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A B S T R A C T

Background: Identification and assessment of therapeutic potential of natural products derived from medicinal
plants have led to the discovery of innovative and economical drugs to treat several diseases, including chronic
wounds. In vitro cell based scratch assay is an appropriate and inexpensive method for initial understanding of
wound healing potential of medicinal plant extracts. The current study was aimed at investigating the wound
healing capacity of Aristolochia saccata leaf extract by using scratch assay as a primary model, where proliferative
and migratory capabilities of test compounds could be monitored through microscopy studies. A. saccata is an
evergreen climbing shrub belongs to the family Aristolochiaceae.
Methods: Methanolic extraction of the plant material was done using Soxhlet apparatus and the cytotoxicity of the
extract on L929 cells was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
L929 is a human fibroblast cell line. In vitro scratch assay was performed to evaluate the wound healing properties
of A. saccata leaf extract and possible mechanism of action was analyzed by flow cytometric expression studies of
an extracellular matrix (ECM) factor, collagen type-1.
Results: MTT assay revealed that A. saccata leaf extract had no cytotoxic effect on the cells and at higher con-
centrations, the extract showed mild toxicity resulting in the death of just 2.88% cells. Scratch assay showed
34.05%, 70.00%, 93.52% wound closure at 12hrs, 24hrs and 48hrs of incubation respectively. These results were
similar compared to positive control which showed 37.60, 56.41 and 99.05% of wound closure. Further, flow
cytometry-based studies revealed that the A. saccata leaf extract induced the expression of ECM remodelling factor
collagen-1.
Conclusion: Our study revealed the wound healing capabilities of A. saccata In vitro. Hence, A. saccata could be
recommended as a potential source of wound healing agents.
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Table- 1
Cell viability effects of A. saccata extract in L929 cell line.

Culture conditions % of cell viability

Vehicle Control 99.33 � 0.42
31.25 99.49 � 0.10
62.5 99.06 � 0.34
125 97.70 � 0.31
250 97.44 � 0.14
500 97.12 � 0.65
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1. Introduction

Skin, the largest organ of human body, protects visceral organs from
infection by microbes and injury. Wound healing mechanism is obliga-
tory to regain the lost tissue and maintain tissue homeostasis. New tissue
formation is a complex process, which involves multiple steps such as
inflammation, angiogenesis, granulation tissue formation, re-
epithelialization, and ECM reconstruction [1]. Upon injury in the skin,
cells such as fibroblasts, keratinocytes, macrophages, and other immune
cells rapidly proliferate and migrate towards the wound and initiate the
complex healing process. Hence, migration of cells towards wound is one
of the key phases of wound healing process and in general, it is governed
by various stimulatory factors of tissue microenvironment [2].

Fibroblasts are most abundant cells in skin tissue and the major
functions of these cells during wound healing include, rupturing of fibrin
clots, generation of extracellular matrix (ECM) components and collagen
structures that support the tissue homeostasis[3, 4]. Collagen synthesis
and granulation tissue formation play critical role in wound contraction.
For this reason, contemporary wound healing research is focused on the
identification of new therapeutic agents, which has a stimulatory effect
on the activation and modification of collagen producing fibroblasts [5].

Several In vitro and animal models are available to screen the wound
healing nature of new therapeutic agents. Among them, fibroblast cell-
based scratch assay is an inexpensive and well-established model,
which supports the initial understanding of wound healing efficacy of
new therapeutic agents [6].

Natural extracts have been playing fundamental role in the acceler-
ation of wound healing process. However, the scientific evidence of their
efficacy is limited. Hence, efforts to identify the bioactive compounds of
medicinally important herbal extracts and their mechanism of action has
always tremendous importance in the medical research [7]. A. saccata is
an evergreen climbing shrub belonging to the family Aristolochiaceae.
Over 500 species of this family have been identified [8] and the extracts
of some of the species have been used as medicine for various diseases,
though the scientific evidences are limited. Aristolochiaceae plants are
known to treat arthritis, snake bites, wounds and skin diseases. They are
also known to possess anti-cancer, anti-inflammatory [9], anti-feedant
[10], muscle relaxant [11] properties. Although these medicinal prop-
erties of the plant are known traditionally, these properties have not been
scientifically validated through In vitro or In vivo experiments. Specific
medicinal properties of this plant, as evidenced by cellular and molecular
biology experiments, are not reported. Therefore, we strived to validate
the traditional claims and checked for the wound healing potency of the
plant extract.

In the present study, the wound-healing efficacy of methanolic extract
of A. saccata leaf was determined by In vitro scratch assay and its role in
the stimulation of collagen-1 expression in L929 cells was studied by flow
cytometry.

2. Results

2.1. Cytotoxicity effect of A. saccata leaf extract

Although plant extracts have been long studied for their medicinal
properties, the cytotoxic effects of such extracts on the cell type of in-
terest is sometimes neglected. However, in the recent times, there has
been a growing trend in testing this critical component [12, 13]. Cyto-
toxic effect of A. saccata leaf extract on L929 cells was assessed by 3-(4,
5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
The cells were exposed to different concentrations of test compound for
48hrs and the cytotoxic effect of the extract was evaluated. The per-
centage viability of L929 cells at the highest treated concentration of
A. saccata leaf extract was observed to be 97.12 � 0.65. The concentra-
tions of A. saccata leaf extract used for treatment and their corresponding
percentage cell viability were tabulated in Table 1 and represented in
Fig. 1 and 2. These results indicated that the extract was not cytotoxic and
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could be assessed for their medicinal properties.
2.2. Fibroblast cell migration was induced by A. saccata leaf extract

Activation, proliferation and migration of fibroblasts are the primary
steps in wound healing, where multiple cell types and other micro
environmental factors are involved. Scratch assay is a widely applied In
vitro technique for understanding the wound healing capabilities of
medicinally important compounds [14]. In the current study, L929 cells
were treated with 125 μg/mL of A. saccata extract for 48hrs. Cell
migration at 0, 12, 24, 48 h were captured and wound closure distance
was calculated by Image J software. The results indicated that A. saccata
leaf extract, at 125 μg/mL, closed the gap created by the scratch by
93.525% in 48 h. Percentage wound closure at different time intervals in
untreated, extract treated and control drug-treated cells have been rep-
resented in Fig. 3. A. saccata leaf extract induced the migration of L929
cells resulting in wound closure. In the standard-drug treated cells,
99.05% of the gap was closed at 48 h. Fig. 4 shows the microscopic
images of untreated, standard drug-treated and extract-treated L929
cells. The photographs show increased cell migration in the control
drug-treated cells and extract treated cells
2.3. Collagen type 1 expression was increased dose dependently

Collagen-1 is the major protein of the extracellular matrix (ECM) and
is not only involved in the formation of ECM during the wound healing
process, but also enhances cellular proliferation, migration, differentia-
tion and synthesis of other essential proteins from the surrounding cells
[15, 16]. In the current study, the expression of Collagen type 1 was
analysed by flow cytometry after 48 h of treatment of L929 cells with 125
μg/mL of A. saccata leaf extract or 10 ng/mL of human Epidermal Growth
Factor (hEGF). Experimental results showed increased expression of
collagen type 1 in A. saccata leaf extract treated and hEGF treated cells.
The percentage of cells that expressed collagen type 1 in the extract
treated cells was 69.92 % and in hEGF treated cells was 90.69 % of cells.
The flow cytometric analysis of Collagen type 1 expression and the
quantification of the expressing cells in untreated, extract treated and
hEGF treated cells have been represented in Fig. 5 and 6, respectively.
These results indicate a clear increase in expression of Collagen type 1 in
extract-treated cells compared to the untreated control indicating that
the extract enhances Collagen type 1 expression in L929 cells, possibly
thereby enabling the wound healing process.

3. Discussion

Wound healing is a complex mechanism and a variety of plants used
traditionally in folk medicine have been ethnopharmacologically vali-
dated for their wound healing properties. A number of In vitro studies
have been conducted with the crude plant extracts or isolated secondary
metabolites to understand their extended use in wound healing [17].
Several medicinal properties like arthritis, snake bites, wound healing
and skin diseases, anticancer, anti-inflammatory [9], antifeedant [10],
muscle relaxant [11] properties of plants belonging to the Aristolochia-
ceae family have been reported both in traditional and modern medical
research deeming the plants to be medicinally relevant and important.



Fig. 1. The effect of A. saccata on L929 cell line viability was determined by MTT assay method. Each bar graph represents % viability of L929 cells against 31.25 to
500 μg/mL concentrations of A. saccata extract after 48 hrs exposure. Untreated cells were negative control and 1% Dimethyl Sulfoxide (DMSO) as vehicle control.
Experiments were performed in triplicates and data was shown as mean � SD.

Fig. 2. Images of L929 cell line in inverted light microscopy after the exposure to A. saccata extract. From ‘A’ to ‘C’ where A) vehicle control (1% DMSO) B) 5 μg of
standard drug Cipladine and C) 500 μg/mL concentration of A. saccata extract. After incubation of 48 hours A. saccata extract displayed no toxicity.

Fig. 3. Percentage of cells migrated towards the wound and involved in wound
closure. Migration of cells in the absence or presence of A. saccata leaf extract.
Blue: cells with culture medium alone; Orange: 5 μg/mL of standard drug
Cipladine; Grey: 125 μg/mL of A. saccata leaf extract.
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Although these medicinal properties of the plant are known traditionally,
these properties have not been scientifically validated. Therefore, in this
study, we evaluated the wound healing properties of A. saccata by In vitro
assays and expression studies. A typical wound healing process encom-
passes complex cellular changes that include inflammation, angiogenesis,
re-epithelialization, granulation tissue formation, and remodeling of
extracellular matrix [2]. In the initial stages of wound healing, fibroblasts
play a vital role by actively proliferating, migrating to wound area and
inducing the synthesis of new extracellular matrix (ECM), and thick actin
myofibroblasts [18]. Fibroblast cell lines like TIG119 [19], NHDF [20],
3

HDF-D [20], L929 [21, 22] etc. have been employed to assess the wound
healing potencies of several compounds In vitro. Besides plant extracts,
herbal formulations made of a combination of plant extracts have also
been tested using these cell lines, particularly the L929 cells [21]. In
other words, the migratory and proliferative abilities of the fibroblasts
are pivotal to wound healing. In order to assess the wound healing po-
tency of the methanolic extract of A. saccata leaves, we performed scratch
assay, a widely used In vitro assay in wound healing studies [14], on the
fibroblast cell line L929. In our study, we observed that L929 cells
migrated better toward the artificially created wound when treated with
the A. saccata leaf extract. This suggests that the extract accelerates
wound healing by inducing the migration of fibroblasts. A similar study
on another species of the same family, A. bracteolate, reported that its
methanolic extract stimulated the migration of fibroblasts and kera-
tioncyctes and enhanced the expression of wound healing related genes
[23].

Further, fibroblasts synthesize ECM components and growth factors
like Collagen, FGF, EGF, TGF-β etc., which form the key regulators of
wound healing process and are involved in the regeneration of injured
ECM [4]. Of these, collagen is a key component of the ECM and its
synthesis is proportional to the amount of hydroxyproline synthesized 4,

18,24�27. Collagen type 1 is a crucial factor and is imperative to induce
major cellular events like extracellular matrix remodeling during the
wound healing process [24, 25, 26, 27] and angiogenesis [28]. Moreover,
the strength and integrity of the newly formed blood vessels is directly
linked to the amount of collagen synthesized by the fibroblasts [18].
Studies focused on plants for wound healing properties have also



Fig. 4. Microscopical images representing the In vitro wound healing nature of methanolic extract of A. saccata leaf: L929 cells were incubated in presence or absence
of A. saccata leaf extract and standard drug Cipladine and images were captured at 0, 12, 24 and 48 hrs. (a) Negative control, (b) 5μg of positive control Cipladine (c)
125 μg/ml of A. saccata leaf extract. The boundaries of the scratched wounds were determined by the dark lines.
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demonstrated their ability to increase collagen production. For example,
the oral and topical administrations of Centella asiatica extract not only
showed increased collagen synthesis but also better maturation and
crosslinking of collagen in rat models [29]. Also, Shirwaikar et. al. re-
ported that the use of A. bracteolate increased the rate of wound
contraction and there was a significant increase in the hydroxyproline
content, which is an indication of collagen levels [30]. Adams et. al. re-
ported a few native plants of Australia that differentially induce Collagen
I and Collagen III In vitro upholding them as a useful source of wound
healing compounds. In this report, the bioactive compounds that bring
about the induction of collagen were also elucidated, suggesting that
plants induce Collagen expression through their bioactive compounds
[31]. Therefore, we studied the expression of Collagen type 1 in the
untreated, A. saccata extract treated and control molecule-treated L929
cells. In our study, the expression of Collagen type 1 was found to be
upregulated on treating L929 cells with the A. saccata extract, suggesting
that A. saccata possibly enhances the expression of Collagen type 1,
thereby initiating the migration of fibroblasts bringing about wound
healing. This indicates that A. saccata has potential wound healing
properties and can be used to extract lead molecules in the discovery of
wound healing agents. The phytochemical analysis of other well-known
wound healing plants reveal the possible role of these phytoconstituents
especially flavonoids and triterpenoids in wound healing. These phyto-
chemicals have been documented to possess astringent, free radical
4

scavenging and antioxidant properties, which are known to aid wound
healing process [32, 33]. Another possible mechanism is that the plant
extracts increase the proliferation of fibroblasts cells and in turn increase
the production of collagen in the affected area. This was observed
through increase in DNA, total protein and total collagen content of
granulation tissues in wounded rat models treated with plant extracts
[34].

The extract was also tested for its cytotoxicity using MTT assay.
This cytotoxicity assay is based on the idea that early screening of any
biological material for toxicity may help in the evaluating its bio-
logical and therapeutic relevance. Assessing the cytotoxic effects of
the plant extract on the cells or an in vivo model is critical as some
plant metabolites might have toxic effects on the cells because of their
intermolecular interactions in the cells. This is indicated by a measure
of the half maximal inhibitory concentration (IC50) value. A high IC50

value is representative of the fact that high concentration of the
extract is essential to cause detrimental effects on the cell, whereas a
low IC50 value is indicative of the cytotoxic ability of the extract at
smaller doses [35]. Previous literature suggests that an IC50 value of
100 μg/mL may be possibly toxic to cells [36]. Further, American
National Cancer Institute (NCI) has set the IC50 limit of 30 μg/mL
concentration for the extract to be considered toxic to the cells [37].
In our study, L929 cells were treated with extract concentrations
much higher than these recommended thresholds and the percentage



Fig. 5. Flow cytometry based expression studies of collagen-1. L929 cells were
exposed to 125 μg/ml and 10 ng/ml of A. saccata leaf extract and hEGF
respectively for 48hrs. a) black-untreated cells; b) green – A. saccata leaf extract;
c) red-hEGF.
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viability of the cells was not affected much. This supports our claim
that A. saccata extracts can be used in for wound healing without the
fear of toxicity. Nevertheless, the scope of these claims is limited to
the highest concentration of extract and the cell line type used in the
study. A future study with an in vivo model, a different cell type
and/or with higher concentrations may prove to be different. How-
ever, our study is a step forward in adding ethnopharmacolgical
validation to the use of A. saccata in wound healing cases.

4. Materials & methods

4.1. Chemicals and reagents

Dulbecco's Modified Eagle's medium (DMEM) (#AL219A, Himedia),
Fetal Bovine Serum (#RM10432, Himedia), Delbucco's Phosphate Buff-
ered Saline (DPBS) (#TL1006, Himedia), Mouse Anti-Human collagen I-
Fluorescein isothiocyanate (FITC) antibody (#FCMAB412F, Merck),
Fig. 6. Bar graphs represent the % of L929 cells expressing collagen-1 upon treatm
a) black-untreated cells; b) green – A. saccata leaf extract; c) red-hEGF. The studies
cytometry run.
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Cipladine (Cipla Ltd), hEGF (#11376454001, Roche) MTT Reagent (#
4060 Himedia), DMSO (#PHR1309, Sigma), Fluorescent Activated Cell
Sorter (FACS) Calibur (BD Biosciences, INDIA), Microplate reader
(#EC800, Biotek).

4.2. Methanolic extraction of leaves

Fresh leaves of A. saccata were shade dried, finely powdered using a
mortar and pestle, and 100 g of the powder was used for methanolic
extraction. The powder was mixed in 200 mL of methanol and was
continuously agitated for 24 h using a magnetic stirrer. The extract was
then filtered through Whatman no 1 filter paper and filtrate was
concentrated in rotary evaporator at 40 �C. The extract was stored in dry
tubes until further use. A stock solution of the extract was prepared in
DMSO andworking concentrations were prepared by diluting the stock in
DMEM with 10% Fetal Bovine Serum.

4.3. Cell culture

The Mouse fibroblast cell line L929 was procured form NCCS, Pune
and cultured in DMEM, premixed with 10% Fetal Bovine Serum and
antibiotics (streptomycin 100 U/mL and penicillin 100 U/mL). The cells
were maintained at 37 �C with 5% CO2 in a humidified incubator and
were passaged when they reached 80% confluency. Cells were counted
using a Hemocytometer. Viability was calculated to seed the cells at
appropriate densities, to perform the assays.

4.4. Cytotoxicity studies

The cytotoxicity of A. saccata leaf extract on L929 cells was evaluated
by MTT assay [30]. Briefly, L929 cells were seeded in a 96-well plate at
an initial seeding density of 2*104 cells/well/200μL of DMEM and were
cultured for 12 h. The cells were then treated with different concentra-
tions of A. saccata leaf extract (31.25, 62.5, 125, 250, and 500 μg/ml),
and were incubated for 48 h at 37 �C and 5% CO2. Post incubation, the
spent medium was removed and 20 μL of 5 mg/mL of MTT reagent was
added to the cells and incubated for 2 h in the CO2 incubator. The for-
mazan crystals were solubilized with 100 μL of DMSO and absorbance at
570nm was determined using a microplate reader. The cells treated with
ent with 125 μg/ml of A. saccata leaf extract and 10 ng/ml of hEGF for 48 hrs
were conducted in triplicates and 10000 events were measured for each flow
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DMEM alone were considered as negative control and 100% viable. The
percentage of cell viability was calculated using the formula:

% of viability¼ Mean absorbance of test sample
Mean absorbance of negative control

� 100

Percentage of cell viability was plotted against concentrations of test
samples. Three sets of experiments were performed in triplicate in and
the data were presented as mean � SD (n ¼ 3).

4.5. Scratch assay

The wound healing capabilities of the A. saccata leaf extract was
assayed by performing In vitro cell migration studies on L929 cells by a
previously described method [14]. Briefly, 2*105 cells/mL were seeded
in 6-well plates and were cultured overnight. Cells were then washed
with Delbucco's Phosphate Buffered Saline (DPBS) and a scratch was
made with a sterile 200μL tip. The detached cells and other cellular
debris were removed by washing the cells with DPBS. The cells were
treated with 125 μg/mL of A. saccata leaf extract and 5 μg/mL of positive
control, Cipladine [17] and incubated for 24 h. Cipladine is a standard
drug that is used in wound healing [17, 32]. Untreated cells were
negative control. The cell migration and morphological changes of cells
were observed in the images taken by inverted microscope, equipped
with digital camera. The experiments were performed in triplicate (n ¼
3). The width of the scratch and wound closure at different time intervals
(0, 12, 24 and 48hrs) was analyzed by Image J software.

4.6. Flow cytometry

L929 cells were seeded in 6 well plate at an initial density of 2*105

cells/ml and were treated with 125 μg/ml of A. saccata leaf extract or 10
ng/mL of hEGF. After 48 h of incubation, cells were trypsinized and
washed with DPBS. Cells were fixed and permeabilized with 70% ice cold
methanol at -20 �C and stained with Mouse Anti-Mouse Collagen I-FITC
antibody by incubating at room temperature in dark for 30 min. FACS
Calibur was used to evaluate the expression of collagen-1 and data was
analysed by CellQuest Pro software.

All studies were conducted in triplicates and results expressed as
mean � SD (n ¼ 3).

4.7. Statistical analysis

All the experiments were conducted in triplicates, and the results are
expressed as mean percentage inhibition� standard deviation (SD) (n¼ 3).
Statistical significance was determined by one-way analysis of variance,
followed by Bonferroni post hoc test for multiple comparisons, and p< 0.05
wasconsideredstatistically significant.All statistical analysesand IC50values
determination were carried out in GraphPad Prism (version 3.1) software,
GraphPad Software, 2365 Northside Dr. Suite 560, San Diego, CA 92108.

5. Conclusion

In conclusion, the methanolic extract of A. saccata leaf enhanced
wound closure in L929 cells and expressed higher levels of Collagen type 1.
Further, the extract was found to have no cytotoxic effect. These data
suggest that A. saccate has possible wound healing properties and can be a
plausible source for the extraction of natural wound healing compounds.
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