-1α (#AB-3242,
Millipore, Danvers, MA, USA), α-myosin (#M4276) (Sigma-Aldrich), Drp1 (#sc-271583),
Fis1 (#sc-376447), Nor1 (#sc-393902), Nur77 (#sc-365113), and Lamin B1 (#sc-6216, Santa
Cruz Biochemicals, Dallas, TX, USA). HSP90 was used as a loading control. The mem-
branes were briefly washed and then incubated with horseradish peroxidase-conjugated
IgG (Zymed, South San Francisco, CA, USA) for 1 h at room temperature. Antibody signals
were detected using a Las-4000 imager (GE Healthcare Life Science, Pittsburgh, PA, USA).

2.11. RNA Isolation and Real-Time Quantitative RT-PCR (qPCR)

Total RNA was extracted from skeletal muscle tissues using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA). First-strand cDNA was generated using the random hexamer primer
provided in a first-strand cDNA synthesis kit (Applied Biosystems, Foster City, CA, USA).
Specific primers for each gene (Table S1) were designed using PrimerBank (https://pga.
mgh.harvard.edu/primerbank). qPCR reactions were conducted in a final volume of 10 µL
containing 10 ng of reverse-transcribed total RNA, 200 nM of forward and reverse primers,
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and PCR master mix. qPCR was performed in 384-well plates using an ABI Prism 7900HT
Sequence Detection System (Applied Biosystems). The mRNA level of each target gene
of interest was normalized to that of Gapdh (in the case of nuclear-encoded genes) or 16S
rRNA (in the case of mtDNA-encoded genes).

For mitochondrial DNA content analysis, total DNA was extracted using a genomic
DNA purification kit (Qiagen, Hiaden, Germany). Relative mtDNA was quantified by
qPCR using primers for the mitochondrially encoded gene cytochrome oxidase 2 (Cox2),
normalized to the nuclear-encoded gene cyclophilin A (Ppia).

2.12. Statistical Analysis

Data are expressed as the mean ± standard error of the mean (SEM). All data were
tested for normality using the Shapiro–Wilk test and equal variance using Levene’s homo-
geneity test. For data that did not pass normality testing, log transformation was applied
to generate a Gaussian-distributed dataset that could be subjected to a non-parametric
Kruskal–Wallis test followed by Dunn’s comparison test. Statistical comparisons among
multiple groups were made using one-way analysis of variance followed by Bonferroni’s
post hoc analysis. The significance of differences between two groups was determined
using Student’s unpaired t-test. A p value of less than 0.05 was considered significant. All
analyses were performed using GraphPad Prism 9.4 software (San Diego, CA, USA).

3. Results
3.1. LTE Supplementation Enhances Endurance Exercise Performance

We analyzed LTE using LC-MS to identify its functional ingredients. The compounds
were identified based on their mass spectra and by comparison with standards discussed
in the previously published literature [29] (Figure 1A). Compounds 1–6 were identified
as (1): epicatechin (EC), (2): (−)-epigallocatechin-3-gallate (EGCG), (3): myricetin-3-O-β-
D-galactopyranoside, (4): myricetin-3-O-α-L-rhamnopyranoside, (5): myricetin-3-O-(2′′-O-
galloyl)-α-L-rhamnopyranoside, and (6): myricetin-3-O-(3′′-O-galloyl)-α-L-rhamnopyranosid
(Figure 1B).
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Figure 1. Analysis of Limonium tetragonum water extract (LTE). (A) LC/Q-TOF MS chromatogram
(intensity measured in counts per second, cps) of LTE using negative ion mode. (B) Structures of the
predominant substances in LTE. (1): epicatechin (2): (−)-epigallocatechin-3-gallate, (3): myricetin-
3-O-β-D-galactopyranoside, (4): myricetin-3-O-α-L-rhamnopyranoside, (5): myricetin-3-O-(2′′-O-
galloyl)-α-L-rhamnopyranoside, and (6): myricetin-3-O-(3′′-O-galloyl)-α-L-rhamnopyranoside.
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To evaluate the effect of LTE on exercise performance, 20-week-old male C57BL/6N
mice were subjected to daily exercise-to-exhaustion testing over 4 weeks, during which
mice were administered either 30 or 100 mg/kg of LTE via oral gavage (Figure 2A). Both
exercise training and LTE supplementation for 4 weeks did not affect body weight or food
intake compared to the vehicle-treated group (Figure 2B,C). Furthermore, no differences
were observed in liver damage (AST and ALT) or the tissue weight of liver, fat, and skeletal
muscles between the LTE-supplemented and vehicle-treated groups (Figure S1). Mice
treated with LTE 30 mg/kg and LTE 100 mg/kg demonstrated an increased running time
by a significant 33 ± 6% and 80 ± 4%, respectively, and an improved running distance by
37± 8% and 94± 9%, respectively, compared to vehicle-treated mice (Figures 2D–F and S2).
However, supplementation with LTE did not cause meaningful changes to oxygen con-
sumption (VO2), carbon dioxide production (VCO2), the respiratory exchange ratio (RER,
VCO2/VO2), energy expenditure (EE), or heat production relative to the control mice
(Figure S3A–E).
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Figure 2. Effects of LTE supplementation on treadmill running endurance. (A) Schematic of ex-
perimental design to assess the effect of LTE on exercise performance. (B,C) Body weight change
after the 4-week exercise and LTE supplementation program, and daily food intake of mice (n = 8).
(D) Running population plotted against time to exhaustion (10 min at 10 m/min with an increase
in running speed by 2 m/min every 10 min to a maximum of 16 m/min). Total running time until
exhaustion was determined (n = 8). (E,F) Average running time and running distance until exhaustion
under a forced running exercise-to-exhaustion test using data acquired during the last two weeks
of testing (n = 8). Values are mean ± S.E.M., * p < 0.05 and ** p < 0.01. LTE-30, LTE 30 mg/kg p.o.;
LTE-100, LTE 100 mg/kg p.o.

3.2. LTE Supplementation Increases the Proportion of Oxidative Fibers

Enhanced endurance is generally associated with an increased proportion of oxidative
myofibers (type I and IIa fibers) [9]. Thus, we examined the fiber-type composition of
gastrocnemius (GAS) muscles by staining tissues with specific antibodies against MyHC
isoforms. The result revealed that LTE supplementation significantly increased the number
of type I myofibers in GAS muscles by 57 ± 2% and decreased the number of type IIb/IIx
fibers by 14 ± 6% over vehicle-treated trained mice (Figure 3A). The size of cross-sectional
gastrocnemius muscle fibers was largely reduced in the LTE-100 group compared to the
vehicle control (Figure 3B). Specifically, the average size of type I myofibers was not
affected by LTE treatment, whereas type II myofibers were reduced in size compared to
control-group muscles (Figures 3C and S4). We then compared the oxidative capacity
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of skeletal muscle by measuring SDH activity, also known as mitochondrial complex II
(CII). Compared to vehicle control mice, GAS muscle fibers in LTE-treated mice showed a
stronger staining reaction for SDH and the percentage of SDH-positive fibers was elevated
in the LTE group by 46 ± 6% (Figure 3D). Similar results were found upon examination of
the extensor digitorum longus muscles (Figure S5A). Consistent with these changes, the
GAS muscles of LTE-treated mice exhibited increased mRNA levels of type I fiber genes
such as Myh7 (496 ± 5%), Tnni1 (564 ± 7%), Tnnc1 (70 ± 5%), and Tnnt1 (93 ± 6%), and
decreased mRNA levels of type II genes such as Myh4 (30 ± 6%) and Tnni2 (25 ± 9%)
(Figure 3E).
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and IIx). The number of the different types of muscle fibers was counted manually (n = 5). Results
are graphed as a percentage of the total number of fibers per muscle. (B) The quantification of the
cross-sectional area of each type of myofibers in GAS muscles of mice is described in (A). (C) The
cross-sectional area of each type of muscle fiber was determined based on the expression of MyHC-
positive myofibers. (D) Succinate dehydrogenase (SDH) activity staining was performed on sections
of GAS muscle (n = 3). (E) mRNA levels of known markers of type I and type II fibers were analyzed
by qPCR. mRNA levels were standardized against Gapdh and plotted relative to the expression in
vehicle-treated mice (n = 7–8). Values are mean ± S.E.M., * p < 0.05 and ** p < 0.01. LTE-100, LTE
100 mg/kg p.o.

3.3. LTE Supplementation Increases Mitochondrial Content and Oxidative Capacity

It is well established that improved oxidative capacity of muscle fiber is associated
with increased mitochondrial biogenesis and function [32]. Thus, we compared mitochon-
drial content and the expression of related genes in GAS muscles after LTE supplementation.
Mitochondrial content, measured as the mitochondrial genome-to-nuclear genome ratio
(mtDNA/nDNA), indicated that LTE treatment increased mitochondrial DNA (mtDNA)
content by 132% (Figure 4A), which was confirmed by qPCR analysis of genes that are
related to mitochondrial biogenesis, including Mtco1, Mtco2, and Mcad (Figure 4B). Western
blotting analysis showed a significant increase in several key components of the mitochon-
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drial electron transport chain complex, from CI to CV (ATP synthase), in LTE-treated GAS
muscles (Figure 4C).
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Figure 4. Effects of LTE supplementation on mitochondrial biogenesis. (A) Mitochondrial DNA
(mtDNA) was quantified by qPCR using nuclear DNA (nDNA) as a standard (n = 3–5). (B) qPCR
analysis of genes related to mitochondrial biogenesis in GAS muscles (n = 6–8). The expression of
each gene was normalized with housekeeping gene Gapdh, whereas the expression of mitochondrial
genome-encoded genes Mtco1 and Mtco2 was normalized with Ppia. (C) Western blotting analysis of
the expression of OxPhos subunits and quantification of the intensity of OxPhos subunits relative to
vehicle. (D) Western blotting analysis of mitochondrial fission and fusion genes. Western blot values
are mean ± S.E.M (n = 3–6). * p < 0.05 and ** p < 0.01. LTE-100, LTE 100 mg/kg p.o.

Because mitochondria are highly dynamic organelles and constantly alter their con-
tent and function through coordinated cycles of fusion, fission, and mitophagy [33], we
measured the expression of genes associated with mitochondrial fusion–fission proteins in
the GAS muscles. In contrast to the increases in the expression of mitochondrial biogenesis-
related genes, LTE supplementation did not affect the protein levels of either mitochondrial
fusion–fission proteins (such as OPA1, Mfn2, Drp1, and Fis1) or mitophagy-related pro-
teins (LC3bII/I ratio) in the GAS muscles (Figure 4D), suggesting that LTE’s effect on
exercise endurance is related to the regulation of mitochondrial biogenesis rather than
mitochondrial dynamics.
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3.4. LTE Supplementation Activates PKA–CREB–PGC1α Pathways

To delineate the molecular mechanisms which control fast-to-slow muscle fiber-type
switching induced by LTE treatment, we analyzed the profiles of proteins involved in
fiber-type specification. We first assessed the expression of key transcription factors and
their regulators involved in mitochondrial biogenesis and maintenance of muscle integrity.
Western blotting results indicated that the phosphorylation of CREB (49 ± 4%), ATF2
(160 ± 0%), p38 MAPK (258 ± 7%), Akt (49 ± 2%), and the protein and mRNA levels of
PGC-1α (28 ± 1%), Mef2a (319 ± 9%), and Mef2c (131 ± 6%) were significantly increased
in GAS muscles of LTE-treated mice compared to vehicle-treated mice (Figure 5A). We
also found increased mRNA levels of genes downstream of CREB and of genes related
to muscle fiber specification, such as Nfatc1 (318 ± 4%), Ppargc1a (332 ± 7%), and Nr4a3
(Nor1, 201 ± 8%) in the GAS muscles of LTE-treated mice (Figure 5B). Since PKA functions
as an upstream kinase to activate CREB, we speculated that PKA may be activated by
LTE. Western blotting for p-PKA substrates indicated that LTE increased PKA activity
(Figure 5C), which was consistent with the increased level of p-CREB.
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To identify the cell-intrinsic action of LTE on the fast-to-slow myofiber-type transi-
tion, we performed in vitro experiments. LTE did not affect the differentiation of C2C12 

Figure 5. Effects of LTE supplementation on the signaling pathways leading to mitochondrial
biogenesis and function. (A) Western blotting analysis of the genes involved in mitochondrial
biogenesis in GAS muscles. Quantification results are shown (n = 4–6). (B) qPCR analysis of
genes related to mitochondrial biogenesis (n = 4–9). Expression of each gene was normalized with
housekeeping gene Gapdh. (C) Western blotting of PKA substrates. The red Ponceau S-stained gel
is shown as loading control. Values are mean ± S.E.M. * p < 0.05 and ** p < 0.01. LTE-100, LTE
100 mg/kg p.o.

To identify the cell-intrinsic action of LTE on the fast-to-slow myofiber-type transition,
we performed in vitro experiments. LTE did not affect the differentiation of C2C12 cells



Nutrients 2022, 14, 3904 10 of 16

(Figure S6). Next, differentiating C2C12 cells were incubated with either 30 µg/mL of LTE
or vehicle. Western blotting results for MyHC genes clearly indicated that LTE treatment
induced fast-to-slow fiber-type transition and increased the number of type I and IIa fibers
by 71 ± 4% and 51 ± 1%, respectively (Figure 6A). Furthermore, Ppargc1a (76 ± 8%) and
Nfatc1 (54 ± 6%) mRNA levels and OxPhos protein expression (25 ± 1% for CI, 92 ± 2% for
CII, 47± 7% for CIII, 124± 6% for CIV, and 46± 7% for CV) were significantly increased by
LTE treatment compared to vehicle (Figure 6B,C). To determine the causal link between LTE
and activation of PKA and CREB-PGC-1α, we co-treated cells with LTE with or without
PKA inhibitor H89 or Rp-cAMP and performed Western blot analysis. The previously
observed LTE-induced increase in p-CREB and PGC-1α levels was completely nullified in
the presence of H89 and partially suppressed by Rp-cAMP (Figures 6D and S7), indicating
that PKA activation led to phosphorylation and transactivation of CREB, and in turn,
induction of PGC-1α.

Nutrients 2022, 14, x FOR PEER REVIEW 10 of 16 
 

 

cells (Figure S6). Next, differentiating C2C12 cells were incubated with either 30 μg/mL of 
LTE or vehicle. Western blotting results for MyHC genes clearly indicated that LTE treat-
ment induced fast-to-slow fiber-type transition and increased the number of type I and 
IIa fibers by 71 ± 4% and 51 ± 1%, respectively (Figure 6A). Furthermore, Ppargc1a (76 ± 
8%) and Nfatc1 (54 ± 6%) mRNA levels and OxPhos protein expression (25 ± 1% for CI, 92 
± 2% for CII, 47 ± 7% for CIII, 124 ± 6% for CIV, and 46 ± 7% for CV) were significantly 
increased by LTE treatment compared to vehicle (Figure 6B,C). To determine the causal 
link between LTE and activation of PKA and CREB-PGC-1α, we co-treated cells with LTE 
with or without PKA inhibitor H89 or Rp-cAMP and performed Western blot analysis. 
The previously observed LTE-induced increase in p-CREB and PGC-1α levels was com-
pletely nullified in the presence of H89 and partially suppressed by Rp-cAMP (Figures 6D 
and S7), indicating that PKA activation led to phosphorylation and transactivation of 
CREB, and in turn, induction of PGC-1α. 

 
Figure 6. Effects of LTE treatment of C2C12 cells. C2C12 cells were incubated with LTE 30 μg/mL 
for 5 days in the differentiation medium. (A) Western blotting analysis of MyHC isoforms. Quanti-
fication results are shown (n = 4–6). (B) Western blotting for OxPhos proteins (n = 6). (C) qPCR anal-
ysis of the expression of Ppargc1a (encoding PGC-1α) and Nfatc1 (n = 4). (D) Western blotting anal-
ysis after co-treatment of H89 (10 μM) and LTE. LTE, LTE 30 μg/mL; MyHC, myosin heavy chain; 
PGC-1α, peroxisome proliferator-activated receptor γ coactivator 1α; Nfatc1, nuclear factor of acti-
vated T cell 1. Values are mean ± S.E.M. * p < 0.05 and ** p < 0.01. 

4. Discussion 
This study demonstrates that L. tetragonum increases exercise endurance by enhanc-

ing mitochondrial biogenesis in skeletal muscle. LTE supplementation was positively as-
sociated with molecular markers that indicate increased oxidative capacity of skeletal 

Figure 6. Effects of LTE treatment of C2C12 cells. C2C12 cells were incubated with LTE 30 µg/mL for
5 days in the differentiation medium. (A) Western blotting analysis of MyHC isoforms. Quantification
results are shown (n = 4–6). (B) Western blotting for OxPhos proteins (n = 6). (C) qPCR analysis of
the expression of Ppargc1a (encoding PGC-1α) and Nfatc1 (n = 4). (D) Western blotting analysis after
co-treatment of H89 (10 µM) and LTE. LTE, LTE 30 µg/mL; MyHC, myosin heavy chain; PGC-1α,
peroxisome proliferator-activated receptor γ coactivator 1α; Nfatc1, nuclear factor of activated T cell 1.
Values are mean ± S.E.M. * p < 0.05 and ** p < 0.01.

4. Discussion

This study demonstrates that L. tetragonum increases exercise endurance by enhancing
mitochondrial biogenesis in skeletal muscle. LTE supplementation was positively associ-
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ated with molecular markers that indicate increased oxidative capacity of skeletal muscle.
The observed improvements in exercise endurance were influenced by muscle remodeling,
which is a feature of an exercise-trained phenotype [34]. With regard to muscle remodeling,
LTE supplementation elevated the protein and mRNA levels of slow fiber-specific MyHC I,
whereas fast fiber-specific genes MyHC IIb/IIx were either unchanged or downregulated
in GAS muscles. Myofiber size analysis showed a significant reduction in the number of
type II myofibers, but not type I myofibers. Given that oxidative fibers are smaller than
glycolytic ones, this strengthens the argument that a shift in fiber-type occurred. SDH
immunostaining results support these observations, indicating that LTE improves exercise
endurance by increasing the proportion of slow muscle fibers relative to fast muscle fibers.
Alterations in myofiber-type proportions have been reported in exercised humans as well.
Gehlert et al., evaluated the proportions of different myofibers through muscle biopsies in
young male cyclists who underwent cycling training for 3 months [35]. The proportion of
type I myofibers tended to increase while IIa fibers decreased significantly post-training,
although total training time did not correlate to the degree of fiber-type transition. In
particular, people with a lower baseline of type I myofibers showed marked increases in
type I fibers, supporting the importance of myofiber composition in human. LTE supple-
mentation also increased mitochondrial content and function. These results jointly support
the notion that LTE improved mitochondria biosynthesis and oxidative fiber formation,
thereby increasing exercise endurance, as slow muscle fibers are rich in mitochondria and
have a high oxidative metabolism.

An important aspect of our study is that we used L. tetragonum which was produced in
a smart-farming system with LED lamps in a highly controlled environment. Cultivation of
L. tetragonum in the LED plant factory afforded several advantages, such as standardization
of the plant extract (which guarantees reproducible bioactivity) and minimization of the
risk of heavy metal contamination that is observed in L. tetragonum plants that grow along
the coast of South Korea.

We identified the bioactive substances in the L. tetragonum extract, which were:
(1) epicatechin (EC), (2) (-)-epigallocatechin-3-gallate (EGCG), and (3–6) myricetin gly-
cosides (Figure 1A,B). Recently, Lee et al., identified more than 10 bioactive compounds in
L. tetragonum ethyl acetate soluble fraction extract that produce hepatoprotective effects,
including five of the substances described above, with the exception of EC [29]. A number
of studies have analyzed the beneficial effect of EC on muscle health [36], and EC has been
shown to enhance exercise endurance and increase both fatigue resistance and oxidative
capacity in mice [37]. A recent clinical study also reported that EC may act as an exercise
mimetic. In that study, ambulatory adult patients with Becker muscular dystrophy, a neuro-
muscular genetic disorder characterized by progressive loss of contractile skeletal muscle,
were administered EC for a short period of time, which elevated mitochondrial content in
muscles, increased the expression of PGC-1α and biomarkers indicative of mitochondrial
biogenesis, and improved exercise endurance [38].

EGCG, a polyphenol compound found in green tea, has been extensively studied for its
beneficial effect on muscle performance in animals and humans [39]. In male cyclists, EGCG
consumption increased fat oxidation and exercise performance [39]. A previous study
found that mice which were administered green tea extract containing EGCG for 10 weeks
exhibited increased exercise endurance, improved energy metabolism, and enhanced
fat oxidation [40]. The anti-fatigue effect of EGCG has also been demonstrated in mice
subjected to swimming exercise [41]. In contrast, an in vitro study concluded that EGCG
reduced slow-twitch muscle fiber generation and mitochondrial biosynthesis in C2C12 cells
by inhibiting the expression of PGC-1α [42], leading to uncertainty regarding the benefits
of EGCG.

The benefit of myricetin has only recently been reported [43,44]. Myricetin was found
to improve hypoxia-impaired physical performance in rats by maintaining mitochondrial
biogenesis and increasing PGC-1α expression, but only in relatively high doses (50, 75, and
100 mg/kg per day for seven days) [44]. Myricetin has also been shown to promote fast-
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to-slow muscle fiber-type switching and improve exercise endurance capacity in rats [43],
which can be attributed to the downregulation of transcriptional repressors of slow-twitch
myofiber gene Sox6 [45]. The positive effect of LTE supplementation on exercise endurance
capacity may be due to the collective influence of all six compounds that we identified
in LTE.

Mitochondrial mass can be evaluated using mtDNA content as well as expression lev-
els of OxPhos and genes related to mitochondrial biogenesis. We found that mitochondrial
mass increased after LTE supplementation, indicating that long-term LTE supplementation
in tandem with treadmill exercise improves both mitochondrial biogenesis and oxidative ca-
pacity, leading to fast-to-slow fiber-type transition. In addition to mitochondrial biogenesis,
mitophagy and mitochondrial dynamics contribute to mitochondrial homeostasis within
muscle cells [46]. Any defect in these steps will lead to mitochondrial dysfunction and an
imbalance of the types of myofibers. In this study, we found that LTE supplementation did
not affect the expression of mitophagy and mitochondrial dynamics-related genes, which
revealed that the positive effect of LTE on mitochondrial oxidative capacity is directly
related to mitochondrial biogenesis rather than regulation of mitochondrial dynamics
and mitophagy.

We observed that LTE markedly enhanced CREB phosphorylation in vivo and in vitro,
and accordingly, increased the mRNA and protein levels of PGC-1α, a target of CREB.
Signaling molecules that govern muscle plasticity, in particular, mitochondrial biogenesis,
have been extensively studied over the past two decades, and the CREB/PGC-1α axis has
been identified as a prominent pathway. PGC-1α is a master transcriptional regulator in
mitochondrial biogenesis, as confirmed by the finding that PGC-1α expression is higher
in slow muscle fibers than in fast muscle fibers [47]. Furthermore, PGC-1α transgenic
mice exhibit increased mitochondrial content and oxidative capacity in skeletal muscle [48]
compared to mice lacking PGC-1α, which demonstrate a less efficient oxidative muscle
metabolism and reduced exercise endurance [49]. CREB is also a key factor in the metabolic
function of skeletal muscle [50] and is reliant on transcriptional activation of PGC-1α. We
found that slow-fiber activating molecules downstream of CREB, including PGC-1α and
Nr4a3 (encoding Nor1), were markedly upregulated by LTE, evidencing the critical role of
CREB in LTE’s beneficial effects. In addition, the fact that PKA inhibitor H89 completely
prevented LTE-induced increases in CREB phosphorylation and PGC-1α expression in
C2C12 cells, indicates that LTE activates PKA and intensifies CREB/PGC-1α axis activity.
It remains unclear precisely how LTE activates PKA signaling. Intracellular cAMP levels
are fine-tuned by the balance between cAMP producing adenylate cyclase and cAMP
hydrolyzing phosphodiesterase. While the dependence of cAMP in PKA signaling is
well established, the impact of LTE on cAMP homeostasis, and by extension, PKA–CREB
signaling, warrants further investigation.

PGC-1α is regulated by transcriptional factors, and at a posttranslational level, by
phosphorylation, acetylation, ubiquitination, and methylation [51]. Several signaling
pathways have been identified in PGC-1α regulation, and we examined upstream signals
that may be responsible for the activation of PGC-1α. Phosphorylation of PGC-1α can
either activate or suppress its coactivator function. For example, p38 MAPK phosphorylates
PGC-1α on Thr262, Ser265 and Thr298, which results in increased protein stability [52].
In contrast, Akt-mediated phosphorylation of PGC-1α inhibits its activity [53]. In this
study, using phospho-specific antibodies, we observed that LTE supplementation increased
the phosphorylation of both p38 MAPK and Akt in GAS muscles, suggesting that LTE
supplementation may promote mitochondrial biogenesis partly via activation of the p38
MAPK/PGC-1α pathway.

Glucose and lipid are primary energy sources for skeletal muscles. After being sub-
jected to daily moderate intensity exercise, our body energy shifts from preferring glucose
to fatty acid as a primary energy source. This event ensures a constant supply of glucose
to glucose-requiring organs and induces the body to burn off fat. Theoretically, if fatty
acids were the only energy substrate being used, the RER would be equal to 0.7. Notably,
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however, we observed that RER values were not changed by moderate intensity exercise
in conjunction with LTE supplementation. Environmental stimuli around the mice might
explain these mismatched results.

5. Conclusions

Our results indicate that LTE supplementation improves exercise endurance of mice via
increasing mitochondrial biogenesis and fast-to-slow myofiber-type switching in skeletal
muscle. We observed that activation of PGC-1α downstream of PKA–CREB signaling
increases mitochondria biosynthesis and promotes slow-twitch myofiber formation. In
addition, we did not observe any adverse effects of LTE during the experimental period.
However, we did not include a group of sedentary mice in this study and can offer only a
limited interpretation of LTE’s effects on endurance exercise. In terms of human application,
due to the presence of many environmental factors such as diet, alcohol, or drug use, it is
generally difficult to expect the isolating effect of any dietary supplement on the exercise
performance in humans. Future studies are warranted to validate the exercise-enhancing
effect of LTE in humans.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14193904/s1, Figure S1: No effects of four-week LTE supple-
mentation on liver enzymes and muscle weight. (A) Liver enzymes (n = 4–6), (B–E) The weight
of liver, epididymal white adipose tissue (eWAT) and specific muscles were compared between
control and LTE-supplemented mice. Values are mean ± S.E.M. ALT, alanine aminotransferase;
AST, aspartate aminotransferase; GAS, gastrocnemius (GAS); TA, tibialis anterior; QF, quadriceps
femoris; EDL, extensor digitorum longus; SOL, soleus; LTE-30, LTE 30 mg/kg p.o.; LTE-100, LTE
100 mg/kg p.o.; Figure S2: Effects of LTE supplementation on treadmill running endurance. All
experimental procedures were identical to those described in Figure 2 legend. Weekly average
running time was measured (n = 8). Values are mean ± S.E.M., * p < 0.05 and ** p < 0.01. LTE-30,
LTE 30 mg/kg p.o.; LTE-100, LTE 100 mg/kg p.o.; Figure S3: Indirect calorimetry analysis. Indirect
calorimetry was performed using an 8-chamber Oxymax system. Mice were acclimatized to cages
for 24 h and data was collected for an additional 24 h. Twenty-four hour oxygen consumption rates
(VO2, A), carbon dioxide production rates (VCO2, B), respiratory exchange ratio (RER, C), average
energy expenditure (EE, D) and heat production (E) in mice (n = 4–6). Values are mean± S.E.M;
Figure S4: Myofiber size distribution histograms in GAS muscles of control and LTE-supplemented
mice. The cross-sectional area of each type of muscle fiber was determined based on the expression
of MyHC-positive myofibers in Figure 3A.; Figure S5: Increase in oxidative fiber density in the
extensor digitorum longus (EDL) muscle of LTE-supplemented mice. All experimental procedures
were identical to those described in Figure 2 legend. Succinate dehydrogenase (SDH) staining and
quantification of SDH-positive fibers (n = 3). Values are mean ± SEM. **, p < 0.01.; Figure S6: No
effects of LTE on myogenic differentiation. C2C12 myoblasts were incubated with LTE 30 µg/mL
for 5 days in the differentiation medium. Protein levels of myogenic markers were determined
by Western blotting.; Figure S7: Effects of PKA inhibitor Rp-cAMP on CREB-PGC-1α axis. C2C12
myoblasts were incubated with LTE 30 µg/mL with or without Rp-cAMP (300 µM) for 5 days in the
differentiation medium. Protein levels of CREB and PGC-1α were determined by Western blotting.;
Table S1: Sequences of primers for qPCR; Table S2: Antibody information.
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