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SUMMARY
Severe disease of SARS-CoV-2 is characterized by vigorous inflammatory responses in the lung, often with a
sudden onset after 5–7 days of stable disease. Efforts tomodulate this hyperinflammation and the associated
acute respiratory distress syndrome rely on the unraveling of the immune cell interactions and cytokines that
drive such responses. Given that every patient is captured at different stages of infection, longitudinal
monitoring of the immune response is critical and systems-level analyses are required to capture cellular in-
teractions. Here, we report on a systems-level blood immunomonitoring study of 37 adult patients diagnosed
with COVID-19 and followed with up to 14 blood samples from acute to recovery phases of the disease. We
describe an IFNg-eosinophil axis activated before lung hyperinflammation and changes in cell-cell co-regu-
lation during different stages of the disease.We alsomap an immune trajectory during recovery that is shared
among patients with severe COVID-19.
INTRODUCTION

Since its emergence in December 2019, the severe acute respi-

ratory syndrome-coronavirus 2 (SARS-CoV-2) causing coronavi-

rus disease 2019 (COVID-19) has infected millions of individuals

and caused hundreds of thousands of deaths worldwide. The

betacoronavirus has a high degree of sequence homology with

previous SARS-CoV and Middle East respiratory syndrome

(MERS) coronaviruses and binds to the angiotensin-converting

enzyme 2 (ACE2) receptor to enter cells in the respiratory and in-

testinal epithelium.1

Cells recognize the presence of the virus through pathogen-

recognition receptors (PRRs) and elicit antiviral response pro-

grams.2 The two main components of such antiviral programs

involve the production of type I and III interferons (IFNs) that

induce downstream transcription of hundreds of IFN-stimulated

genes (ISGs) that interfere with viral replication in the cell.3 The

second element of the antiviral response program is the secre-

tion of chemokines that recruit specialized cells of the immune

system to clear the virus. SARS-CoV-2, like other viruses, has

evolved countermeasures to these defenses, and, in particular,
Cell Rep
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the virus efficiently interferes with IFN signaling and the induction

of ISGs in SARS-CoV-2-infected cells.4,5 In contrast, pro-inflam-

matory cytokine and chemokine responses are induced

normally, and this imbalance between antiviral and pro-inflam-

matory responses is a key feature of COVID-19.6

Another observation during the COVID-19 pandemic is the

different disease courses among different individuals infected

by the SARS-CoV-2 virus. Most individuals present with very

mild disease, often asymptomatic, and a few develop a life-

threatening disease requiring intensive care. The strongest

determinant of disease severity is age, with children presenting

almost exclusively with mild disease,7 while the elderly, those

older than 70 years of age, are much more likely to develop se-

vere COVID-19. Males and females are infected at similar rates,

but males are much more likely to develop severe disease

requiring intensive care.8 Obesity, smoking, and hypertension

are other risk factors for severe COVID-19.9 However, COVID-

19 contrasts with other respiratory viral infections in that

pregnant women do not seem to be more likely to develop se-

vere disease, and this is also true for patients with various forms

of immunodeficiency. One likely reason for these observations is
orts Medicine 1, 100078, August 25, 2020 ª 2020 The Author(s). 1
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that severe disease is associated with exuberant immune re-

sponses and a skewed immune regulation against pro-

inflammatory responses in pregnancy and T cell deficiencies in

transplant patients make such hyperinflammatory responses

less likely. To treat hyperinflammation in severe COVID-19, we

need to better understand what cells are involved, their interac-

tions, and proteinmediators used to orchestrate their responses.

To this end, we performed systems-level analyses of the immune

system in blood from 37 patients, from acute to recovery phases

of COVID-19, with up to 14 blood samples collected from a given

patient. These analyses reveal a sequence of responses

involving many immune cell populations at different stages of

the disease. A transient response involving IFN-g upregulating

CD62L on eosinophils before lung hyperinflammation are exem-

plified when you look at coregulated cell populations, and

immune correlates of productive antibody responses to SARS-

CoV-2, as well as an integrated immune trajectory shared across

patients recovering from severe COVID-19.

RESULTS

Longitudinal Profiling of Patients with COVID-19
Given the enormous diversity among immune systems in hu-

mans, longitudinal monitoring of patients is required to appre-

ciate the immunological changes occurring during the disease

process. Also, systems-level analyses methods such as mass

cytometry10 enable all immune cell populations to be distin-

guished and analyzed in a given blood sample, allowing for coor-

dinated changes across cell populations to be revealed. We

have combined these cellular measurements with analyses of

180 unique plasma proteins using Olink analyses11 (Figure 1A).

To understand systems-level immune responses during moder-

ate to severe COVID-19, we monitored longitudinal samples

from 17 patients, some treated in the intensive care unit (ICU)

and some treated in regular hospital wards with oxygen support

but no mechanical ventilation, in addition to 20 recovered pa-

tients comprised of 18 mild COVID-19 recovered patients and

2 hospitalized COVID-19 recovered patients (Figure 1B). Pa-

tients did not receive immunomodulatory therapies in this cohort

apart from one before ICU admission, and the immunological

changes thus reflect the natural course of severe COVID-19

infection. All of the patients in this cohort survived their infection.

The Characteristics of Acute and Recovery Phases of
COVID-19
Clinical measurementswere taken from acute and recovered pa-

tients, including body temperature, white blood cell (WBC)

counts, and lymphocyte counts. Milder cases of COVID-19

showed lower body temperatures as well as faster normalization

of body temperatures compared to severe cases, which fluctu-

ated more over time (Figure 2A). The WBC counts changed dur-

ing the stages of infection. High WBC counts prototypically

occur during acute inflammation and immune responses. In se-

vere patients we observed fluctuating levels of WBC over time

(Figure 2B). More important, there were no signs of secondary

bacterial infection in the patients in this cohort. Lymphopenia is

one of the common features of COVID-19 and the degree of lym-

phopenia predicts disease severity.9 Lymphocyte counts were
2 Cell Reports Medicine 1, 100078, August 25, 2020
measured and seemed to recover faster in milder as compared

to severe cases, although this trend was not seen uniformly (Fig-

ure 2C). This is in line with other previous reports.12 Plasma pro-

tein levels were measured and compared among acute and

recovered phases and reflect the immune dynamics of severe

COVID-19 (Figures 2D–2G). Pro-inflammatory cytokines such

as interleukin-6 (IL-6) and IFN-g predict disease severity. A

decreasing trend was observed in IFN-g and IL-6 from early

admission to the hospital through recovery during the weeks of

the study (Figures 2D and 2F, respectively). Similarly, DDX58,

the innate immune response receptor, also called RIG-I, and

the monocyte chemoattractant protein MCP-3, were elevated

during acute disease and decrease during recovery (Figures 2E

and 2G, respectively).

The Immune Cell Changes from Acute to Recovery
Phases of COVID-19
A defining feature of the acute immune response during COVID-

19 is dramatic changes in immune cell composition. These

changes can be informative about likely driving factors and trig-

gers and can help us understand the disease process better. To

understand severe COVID-19 better, we plotted relative propor-

tions of 57 immune cell populations over time in the 37 patients

(Figures 3, S1, and S2). These cell populations were defined us-

ing a recently developed tool for automated cell classification

based on known immune cell phenotypes.13 We confirmed the

overrepresentation of neutrophils over lymphocytes during

acute infection that is slowly reversed during the recovery phase

(Figure 3). This is in line with reports suggesting that the neutro-

phil:lymphocyte ratio (NLR) and degree of lymphopenia are pre-

dictive of disease severity in COVID-19.12 The plasmablast

response is clear and occurs during the first week after hospital

admission in these patients (Figure 3). The recovery of T cells af-

ter the initial lymphopenia occurs over the following 2–3 weeks

and is dominated by CD127-expressing effector and central

memory CD4+ T cells, as well as CD57-expressing and differen-

tiated memory CD8+ T cells (Figure 3). Also, all dendritic cell (DC)

subsets increased from acute to recovery phases—CD1c+ DCs,

CD11c+ DCs, and plasmacytoid DCs (pDC) (Figure 3). Despite a

clear reduction in the relative abundance of neutrophils over

time, the other granulocyte subsets, basophils and eosinophils,

increased clearly from acute to recovery phases (Figure 3), and

both of these were among the most dynamic cell populations

during severe disease, which is suggestive of important contri-

butions to antiviral defense and immunopathology.

Eosinophil Activation and Homing during Acute COVID-
19
Given the changes in eosinophil abundance described above,

we decided to study eosinophils more carefully. There are re-

ports of strong granulocyte-macrophage colony-stimulating

factor (GM-CSF) responses in the lungs of COVID-19 pa-

tients,14 and GM-CSF is known to stimulate eosinophils, partic-

ularly in interstitial pneumonia and allergic inflammation.15 Tak-

ing advantage of the detailed longitudinal sample series, we

used partition-based graph abstraction (PAGA),16 to recon-

struct single-cell phenotypic changes in blood eosinophils dur-

ing acute COVID-19 (Figure 4). Leiden clustering found 12
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Figure 1. Longitudinal Profiling of the Immune System in Moderate and Severe COVID-19

(A) A total of 180 unique plasma proteins were quantified using Olink assays (n = 76 plasma samples) and whole-blood immune cells analyzed bymass cytometry

(n = 78 whole-blood samples).

(B) Monitoring and longitudinal sampling of blood cells (x) and plasma (o) from 37 patients at the Helsinki University Hospital, with patient groups demarcated by

colored sample IDs.

Cell Reports Medicine 1, 100078, August 25, 2020 3

Article
ll

OPEN ACCESS



ICU
Non−ICU

ICU
Non−ICU

A D

E

F

G

B

C

Figure 2. The Natural Course of Severe COVID-19 from Admission to Clinical Recovery

(A) Body temperature measurements from representative patients over the course of 30 days, from admission to the hospital in ICU and non-ICU patients.

(B and C) White blood cell counts (B) and lymphocyte counts (C) during acute and recovery phase in COVID-19 patients.

(D–G) Plasma levels of the indicated proteins using Olink assays in longitudinal samples from 16 acute patients (left) and single measurements from 20 recovered

patients (right). NPX, normalized protein expression.
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Figure 3. Immune Cell Proportions in COVID-19

Proportion of 57 white blood cell populations determined by mass cytometry from acute to recovery phase of COVID-19 patients (n = 35 individuals). Loess

smoothing in orange.

See also Figures S1 and S2.
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eosinophil subsets, and the main groups are annotated by

defining features (Figure 4A). By splitting cells obtained from

the different longitudinal samples, time-associated changes in

eosinophil phenotypes were revealed, with a transient expan-

sion of CD62L+ eosinophils from days 2–6 after admission (Fig-

ure 4B). CD62L upregulation on eosinophils has been reported

to be induced by IFN-g,17 one of the most elevated cytokines

in severe COVID-19, and the IFN-g levels show a slight in-

crease right around the same time as the expansion of

CD62L+ eosinophils (Figure 4C). This phenotype of eosinophils

is reminiscent of lung-resident eosinophils, rather than induced

inflammatory eosinophils in circulation, and such lung-homing

cells have previously been reported to be important homeostat-

ic regulators of inflammatory responses in the lung18 (Fig-

ure 4D). It is tempting to think that this transient expansion of

CD62L+ eosinophils just before the development of severe

lung hyperinflammation at �1 week after admission is related

to this immunopathology of the lungs in COVID-19 patients.

To this end, further investigation into this eosinophil-IFN-g

axis is required and may suggest novel therapies targeting

this response to mitigate acute respiratory distress syndrome

(ARDS) and lung inflammation.
Adaptive Immune Cell Dynamics during Severe COVID-
19
Adaptive responses to SARS-CoV-2 are seen in most individ-

uals, with one study reporting CD4+ T cell responses and CD8+

T cell responses in nearly all patients.19 Similarly, the majority

of symptomatic patients seroconvert within a few days and

most developed high-titer antibody responses20; however, one

study has reported that a significant proportion of patients with

COVID-19 do not develop neutralizing antibody responses.21

To investigate the dynamics of adaptive immune cell responses

in our cohort, we used the same PAGA approach as described

above. We find a clear plasmablast response early after admis-

sion (Figure 5A). The CD4+ T cell response was initially domi-

nated by effector and central memory responses, followed by

an increase in regulatory T cells (Tregs) �4 days after admission

(Figure 5B). The CD4+ T cells were split into two effector cell pop-

ulations based on CD4 expression level, possibly reflecting an

activation-induced downregulation in a subset of CD4+ T cells

(Figure 5B).22 The CD8+ T cell responses are dominated by acti-

vated cells expressing high CD38 and also a subset of effector

cells upregulating the CD147 receptor from �1week onward

(Figure 5C). Gamma-delta T cell receptor (TCR) T cells (gdT cells)
Cell Reports Medicine 1, 100078, August 25, 2020 5



A B C

D

Figure 4. Eosinophil Changes from Admission to Recovery

2D representation generated by partition-based graph abstraction (PAGA) of eosinophils from patient COV-40 at 7 different time points from admission to re-

covery.

(A and B) Louvain clusters are colored and annotated by key protein characteristics (A), and cell distributions at each individual time point indicate changes in

immune cell states and composition over time (B).

(C) Plasma IFN-g levels as measured by Olink assay in plasma samples from patient COV-40.

(D) IFN-g-mediated upregulation of CD62L contributes to lung inflammation hyperinflammation.
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and CD8+ T cells progressively upregulated the marker of termi-

nal maturation CD57 from�1 week onward (Figures 5C and 5D).

These results are largely in agreement with other recent reports23

and highlight the strong innate and adaptive immune activation

during acute COVID-19.

Cell-Cell Regulation Varies over Time during Severe
COVID-19
Immune responses are always concerted efforts made by

multiple, specialized cell populations communicating via direct

interactions and secreted cytokines and other mediators. By

studying such cell-cell relationships, a better understanding of

the systems-level response can be obtained. We generated

cell-cell correlation matrices using longitudinal cell population

frequencies and binned the samples into four phases, from acute

disease to recovery phase (Figure 6A). We find that the first

phase (days 0–4) is dominated by an inverse correlation between

neutrophils and a number of myeloid and lymphoid cell types, as

reflected in the elevated NLR, associated with severe disease12

(Figure 6A). The following phase (days 6–8) is characterized by a

strong coordinated plasmablast, B cell, and abT cell module,

and this is inversely correlated with a strong Treg and CD11c+

DC module (Figure 6A). From day 9 onward, a change is

apparent, with a shift toward a co-regulated module involving

eosinophils, pDCs, CD11c+ DCs, and CD8+ T cells. This module

is largely maintained in recovered patients, possibly reflecting a

more normal cell-cell relationship (Figure 6A).

A prototype of a coordinated immune response to viruses is

the appearance of virus-specific immunoglobulin G (IgG) anti-

bodies, because such responses elicited by B cells require
6 Cell Reports Medicine 1, 100078, August 25, 2020
help from CD4+ T cells. Here, we investigated the seroconver-

sion in this cohort and found a strong induction of IgG antibodies

to the SARS-CoV-2 Spike protein (receptor-binding domain

[RBD]) in the majority of patients (Figure 6B). This is in line with

similar analyses in other COVID-19 patients.20,24Wewere unable

to test the neutralizing capacity of these antibodies at the time of

the study, but another recent report has shown that a significant

proportion of patients mount antibodies that lack such neutral-

izing capacity.21 To understand the immunological correlates

of IgG responses to SARS-CoV-2, we devised a mixed-effects

model, using both plasma protein levels and cell frequencies

as predictors, taking days after admission into account as a fixed

effect.25 It is important to note that this is not a simple correlation

analysis since days from admission is taken into account as a

fixed effect in the analysis. We found several features signifi-

cantly associated with IgG responses, and in particular, strong

proinflammatory cytokines IFN-g and IL-6 and chemokines

CXCL10 and MCP-2 (CCL8) are negatively associated with

anti-CoV-2 IgG responses (Figure 6C). In contrast, the neutro-

phil-recruiting chemokine CXCL6 is positively associated with

anti-CoV-2 IgG responses as was the fraction of circulating ba-

sophils (Figure 6C). It is known that basophils are able to bind an-

tigens on their surface and potentiate humoral immune re-

sponses26; since basophils are depleted during acute and

severe COVID-19 (Figure 3), our data collectively suggest that

the degree of basophil depletion may influence the efficacy of

IgG responses to SARS-CoV-2. It is believed that basophil-medi-

ated enhancement of B cell responses occurs through the pro-

duction of either IL-4 or IL-6, but levels of the latter were found

to be inversely associated with antibody responses (Figure 6C),
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so it is more likely that another mechanism is responsible for the

basophil enhancement of IgG responses in COVID-19. Collec-

tively, these results indicate a coordinate adaptive immune

response to SARS-CoV-2, enhanced by basophils and possibly

suppressed by hyperinflammatory cytokine responses with high

IL-6 levels during acute COVID-19.

A Shared, Integrated Trajectory of Recovery across
Patients
Since none of the patients in this cohort were treated with immu-

nomodulatory agents, apart from one patient who received Ox-

iklorin treatment before ICU admission, and have recovered

with supportive care alone, we reasoned that a deeper investiga-

tion into the immunological changes during recovery from severe

COVID-19 would be informative about the underlying immune

processes involved. Given the strong interactions among im-

mune cells and proteins in the immune system, we applied an

integrative analysis method to search for a multiomic trajectory

of immune recovery. We used multiomics factor analysis

(MOFA).27 Thismethod allowed us to search for the latent factors

(LFs) that best explain the variance across data types and use

these to discern any possible relationship with the process of re-

covery from the disease.

We found 10 LFs that explained the variance in the combined

dataset (Figure 7A), and of those, LF2 was associated with the

transition from acute to recovery phases of the disease

(Figure 7B). There were no clear differences among ICU or

non-ICU ward patients, and the levels of LF2 were highest in

the samples taken from recovered patients (Figure 7B). To

understand the biology of immune recovery, we assessed the

underlying features contributing to LF2. The plasma proteins

changing the most decreased during recovery. The most

prominent were IL-6, monocyte-chemotactic protein 3 MCP3,

Keratin19 (KRT19), CXC chemokine ligand 10 (CXCL10), amphir-

egulin (AREG), and IFN-g (Figure 7C). Conversely, the cells that

changed the most during recovery were classical and non-clas-

sical monocytes, CD56dim natural killer (NK) cells, eosinophils,

and gdT cells, all increasing in relative proportions during recov-

ery (Figure 7D). This shared, integrated trajectory reveals the

markers most indicative of recovery in patients with severe

COVID-19, and if verified in independent sets of patients, these

features could be valuable biomarkers to monitor during disease

progression to detect a switch from acute to recovery phases in

severe COVID-19.

In this article, we have performed an in-depth, longitudinal

analysis of the immune system in patients with severe COVID-

19 during acute disease and up until spontaneous recovery.

The natural course of this process is mapped and found to be

similar among patients. We find changes in cell populations,

such as CD62L-expressing eosinophils, triggered by IFN-g and

likely contributing to hyperinflammation and ARDS during acute

disease. We show that basophils are depleted during acute dis-
Figure 5. Adaptive Immune Cell Changes from Admission to Recovery

2D representation generated by PAGA B cells (A), CD4 T cells (B), CD8 T cells (C),

recovery. The Louvain clusters are colored (top) and annotated by key protein cha

in immune cell states and composition over time.

8 Cell Reports Medicine 1, 100078, August 25, 2020
ease but recuperate during recovery, and the levels of basophils

are significantly correlated with the titers of IgG antibodies to

SARS-CoV-2 produced by B cells. In contrast, high levels of

IL-6 and IFN-g are negatively associated with humoral

responses. Finally, we uncover an immunological trajectory of

disease recovery shared among patients. These results can be

useful for the development of better immunomodulatory strate-

gies to mitigate hyperinflammatory responses, optimize antiviral

IgG responses, andmonitor disease progression and recovery in

patients with severe COVID-19.

DISCUSSION

A number of researchers are studying the immune response to

SARS-CoV-2, and we are learning about viral evasion of IFN-I/

III signals and prevention of the normal induction ISGs and the

antiviral state.4,5 At the same time, the proinflammatory

response is strong. The secretion of chemokines and proinflam-

matory cytokines leads to the influx of neutrophils and myeloid

cells into the lung, with strong local inflammatory responses

and immunopathology.6 Autopsy findings in patients who have

succumbed to COVID-19 are characterized by perivascular

T cell infiltration, microangiopathy, and widespread thrombosis

in lung tissue.28 The induction of IL-6 during severe COVID-19

has led to trials of blocking antibodies to the IL-6 receptor with

mixed results. This is inspired by cytokine release syndrome

(CRS), seen in cancer immunotherapy, which is also often

treated with IL-6-blocking agents. However, there are a number

of differences between severe COVID-19 and CRS, such as

lower IL-6 levels and death caused by respiratory failure and

thrombosis, rather than fromcirculatory failure and status epilep-

ticus, as seen in CRS.29 In this respect, the mechanisms of

severe COVID-19 are incompletely understood, and better un-

derstanding is required for improved immunomodulatory thera-

pies to be devised and immunopathology and mortality limited.

Human immune systems are highly variable,30 andmost of this

variation is explained by environmental exposures,31 particularly

early in life.32 The role of genetic variation in immune variation in

general and in COVID-19 in particular is under investigation.33

Systems-level analysis methods are useful in human immu-

nology because they capture the many variable cell populations,

proteins, and transcriptional programs involved in a complex

immune response. Systems-level analyses also allow for the

inference of relationships among such immune system compo-

nents.34 With this study, we add to the rapidly growing literature

by providing a longitudinal, systems-level perspective on the im-

mune system changes from acute to recovery phases of severe

COVID-19 disease. Longitudinal analyses are important because

cross-sectional analyses carry the risk of capturing snapshots of

patients at different stages of the immune response and thereby

misinterpret differences as qualitatively different. The longitudi-

nal sampling presented herein is a strength of this study. Another
and gdT cells from patient COV-40 at 7 different time points from admission to

racteristics, and cell distributions at each individual time point indicate changes
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Figure 6. Cell-Cell Communications Network during Different Phases from Acute to Recovery of COVID-19

(A) Spearman correlation matrices from 35 patients, with samples collected at the indicated time intervals and ordered by top correlations. Co-regulated cell

populations are highlighted by boxes.

(B) Serum IgG antibodies against SARS-CoV-2 Spike protein receptor-binding domain (RBD) from 17 acute patients. RBD showed against days after admission.

(C) Mixed-effects modeling (MEM) of plasma protein levels and immune cell population frequencies against anti-RBD IgG titers. The 5 most positively and

negatively associated features in MEM are correlated with antibody responses when days from admission is taken into account as a fixed effect.
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important aspect of this work is its use of whole blood, rather

than peripheral blood mononuclear cells, allowing neutrophils

and other granulocyte populations to be included in the analysis

and also reduce the technical sources of variation caused by cell

preparation and freezing.35 By using this more holistic and longi-

tudinal approach to analyze the immune response during severe

COVID-19, we find previously unappreciated roles of eosinophils

in the acute response. These cells play important roles in other

respiratory infections,36 but they have not been implicated

much in COVID-19. The population of eosinophils that expand

a few days after admission to the hospital were characterized

by high CD62L expression, a previously reported marker of

lung eosinophils,18 and it is possible that such IFN-g-mediated

upregulation of CD62L on eosinophils leads to the influx of these

cells into the lung tissue. The development of ARDS and clinical

deterioration is typically seen after �1 week in severe patients,

and it is possible that this IFN-g-eosinophil axis contributes to

this, but a causal role is beyond the scope of our study. The

finding that basophil levels are positively associated with humor-

al responses to SARS-CoV-2 is intriguing and in line with previ-

ous studies in other viral infections.26 Further investigation will

be required to understand the mechanisms involved, but it likely

would not involve the production of IL-6 by basophils, given that
plasma levels of this cytokine were inversely associated with

anti-RBD IgG titers. Another possible mechanism involves IL-4

production by basophils, known to potentiate B cell responses

to infection in other settings.37 It is worth noting that time after

admission is taken into account in the mixed-effects model,

and the reported associations are the significant ones after

time from admission is taken into account.

There has been a lot of concern around antibody responses to

SARS-CoV-2, and although nearly all of the patients with severe

disease do produce antibodies in rather high titers,19,24 the

neutralizing capability of such antibodies are variable.21 One hy-

pothesis brought forward as a possible explanation of the severe

disease occurring often after 1 week or so of stable disease is

antibody-dependent enhancement (ADE).38,39 This occurs

when non-neutralizing antibodies bind a virus and via Fc recep-

tors bring viruses into new cell types, not expressing the receptor

required for viral entry—in this case, ACE2. Such responses are

well known for dengue virus infection and could induce hyperin-

flammatory responses also in COVID-19. We have found that a

significant proportion of CD4+ T cells in some patients showed

CD4 downregulation as a sign of possible cell activation, but

such downregulation can also occur if T cells are directly in-

fected.40 CD4+ T cells do not express ACE2,41 but they could
Cell Reports Medicine 1, 100078, August 25, 2020 9
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Figure 7. A Multiomics Immune Signature from Acute COVID-19 to Recovery

Multiomics factor analysis (MOFA) is used to integrate 148 plasma protein levels and 63 immune cell frequencies across all 96 blood samples collected from 37

patients.

(A) Fraction of total variance explained by type of measurement (view) and by latent factors (LFs) 1–10.

(B) LF2 best represents the changes from acute to recovery over time and reveals a shared trajectory formost patients (non-ICU shown in purple and ICU shown in

orange).

(C) Lollipop plot shows plasma proteins explaining LF2.

(D) Lollipop plot shows cell population frequencies explaining LF2.
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express Fc receptors and thus be subject to viral infection and

replication via ADE. This is speculative at this time, but as

more data surface on determinants of neutralizing antibody re-

sponses, the theory of ADE as a cause of severe COVID-19 will

be testable and have important implications for vaccine develop-

ment.38 The influence of basophils in modulating humoral re-

sponses to SARS-CoV-2 uncovered herein should also be taken

into account, as basophils are depleted during acute disease
10 Cell Reports Medicine 1, 100078, August 25, 2020
and the severity of such depletion may be an important determi-

nant of the antibody response to the virus.

Limitations of Study
This study has several limitations. We performed longitudinal

systems-level immunomonitoring of acute and recovered

COVID-19 patients, but due to logistical limitations in the over-

whelmed hospital wards, we were unable to collect longitudinal
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samples for recovered patients and were also limited in the num-

ber of acute COVID-19 disease patients we could enroll. We

were unable to include a healthy cohort, and we were not pow-

ered to robustly compare patients in ICU versus non-ICU with

respect to their immunological trajectories.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Mass cytometry – Broad extended panel

Anti-human CD1c (L161), Purified Biolegend Cat# 331502; RRID: AB_1088995

Anti-human CD3e (UCHT1), Purified Biolegend Cat# 317302; RRID: AB_571927

Anti-human CD4 (RPA-T4), Purified Biolegend Cat# 300502; RRID: AB_314070

Anti-human CD5 (UCHT2), Purified Biolegend Cat# 300602; RRID: AB_314088

Anti-human CD7 (CD7-6B7), Purified Biolegend Cat# 343102; RRID: AB_1659214

Anti-human CD8 (SK1), Purified Biolegend Cat# 344702; RRID: AB_1877104

Anti-human CD9 (SN4 C3-3A2), Purified eBiosciences Cat# 14-0098-82; RRID: AB_657777

Anti-human CD11c (Bu15), Purified Biolegend Cat# 337202; RRID: AB_1236381

Anti-human CD14 (M5E2), Purified Biolegend Cat# 301802; RRID: AB_314184

Anti-human CD16 (3G8), Bi-209 Fluidigm Cat# 3209002B, RRID: AB_2756431

Anti-human CD20 (2H7), Purified Biolegend Cat# 302302; RRID: AB_314250

Anti-human CD22 (HIB22), Purified Biolegend Cat# 302502; RRID: AB_314264

Anti-human CD24 (ML5), Purified Biolegend Cat# 311102; RRID: AB_314851

Anti-human CD25 (2A3), Sm-149 Fluidigm Cat# 3149010B, RRID: AB_2756416

Anti-human CD26 (BA5b), Purified Biolegend Cat# 302702; RRID: AB_314286

Anti-human CD27 (L128), Er-167 Fluidigm Cat# 3167006B; RRID: N/A

Anti-human CD28 (CD28.2), Purified Biolegend Cat# 302902; RRID: AB_314304

Anti-human CD29 (TS2/16), Purified Biolegend Cat# 303002; RRID: AB_314318

Anti-human CD33 (WM53), Purified Biolegend Cat# 303402; RRID: AB_314346

Anti-human CD34 (581), Purified Biolegend Cat# 343502; RRID: AB_1731898

Anti-human CD38 (HIT2), Purified Biolegend Cat# 303502; RRID: AB_314354

Anti-human CD39 (A1), Purified Biolegend Cat# 328202; RRID: AB_940438

Anti-human CD43 (84-3C1), Purified eBiosciences Cat# 14-0439-82; RRID: AB_763493

Anti-human CD45 (HI30), Y-89 Fluidigm Cat# 3089003B; RRID: AB_2661851

Anti-human CD45RA (HI100), Tm-169 Fluidigm Cat# 3169008B; RRID: N/A

Anti-human CD45RB (MEM-55), Purified Biolegend Cat# 310202; RRID: AB_314805

Anti-human CD49d (9F10), Pr-141 Fluidigm Cat# 3141004B; RRID: N/A

Anti-human CD52 (HI186), Purified Biolegend Cat# 316002; RRID: AB_389275

Anti-human CD55 (JS11), Purified Biolegend Cat# 311302; RRID: AB_314859

Anti-human CD56 (NCAM16.2), Purified BD Cat# 559043; RRID: AB_397180

Anti-human CD57 (HCD57), Purified Biolegend Cat# 322302; RRID: AB_535988

Anti-human CD62L (DREG-56), Purified Biolegend Cat# 304802; RRID: AB_314462

Anti-human CD64 (10.1), Purified Biolegend Cat# 305002, RRID: AB_314486

Anti-human CD81 (5A6), Purified Biolegend Cat# 349502; RRID: AB_10643417

Anti-human CD85j (GHI/75), Purified Biolegend Cat# 333702; RRID: AB_1089089

Anti-human CD95 (DX2), Purified Biolegend Cat# 305602; RRID: AB_314576

Anti-human CD99 (HCD99), Purified Biolegend Cat# 318002; RRID: AB_604112

Anti-human CD123 (6H6), Purified Biolegend Cat# 306002; RRID: AB_314576

Anti-human CD127 (A019D5), Ho-165 Fluidigm Cat# 3165008B; RRID: N/A

Anti-human CD137 (4B4-1), Purified Biolegend Cat# 309802; RRID: AB_314781

Anti-human CD141 (M80), Purified Biolegend Cat# 344102; RRID: AB_2201808

Anti-human CD147 (HIM6), Purified Biolegend Cat# 306202; RRID: AB_314586

Anti-human CD161 (HP-3G10), Purified Biolegend Cat# 339902; RRID: AB_2661837

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-human CX3CR1 (8E10.D9), Purified Biolegend Cat# 824001; RRID: AB_2564876

Anti-human HLA-DR (L243), Purified Biolegend Cat# 307602; RRID: AB_314680

Anti-human IgD (IA6-2), Purified Biolegend Cat# 348202; RRID: AB_10550095

Anti-human Siglec-8 (837535), Purified R&D Systems Cat# MAB7975; RRID: N/A

Anti-human TCRgd (5A6.E9), Purified Fischer Scientific Cat# TCR1061; RRID: AB_223500

Biological Samples

Patients with COVID-19 from Helsinki Hospital District of Helsinki

and Uusimaa, Finland

N/A

Chemicals, Peptides, and Recombinant Proteins

Bovine Serum Albumin Sigma-Aldrich Cat# A3059; RRID: N/A

Cell-ID Cisplatin Pt194 Fluidigm Cat# 201194; RRID: N/A

Cell-ID Cisplatin Pt198 Fluidigm Cat# 201198; RRID: N/A

Cisplatin Pt195 BuyIsotope Customized

Cisplatin Pt196 BuyIsotope Customized

Cell-ID Intercalator-Ir Fluidigm Cat# 201192B; RRID: N/A

Cell-ID 20-Plex Pd Barcoding Kit Fluidigm Cat# 201060; RRID: N/A

DMSO Sigma-Aldrich Cat# D8418; RRID: N/A

EDTA Rockland Cat# MB-014; RRID: N/A

EQ Four Element Calibration Beads Fluidigm Cat# 201078; RRID: N/A

FBS Sigma-Aldrich Cat# 12103C; RRID: N/A

Fc Receptor (FcR) blocking buffer Cytodelics Customized

Maxpar Cell Acquisition Solution (CAS) Fluidigm Cat# 201240; RRID; N/A

Maxpar MCP9 Antibody Labeling Kit

�110Cd

Fluidigm Cat# 201110A; RRID: N/A

Maxpar MCP9 Antibody Labeling Kit

�111Cd

Fluidigm Cat# 201111A; RRID: N/A

Maxpar MCP9 Antibody Labeling Kit

�112Cd

Fluidigm Cat# 201112A; RRID: N/A

Maxpar MCP9 Antibody Labeling Kit

�113Cd

Fluidigm Cat# 201113A; RRID: N/A

Maxpar MCP9 Antibody Labeling Kit

�114Cd

Fluidigm Cat# 201114A; RRID: N/A

Maxpar Water Fluidigm Cat# 201069; RRID; N/A

Maxpar X8 Multimetal Labeling Kit (40 rxn) Fluidigm Cat# 201300; RRID; N/A

Metal isotopes as chloride salts (In-115,

Gd-155, Gd-157, Dy-161, Dy-163, Yb-173)

Trace Sciences

International

Customized

Paraformaldehyde VWR Cat# 16005; RRID: N/A

Penicillin-streptomycin Sigma-Aldrich Cat# P4333; RRID: N/A

Protein Stabilizer PBS Candor Bioscience Cat# 131125, RRID: N/A

PBS 1X Rockland Cat# MB-008; RRID: N/A

RPMI 1640 medium Sigma-Aldrich Cat# R848; RRID: N/A

Sodium Azide Sigma-Aldrich Cat# 71289; RRID: N/A

Whole blood (human) processing kit Cytodelics Cat# hC001-500; RRID: N/A

Critical Commercial Assays

Immune Response panel Olink AB N/A

Inflammation panel Olink AB N/A

Other

BenchBot robot Agilent technologies Customized

Bravo liquid handling platform Agilent technologies Customized

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CyTOF 2 upgraded Helios mass cytometer Fluidigm N/A

EL406 Washer Dispenser BioTek Customized

Helios mass cytometer Fluidigm N/A

pluriStrainer Mini, 40 mm pluriSelect Cat# 43-10040-70; RRID: N/A

Polypropylene tubes Sarstedt Cat# 55526; RRID: N/A

TC20 automated cell counter BioRad N/A

Vspin microplate centrifuge Agilent technologies Customized

Deposited Data

FCS files, Mass cytometry This paper https://brodinlab.com/data-repository/

Protein expression data This paper https://brodinlab.com/data-repository/

IgG data This paper Table S1

Software and Algorithms

CyTOF software (v. 6.5.358) N/A https://www.fluidigm.com/

Mass Cytometry Normalizer Finck et al., 201347 https://github.com/nolanlab/

bead-normalization/releases

R 3.6.0 R Core Team, 2019 https://www.r-project.org/

Python 3.7.0 https://www.python.org/

Mass Cytometry Debarcoder Zunder et al., 201548 https://github.com/nolanlab/

single-cell-debarcoder

CellGrid v0.5.5 Chen et al.13 https://github.com/Brodinlab/cellgrid

MOFA Argelaguet et al.27 https://github.com/bioFAM/MOFA

PAGA Wolf et al.16 https://github.com/theislab/paga
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Petter

brodin (petter.brodin@ki.se).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The raw mass cytometry data and the Olink protein data generated during this study are available for download on our lab webpage

(https://brodinlab.com/data-repository/). The IgG data is presented in Table S1. Code used in the analyses is available here: https://

github.com/rodriluc/SARS-CoV2_study.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
Inpatients

We included symptomatic patients with positive SARS-CoV-2 PCR test admitted to Helsinki University Hospital, Helsinki, Finland.

Patients were recruited within five days after hospitalization. We excluded patients who had been considered by the attending clini-

cian not to benefit from intensive care. The clinical decisions were based on comorbidities and general frailty, not the severity of the

COVID-19 disease. We recruited 17 inpatients (9 females, 8 males) aged between 40 - 77 years. The duration of hospitalization

ranged from 5 to 38 days. Of these, 10 were admitted to the ICU, and remained in intensive care for 1 - 27 days. Three patients

required mechanical ventilation for 3, 13 and 19 days, respectively.

Recovery phase patients
In addition to patients recruited during the acute phase of illness, we recruited a separate cohort of recovered patients based on pos-

itive PCR (n = 20). Of this recovered cohort, there were 18 mild COVID-19 patients and 2 hospitalized COVID-19 patients. These
Cell Reports Medicine 1, 100078, August 25, 2020 e3
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20 subjects (age range 28 - 68 years; 11 females, 9 males) were included during convalescence 3-4 weeks after COVID-19 diagnosis

and SARS-CoV-2 detection. These patients were identified from medical and laboratory records, contacted by phone and invited to

donate a blood sample. Characteristics of all patients described in Table S2.

This non-interventional, observational study was approved by the Ethics Committee of the Hospital District of Helsinki and Uusi-

maa (HUS/853/2020) and conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from all

participants.

METHOD DETAILS

Immunophenotyping by Mass Cytometry
Blood samples drawn from patients with COVID-19 were mixed with a whole blood stabilizer35(Cytodelics AB, Sweden) either imme-

diately or within 1-3 hr post blood draw and cryopreserved as per themanufacturer’s recommendations. Samples were then thawed,

and cells were fixed/RBCs lysed using WASH # 1 andWASH # 2 buffers (Whole blood processing kit; Cytodelics AB, Sweden) as per

the manufacturer’s recommendations. This was performed a few days prior to barcoding and staining of cells. Post fix/lysis of cells,

�1-2x106 cells/sample were plated onto a 96 well round bottom plate using standard cryoprotective solution (10% DMSO and 90%

FBS) and cryopreserved at �80�C.
At the time of experimentation, cells were thawed at 37�C using RPMI medium supplemented with 10% fetal bovine serum (FBS),

1% penicillin-streptomycin and benzonase (Sigma-Aldrich, Sweden). Briefly, cells were barcoded using automated liquid handling

robotic system (Agilent technologies)42 using the Cell-ID 20-plex Barcoding kit (Fluidigm Inc.) as per the manufacturer’s recommen-

dations. Samples were pooled batch-wise by keeping together the longitudinal samples from each patient in the same batch. Cells

were then washed, FcR blocked using blocking buffer (in-house developed recipe) for 12 min at room temperature, following which

cells were incubated for another 30 min at 4�C after addition of a cocktail of metal conjugated antibodies targeting the surface an-

tigens. Cells were washed twice with CyFACS buffer (PBS with 0.1% BSA, 0.05% sodium azide and 2mM EDTA) and fixed overnight

using 2% formaldehyde made in PBS (VWR, Sweden). The broad extended panel of antibodies used are listed in Key Resources Ta-

ble. For acquisition by CyTOF, cells were stained with DNA intercalator (0.125 mM Iridium-191/193 or MaxPar� Intercalator-Ir, Fluid-

igm) in 2% formaldehydemade in PBS for 20min at room temperature. Cells were washed once with CyFACS buffer, PBS andMilli-Q

water, and twice with Cell acquisition solution (CAS) (Fluidigm). Cells were mixed with 0.1X Norm Beads (EQTM Four Element Cali-

bration Beads, Fluidigm) filtered through a 35mmnylonmesh and diluted to 1000,000 cells/ml. Cells were acquired using Helios mass

cytometer at a rate of 300-500 cells/s using PSI system, CyTOF software version 6.5.358 with noise reduction, a lower convolution

threshold of 400, event length limits of 10-150 pushes, a sigma value of 3, and flow rate of 0.030 ml/min.

Antibodies and reagents
Purified antibodies for mass cytometry were obtained in carrier/protein-free buffer and then coupled to lanthanide metals using the

MaxPar antibody conjugation kit (Fluidigm Inc.) as per the manufacturer’s recommendations. Following the protein concentration

determination by measurement of absorbance at 280 nm on a nanodrop, the metal-labeled antibodies were diluted in Candor

PBS Antibody Stabilization solution (Candor Bioscience, Germany) for long-term storage at 4�C. Antibodies used are listed in Key

Resources Table.

Plasma protein profiling
Serum or plasma samples collected from patients with COVID-19 (by spinning blood at 2000 g for 10min at 80 C for plasma

collection or by collecting serum from those blood samples from which PBMCs were isolated using gradient centrifugation

for future use and not intended for this study) were analyzed using a multiplex proximity extension assay (OLINK Bioscience,

Uppsala, Sweden). Each kit provides a microtiter plate for measuring 92 protein biomarkers. Two panels, the Olink Immune

Response and Inflammation panels. Each well contains 96 pairs of DNA-labeled antibody probes. Samples were incubated

in the presence of proximity antibody pairs tagged with DNA reporter molecules. When the antibody pair bounds to their cor-

responding antigens, the corresponding DNA tails form an amplicon by proximity extension, which can be quantified by high-

throughput real-time PCR.

Detection of anti-SARS-CoV-2 antibody response
Antibodies against SARS-CoV-2 were measured using indirect immunofluorescence assay (IFA) and enzyme-linked immunosorbent

assay (ELISA) using SARS-CoV-2 receptor-binding domain (RBD) as the antigen. The IFA was conducted as described.43 The RBD

ELISA was done following a recently published24,44 protocol. The RBD antigen was produced by transient transfection of RBD plasmid

to Vero E6 cells and the produced protein was purified following an established protocol.44 The raw data is available in Table S2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mass Cytometry Preprocessing and Gating
All FCS-files unrandomized using the CyTOF software (version 6.0.626) were transferred without any additional preprocessing.
e4 Cell Reports Medicine 1, 100078, August 25, 2020
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Automated Cell Classification
Grid is an in-house supervised algorithm based on the selection of all relevant FCS files and relevant phenotypic markers for clus-

tering in order tomanually gate for sub-populations to use as a reference.13 The reference is then used to train a classifier algorithm to

categorize similar cells quickly and accurately. The following populations were gated: B cells (CD1c- naive B cells, CD1c- switched B

cells, CD1c+ naive B cells, CD1c+ switched B cells, CD27 CD43 B cells, unswitched memory B cells, transitional B cells and plas-

mablasts), eosinophils (CD16- eosinophils and CD16+ eosinophils), monocytes (classical monocytes, intermediary monocytes,

myeloid CD1c DC, non-classical monocytes, and other myeloid cells), natural killer (NK) cells (CD4 CD56+ T cells, CD56bright NK,

CD56dim CD16 NK, CD56dim CD38low NK, CD56dim CD38high NK, CD8 CD56+ T cells, and other NK cells), neutrophils (classic neu-

trophils), abT-cells/CD4T (CD127 memory CD4T, CD24 CD16 naive CD4T, CD24 CD16 memory CD4T, CD39 memory Tregs, CD57

memory CD4T, memory CD4T, memory Tregs, naive CD4T, and naive Tregs), abT-cells/CD8T (activated memory CD8T, CD16+

naive CD8T, CD16+ memory CD8T, CD57+ memory CD8T, CD62L CD127 CD8 TCM, CD7high memory CD8T, CD8 TEM, DP

T cells, naive CD8T, and other memory CD8T cells), abT-cells/DN T cells, abT-cells/MAIT (CD16- MAIT and CD16+ MAIT), gdT

(CD161high gdT, CD27high gdT, and CD57+ gdT), CD11c DC, CD16- basophils, CD16+ basophils, other lineage-negative cells,

and pDC. These sub-populations were identified by phenotypic markers from the parameter selection.

Multiomics Factor Analysis, MOFA v1
Multiomics Factor Analysis (MOFA) was used to discover principal sources of variation in multi-omics datasets.27 MOFA uses a set of

data matrices as input formatted with features as columns and samples as rows, plasma protein expression and cell abundance da-

tasets were used to build the MOFAobject with MultiAssayExperiment. The fitting step includes training the model with the multi-

omics data in order to be able to disentangle the heterogeneity into a small number of latent factors. The MOFAobject was trained

in R through the reticulate package with 10 factors and a variance threshold of 0.01%. Both omics datasets were processed individ-

ually to remove any features resulting in zero or low variance before fitting the model. Convergence of the model was assessed using

the change in ELBO (deltaELBO) to verify it fit the convergence threshold which is considered to be between 1 and 10. Multiple

models were run under different initializations to validate that factors were consistent across trials for model selection. The fitted

MOFAmodel could then be interrogated in R for downstream analysis to characterize these factors as technical or biological sources

of variation.

Partition-based graph abstraction of single-cell data
The CyTOF data were first preprocessed with arcsin h and scaled to unit variance and then partitioned into different subpopulations

according to our in-house supervised learning algorithm. For each subpopulation, the phenotypic changes over different time points

are inferred with a trajectory inference method called PAGA.16 In brief, PCA was first applied to reduce the number of features to 20,

and then an undirected kNN-like graph was constructed using the approximate nearest neighbor search within UMAP, while each

node represents a single cell and each edge represents a neighborhood relationship. After the construction of graph, the highly con-

nected clusters were detected with Leiden method.45 Afterward, the clusters defined by Leiden were used by PAGA to infer a tra-

jectory map. In the trajectory map, Leiden clusters are considered as connected if their number of inter-connections is larger than

a fraction of the number of inter-connections expected under random assignment, and the threshold fraction is determined by a sta-

tistical model. Finally, the PAGA graph was taken as the initial position of a manifold learning method ForceAtlas2 (FA)46 and pro-

duced topology-preserving single-cell embeddings for visualization.

Mixed effects modeling
A partially Bayesian method was applied with blme package on both datasets (plasma protein expression and cell abundance) to

produce maximum a posteriori (MAP) estimates.25 This provided the ability to nest the variables, and account for days from admis-

sion as well as RBD levels as fixed effects. Wald p values of covariates were extracted from models to assess significance.
Cell Reports Medicine 1, 100078, August 25, 2020 e5
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