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The influence of the microbiome on its host is well-documented, but the inter-
play of its members is not yet well-understood. Even for simple microbiomes,
the interaction among members of the microbiome is difficult to study. Longi-
tudinal studies provide a promising approach to studying such interactions
through the temporal covariation of different taxonomic units. By contrast to
most longitudinal studies, which span only a single host generation, we here
present a post hoc analysis of a whole-genome dataset of 81 samples that
follows microbiome composition for up to 180 host generations, which cover
nearly 10 years. The microbiome diversity remained rather stable in replicated
Drosophila melanogaster populations exposed to two different temperature
regimes. The composition changed, however, systematically across replicates
of the two temperature regimes. Significant associations between families,
mostly specific to one temperature regime, indicate functional interdepen-
dence of different microbiome components. These associations also involve
moderately abundant families, which emphasizes their functional importance,
and highlights the importance of looking beyond the common constituents of
the Drosophila microbiome.
1. Introduction
The interaction of the microbiome with its host is highly topical and has been
investigated in many species [1–4]. In particular in the context of human
health [5], a wide variety of host conditions has been linked to the microbiome
[6–13]. The causal relations between microbiome composition and its effect on
the host remain poorly understood [14,15].

The composition of themicrobiome is highly dynamic and affected by the host
genotype as well as by environmental factors [16–21]. Compositional changes of
the microbiome, which are triggered by environmental challenges, provide the
potential to indirectly modulate the response of the host to an altered environ-
ment [22]. Nevertheless, despite a well-documented turnover of microbiome
composition and complexity, our understanding of how microbial communities
establish and persist in interaction with their host, and the functional interaction
among the members of the microbiome community, is still in its infancy [23,24].

Two approaches to study the functional interactions have been proposed:
experimental manipulation of the microbiome composition combined with phe-
notypic analysis of the host [25–27], and covariance in abundance of specific
taxonomic units [28]. The underlying idea is that species with functional inde-
pendence will vary in their abundance randomly with respect to environmental
conditions or host genotypes [29]. Covariation, in contrast, suggests that they
are either affected in the same way (positive correlation) or they complement
each other (negative correlation). The correlation analysis is, nevertheless,
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challenged by spurious associations [30,31], in particular
when only one or a few host generations are studied.

By contrast to mammalian microbiomes, the gut micro-
biome of the fruit fly Drosophila melanogaster is relatively
simple [32,33]. This provides the opportunity to evaluate
the impact of the presence of different combinations of the
microbiome on the Drosophila host [34,35]. Nevertheless,
despite the relatively low complexity of the Drosophila micro-
biome, testing the number of possible combinations is
challenging; hence, most studies focus on the most abundant
species, (e.g. [36,37]), which in laboratory strains typically
belong to the genera Acetobacter and Lactobacillus [38].

For an unbiased exploration of functional associations of
different microbiome components, however, the focus on a
pre-selected set of taxa is not well-suited and a covariation
approach holds more promise: surveying a large number of
individuals or following the abundance dynamics in a longi-
tudinal study, can uncover functionally associated taxa. A
challenge for the interpretation of longitudinal covariation
patterns is that the starting condition (species composition
and abundance pattern) affects subsequent time points [39].
Hence, unless the stochastic fluctuations are large, it can be
difficult to disentangle random associations from functional
ones, in particular when longitudinal studies are only
conducted within a single host generation.

Drosophila provides multiple advantages to study func-
tional associations between components of the microbiome.
Firstly, the microbiome is not very complex, making the ana-
lyses more powerful; secondly, the Drosophila microbiome
is highly dynamic with large changes in microbiome compo-
sition [40], which will break random associations and retain
only functionally relevant ones; thirdly, longitudinal studies
in mammals often only look at changes within a single
host generation, (e.g. [41]). The comparatively short gener-
ation time of Drosophila enables studies of microbiome time
series [39,42] that cover many generations, which provides
a substantial increase in power to detect functionally
important associations.

Several studies analysed the interplay of thermal adap-
tation of the Drosophila host and its microbiome [43–47], a
question of interest in the context of climate change and the
possibility of associated range shifts [48,49]. The results
remained nevertheless inconclusive, which may be attributed
to the small number of host generations covered in those
studies. To obtain more robust results, we used an extended
longitudinal study of the D. melanogaster microbiome during
adaptation to novel hot and cold temperature regimes
over nearly 10 years, covering 180 generations in hot and
100 generations in cold environments. We characterize the
microbiome diversity and changes in composition over
time, and analyse associations between taxa and global
trends common across replicates, highlighting the significant
differences between the two temperature regimes.
2. Material and methods
The Pool-Seq dataset (PRJEB37761) used in this study comes
from a long-term evolve-and-resequence experiment of 180 gen-
erations of D. melanogaster kept in hot conditions (temperature
fluctuating between 18°C and 28°C to mimic day and night),
and 100 generations kept in cold conditions (fluctuating between
10°C and 20°C), with five replicates each, comprising 81 samples
in total (electronic supplementary material, table S1).
(a) Culture conditions
In each temperature regime replicate populations of approximately
1000 flies in five bottles (approx. 200 × 5) were maintained in
parallel using the same conditions and sample handling (including
sample freezing). The developmental rates differ between
temperature regimes, thus the samples in the two different temp-
erature regimes were handled independently. All flies were
maintained on a standard fly food medium (agar–agar, sugar
beets syrup, malt syrup, yeast, corn flour, soy flour, in weight pro-
portions of about 1 : 3 : 3 : 3 : 7 : 1), which remained the same
throughout the entire experiment. Eclosed flies were transferred
to a fresh medium for 4 (hot) or 8 (cold) days and upon transfer
to the bottles giving rise to the next generations they were sup-
plemented with additional flies, which emerged during this
period. After 2 (hot) and 4 (cold) days of egg laying the flies were
transferred to another set of fresh bottles for another round of
egg laying. After the last round of egg laying the flies were snap
frozen in liquid nitrogen and stored at –80°C until DNA extraction.

(b) DNA extraction and sequencing
DNAwas extracted from approximately 500 female flies (except for
a single sample that was made from a mixture of males and
females; see electronic supplementary material, table S1) using
the same high salt extraction procedure for all samples considered
here [50]. All reagents used for DNA extraction were prepared in
large batches which were used to extract DNA from multiple
time points. The exact assignment of batches to specific DNA
extractions is not possible. Within a single time point the age of
the flies varied between 4 and 8 days for the hot environment
and 9–16 days for the cold environment. Pools were sequenced at
various time points, using a range of library kits, insert sizes, and
read lengths, reflecting the development of Illumina sequencing
over a decade ([51]; electronic supplementary material, table S1
and figure S6). Reads were further processed as described below.

(c) Removing barcoded spike-ins
Six lanes (r01F23.93-96, r05F15.58, r10F15.90) contained some
additional spike-in reads from Aviadenovirus A and/or Cochlio-
myia hominivorax with separate barcodes. The five-base
barcodes PEMx1–4 are found at the 50 end of each read of a
pair. We removed all read pairs with the barcode on both
reads, allowing up to one mismatch each, with homebrew R
code [52] using functions from Bioconductor::ShortRead
v. 1.42.0 [53].

(d) Quality control and trimming
Quality control with FastQC v. 0.11.8 [54] revealed consistent
anomalies with base frequencies over the first few bases on the
50 end, as well as occasional minor adapter contamination.
We, therefore, clipped the first five bases on the 50 end and
removed adapter fragments with trimmomatic v. 0.39 [55] (par-
ameters: ILLUMINACLIP:{adapters}:2:30:10:2 HEADCROP:5
MINLEN:50 AVGQUAL:28, with {adapters} chosen as Tru-
Seq2.fa or TruSeq-3.fa as applicable to the respective library),
also discarding reads below a minimum length of 50 and an
average quality below 28.

(e) Contaminant and duplicate removal
Contaminants were removed by mapping the trimmed read pairs
with bowtie2 v. 2.3.5.1 [56] against the D. melanogaster host and a
set of other genomes that were sequenced together with the
target libraries, but may have not been fully removed: we used
a combined reference of D. melanogaster (GCF_000001215.4),
wMel (NC_002978.6),Homo sapiens (GCF_000001405.39),Musmus-
culus (GCF_000001635.26), Gallus gallus (GCF_000002315.4),



Table 1. The seven most abundant families across all samples (read counts larger than 1% of the total).

family read pairs fraction genera

Acetobacteraceae 12 585 915 0.68 93% Acetobacter, 4% Komagataeibacter, 2% Gluconacetobacter, 1% Gluconobacter

Lactobacillaceae 1 556 816 0.084 100% Lactobacillus

Streptomycetaceae 603 057 0.033 62% Streptomyces

Enterobacteriaceae 397 342 0.021 27% Salmonella, 17% Escherichia, 4% Klebsiella, 4% Citrobacter, 3% Enterobacter

Burkholderiaceae 275 562 0.015 89% Ralstonia, 6% Cupriavidus, 2.5% Paraburkholderia, 2.5% Burkholderia

Leuconostocaceae 263 390 0.014 100% Leuconostoc

Bradyrhizobiaceae 195 634 0.011 100% Bradyrhizobium
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Aviadenovirus A (NC_001720.1), and Illumina PhiX (modified
NC_001422.1 with 587:G >A, 833:G >A, 2731:A>G, 2793:C > T,
2811:C > T), and removed all concordantly mapped pairs (par-
ameters: - -end-to-end --maxins 1000 --no-mixed --no-discordant).
Although Wolbachia is part of the microbiome in a wider sense as
it lives inside the host cells, we did not include it in our analysis as
is not part of the gut microbiome; its dynamics were studied
separately [51,57]. As a final preparation step, duplicates were
removed with fastuniq v. 1.1 ([58]; default parameters).

( f ) Classification with Kraken2
Deduplicated read pairs were classified with kraken2 v. 2.0.8-
beta [59] (parameters: - -paired - -confidence 0.04). Kraken2 has
two parameters that influence classification. We did not modify
the minimum base quality parameter from its default value of
0 as an exploratory analysis confirmed that our stringent quality
filtering makes this parameter uninformative. Increasing the
confidence parameter did, however, remove rare dubious classi-
fications (i.e. hits to eukaryotes that could not have contaminated
the libraries, e.g. golden eagles, salmon, turtles, wine, cucumbers
etc. and which were based only on very few k-mers), while also
decreasing the number of classified reads. After some exploration
we chose c ¼ 0:04 for this parameter, as with higher values
the disadvantage of losing read pairs outweighed the gain in
classification confidence.

We classified read pairs against a database built with the
kraken2-build script (default parameters) from the NCBI NT
database [60], with higher animals (Metazoa) and plants (Viridi-
plantae) removed and the dmel6_iso1MT (GCF_000001215.4)
RefSeq [61] genome added.

(g) Postprocessing with bracken
Kraken2 assigns reads on the lowest taxonomic level for which a
unique assignment is possible, which implies that different reads
can be assigned at different taxonomic levels. We, therefore, used
the companion program bracken v. 2.5.0 [62] for re-estimating
read counts for a given taxonomic level using a Bayesian model,
using the untrimmed read length of each sequencing lane.

We analysed the results on the family level after excluding
any remnants of the known contaminants Drosophilidae, Adeno-
viridae and Anaplasmataceae. Most of the large families are
dominated by a single genus, e.g. Acetobacter, Lactobacillus,
Leuconostoc, Ralstonia, Bradyrhizobium (table 1).

(h) Estimating fractions
Because the samples contain only a very small part of the entire
microbiome, observed read counts may be subject to substantial
sampling error. Although this issue is often ignored [63],
accounting for imperfect detection generally improves the analy-
sis [64,65]. Therefore, given the m ¼ 806 families classified across
all samples, we estimated their fractions xi, with i ¼ 1, . . . ,m, in
each sample from their read counts ni as xi ¼ (ni þ 1)=(N þm)
with N ¼ P

ni, which assumes that the combined process of
library preparation, sequencing, and read extraction is described
by a multinomial sampling model. We note that our method is a
more refined version of the commonly applied procedure of set-
ting counts of 0 to 1 in observation tables: for an observed count
n = 0 and m � N, the estimated count would indeed be
Nx ¼ 1=(1þm=N) � 1.

(i) Correlation between families
A known problem of compositional data analysis is that com-
ponent fractions may exhibit spurious negative correlations [66].
We thus used the normalized and log-transformed component
fractions (additive log-ratio transform; [67], choosing as common
denominator the fraction of the most abundant family Acetobac-
teraceae) across all samples with the R function Hmisc::rcorr
v. 4.4-0 to obtain Spearman’s rank correlation coefficients p as a
measure of association between families.

( j) Piece-wise linear models
Figure 2 indicates the presence of abundance peaks at intermedi-
ate time points. Since such intermediate peaks cannot be
captured by simple linear models, we identified significant
trends by fitting segmented linear models using the R segmented
package v. 1.1-0 [68,69] with an initial breakpoint located at gen-
eration 90 in the hot environment and generation 50 in the cold
environment to allow for an intermediate peak. The algorithm
moves and possibly drops this breakpoint as it identifies the
best-fitting model, thus identifying both linear trends and inter-
mediate peaks or dips in the data.
3. Results
We studied the long-term microbiome dynamics of D. melano-
gaster hosts exposed to novel hot (18/28°C) and cold
environments (10/20°C). We first considered the changes in
composition over time; then, focusing on the dynamics of
the seven most abundant families of microbiota, we identified
significant associations between several of them. Finally, we
identified significant trends of community restructuring
characteristic for the respective environmental conditions.

(a) Microbiome composition
Across all replicates and environments, the microbiome is
dominated by seven bacterial families (table 1 and figure 1),
most of which were also commonly observed in previous
studies of the Drosophila microbiome. Like for other Drosophila
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cultured in the laboratory, Acetobacteraceae are themost abun-
dant family [38,44,46], followed by Lactobacillaceae. The
predominant families include further families frequently seen
in the Drosophila microbiome [33], namely, Enterobacteriaceae
and Leuconostocaceae. The high abundance of Enterobacteria-
ceae, a very commonDrosophila-associated gut microbe family
in thewild [43,70,71], is not surprising because the founder iso-
female lines were kept only a small number of generations in
the laboratory before the experiment was started. Streptomyce-
taceae are not typically reported as part of the Drosophila
microbiome, but have been found in a recent study [72]. Finally,
the remaining abundant families Bradyrhizobiaceae and Bur-
kholderiaceae are not typical Drosophila gut bacteria, but are
considered environmental bacteria [73,74].
(b) Microbiome dynamics
Given that we transferred flies with their associated micro-
biome to novel environments, we anticipated one of three
different scenarios: (i) the microbiome quickly adapts to the
new environment, as frequently seen for altered nutrition,
(e.g. [75–77]), and then only experiences stochastic changes,
(ii) the microbiome changes continuously because adaptation
to the new environment cannot be achieved by a simple
change in relative frequency of the community members or
(iii) the microbiome remains completely unaffected. None
of these predictions fully applied to this experiment; instead,
we observed complex dynamics that were also very different
between environments (figure 2). Although these changes
were not completely synchronized, their occurrence in mul-
tiple replicates strongly suggests that these dynamics are
not just stochastic effects, but possibly reflect functional turn-
over of the microbiome during the experiment. In addition
to these global patterns, we observed that some bacterial
families changed their abundance in a continuous manner;
for example, Lactobacillaceae continuously increase in
frequency in the cold environment.
(c) Strong associations
While most studies describe microbiome composition in
either natural flies or flies exposed to laboratory conditions,
our time series data, covering up to 180 host generations,
offer the unprecedented opportunity to test for associations
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between different components of the microbiome. Given
that the microbiome composition is highly stochastic, with
substantial changes between generations [78], large abun-
dance changes are expected. Time-series data provide the
opportunity to distinguish between stochastic changes and
covariation of abundance patterns between microorganisms.
Statistically significant associations imply a functional
association between covarying taxonomic groups.

As the interactionofmembers fromdifferent familiesmaybe
informative about changes in the functional composition of the
microbiome, we evaluated the correlated dynamics of the
predominant families (figure 3). Bradyrhizobiaceae and
Burkholderiaceae have strong positive associations across
generations and environments (figure 3a–c). In the hot
environment, theyare also significantly associatedwith Strepto-
mycetaceae, while in the cold environment Leuconostocaceae
appear to playa pivotal role, being strongly associatedwith Bra-
dyrhizobiaceae and Burkholderiaceae on the one hand, and
Streptomycetaceae on the other, where also Enterobacteriaceae
and Lactobacillaceae are associated with Bradyrhizobiaceae
and each other. These highly significant associations provide
very strong evidence for the interaction between different mem-
bers of the microbiome, which only become apparent with the
availability of long-term longitudinal data.
(d) Global trends
Because the visual inspection of the abundance plots
(figure 2) suggests that the abundance of many families
changes in a nonlinear manner, we analysed the family
dynamics with segmented linear models to identify signifi-
cant trends across replicates (figure 4). In cold culture
conditions we find clear evidence a strong decrease of Aceto-
bacteraceae and increase of Bradyrhizobiaceae and
Burkholderiaceae around generation 30, which is followed
by a strong increase of Leuconostocaceae around generation
50. These families, however, then decrease again in relative
abundance as Acetobacteraceae recover and Lactobacillaceae
slowly increase (figure 4). The increase of Lactobacillaceae is
restricted to the cold environment; in the hot environment,
we see the opposite trend—if anything. Interestingly, this pat-
tern of opposing trends in the two environments is seen even
more clearly in the Leuconostocaceae, the other member of
the group of lactic acid bacteria (electronic supplementary
material, §A). Finally, the highly significant increase of Enter-
obacteriaceae over time occurs in both environments, and
thus may be causally unrelated to the other interactions.
4. Discussion
Based on a comprehensive longitudinal dataset of 81
samples from replicated populations covering up to 180 host
generations, we found strong evidence for a functional interde-
pendence of various families constituting the Drosophila
microbiome: (i) parallel changes in abundance patterns across
replicates and (ii) significant covariation in abundance of
several families.

(a) Parallel dynamics across replicates
The striking compositional similarity of replicate populations
in this experiment can be recognized by the clustering of repli-
cates as well as by the similar patterns of frequency changes.
The parallel dynamics are most apparent from characteristic,
highly pronounced frequency changes of a few families. One
example for this is the decrease of Acetobacteraceae at gener-
ation 30 across all five replicates in the cold, followed by a
recovery at later generations. Interestingly, almost the opposite
trend was seen in the hot environment (figure 4).

One explanation for the high parallelism between replicates,
which is independent of functional requirements, is related to the
culturing method. As the experimental Drosophila populations
were not maintained under sterile conditions, components of
the microbiome may have been transferred accidentally across
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replicates, thus synchronizing their dynamics. A similar mech-
anism was recently proposed for the high parallel selection
responses of the Drosophila host across replicates [79].
Nevertheless, a closer inspection of these dynamics shows that
this explanation is unlikely. The diversity peak in the cold cultur-
ing regime (figures 3 and 4) is a good example, occurring in a
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similar manner across all replicates. Since rare taxa, rather than
abundant families, increased in frequency, this is difficult to
reconcile with microbiome transfer across replicates: a large
increase in frequency bymigration requires that many represen-
tatives of this family are being transferred. The highly parallel
diversity increase makes an extrinsic contamination also unli-
kely, as all five replicates of the hot temperature regime are
affected. Hence, we conclude that accidental contamination
during the culturing is unlikely to explain the parallel
microbiome dynamics seen in our experiment.

We acknowledge that the use of different sequencing plat-
forms and library preparation protocols [51] could have
contributed to the temporal heterogeneity seen in this study
(electronic supplementary material, table S2). Importantly,
some of the replicates were sequenced with different sequen-
cing platforms (electronic supplementary material, §B and
figure S2), and similar pronounced abundance changes can
be seen for samples for which the same DNA was sequenced
with two different platforms (electronic supplementary
material, figure S3a). Furthermore, the temporal dynamics
were apparent among time points sequenced using the same
technology (electronic supplementary material, figure S3b).
While our analyses confirm a certain effect of technology on
detected abundance (electronic supplementary material,
figures S4 and S5), as previously reported [80–82]; a detailed
analysis of the dynamics in each replicate (electronic sup-
plementary material, §C and figures S6 and S7), allows us to
conclude that no prominent features of the family dynamics
are artefacts of the sequencing technology.

Another contribution to temporal heterogeneity is the
degree of gut colonization in the adult flies, which was
shown to continue over several days [83]. Since flies were
not collected at exactly the same day after eclosure, it is poss-
ible that some of the observed changes in abundance may—at
least to some extent—reflect heterogeneity in gut coloniza-
tion. Nevertheless, the functional interdependence of
different families inferred from covariation of abundance pat-
terns would be even further strengthened by heterogeneity in
colonization status (see below).

(b) Significant covariation between families
Even stronger evidence for the functional non-independence of
co-occurring families in themicrobiome comes from the signifi-
cant correlation in abundance between different families
(figure 3). Since this signal of covariation comes from the
joint analysis of multiple time points, it cannot be explained
by contamination across replicates, which would have been
limited to single generations. Furthermore, the large fluctu-
ations in abundance patterns across time points highlights
that the significant association between various families
reflects strong functional links between themand rules out stat-
istical artefacts. It was particularly striking that most of these
associations do not involve components of the Drosophila
microbiome that were previously used for functional testing,
(e.g. [36,84–86]).

(c) The microbiome turnover: driver or passenger?
A naive expectation for the impact of rearing temperature on
microbiome composition is that the microbiome either changes
rapidly as it is exposed to a new environment, and persists in
the new, temperature-optimized composition; or, that it
changes gradually, reflecting the acquisition of new adaptive
mutations in the microbiome. Interestingly, our data do not
fit either of these simple expectations. Rather, we noted a
highly dynamic nature of the microbiome with trends that
are largely consistent across replicates. The parallel dynamics
in multiple replicates of the same temperature regime across
multiple generations rules out stochastic changes, but raises
the question about the underlying cause.While new functional
mutations can occur [87], their appearance should be stochastic
and not synchronized across replicates. Contingency on a
certain genetic background for certain mutations to be success-
ful has been described for citrate use in Escherichia coli [88] and
a similar principle may apply to the microbiome composition
as well. Nevertheless, this would only explain why some
changes do not occur early in the experiment, but cannot
synchronize the dynamics across replicates.

Here, we propose that much of the non-random patterns in
the microbiome are driven by the Drosophila host. Several
evolve-and-resequence studies exhibit a highly parallel selec-
tion response across replicates [89,90]. Given that the host
genotype affects the microbiome composition as demonstrated
by GWAS [17,18], genetic changes in the host genome, which
are parallel across replicates, may also shape the microbiome
composition. A direct link between temperature adaptation
of the host and microbiome composition has been recently
found [91] where microbiome composition, specifically the
ratio of acetic acid bacteria to lactic acid bacteria, changes
with latitude of D. melanogaster populations from eastern
North America. While we do not find strong evidence for
this antagonism of acetic and lactic acid bacteria between
hot- and cold-evolved populations (electronic supplementary
material, figure S1), we consider the influence of the host gen-
otype the best explanation for the high parallelism and most
likely for much of the temporal dynamics of the microbiome
discovered in this study. Our previous analysis of theWolbachia
dynamics in this population [51] showed a turnover of different
Wolbachia genotypes, but these were monotonic and thus
unlikely to contribute to the abundance peaks observed in
this study.

If the microbiome dynamics are driven by the Drosophila
host, the continuous turnover of the microbiome in combi-
nation with the linear frequency change of Lactobacillaceae
in the cold and the Enterobacteriaceae in the hot environment,
may imply that the host has not yet fully adapted to the new
environment (i.e. has not yet reached the new trait optimum).
Nevertheless, it is important to consider that even after reach-
ing the trait optimum the allele frequencies of contributing
loci still experience considerable allele frequency changes
[92,93], which may drive microbiome changes even when
the phenotype of the host does not change anymore after the
trait optimum has been reached. Alternatively, some of
the dynamics, in particular those not parallel across replicates,
may reflect the acquisition of new mutations by the host;
(e.g. [94,95]). Single-strain characterization of evolved micro-
biomes will be helpful to characterize new mutations that
occurred during the experiment. In the current set-up, the dis-
tinction between ancestral low frequency genotypes and new
mutations may be challenging.
5. Conclusion
Strong functional associations have been shown before
(reviewed in [96]), but these studies typically manipulated
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only a small number of taxa to study the influence of the host.
In our experiment, we followed the natural dynamics and
inferred the patterns of covariation without any artificial
manipulation, thus providing a more natural setting than
experimentally combining different components of the micro-
biome. Our analyses indicate that the strongest associations
between different components of the microbiome do not
involve the most abundant families, but members of inter-
mediate abundance, which are often ignored in functional
studies of the Drosophila microbiome. Our results highlight
the importance of expanding the functional characterization
of the Drosophila microbiome beyond highly abundant
families like Acetobacteraceae and Lactobacillaceae.
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