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Two-electron spin correlations in precision placed
donors in silicon
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Substitutional donor atoms in silicon are promising qubits for quantum computation with
extremely long relaxation and dephasing times demonstrated. One of the critical challenges
of scaling these systems is determining inter-donor distances to achieve controllable
wavefunction overlap while at the same time performing high fidelity spin readout on each
qubit. Here we achieve such a device by means of scanning tunnelling microscopy litho-
graphy. We measure anti-correlated spin states between two donor-based spin qubits in
silicon separated by 16 +1nm. By utilising an asymmetric system with two phosphorus
donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange
interaction can be turned on and off via electrical control of two in-plane phosphorus doped
detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz
and provide a roadmap for the observation of two-electron coherent exchange oscillations.
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ontrolling the interaction strength between two quantum

particles lies at the heart of quantum information pro-

cessing. One must have access to classical control fields
that, while tuning the environment of quantum particles, are
sufficiently decoupled from them as to not disturb their quantum
states!. Physical systems ranglng from trapped ions”, single
photons3, superconducting circuits* and semiconductor quantum
dots® have demonstrated this exquisite level of control. In 1998,
Loss and Divincenzo® proposed the use of a controllable exchange
interaction in semiconductor quantum dots to perform a two-
qubit logic gate. In the same year, Kane’ proposed how this could
be achieved in donor-based devices. Here, the wavefunction
overlap between two electrons on neighbouring donor atoms
placed ~20 nm apart is controlled using an exchange gate between
them. Harnessing this exchange interaction to perform a uni-
versal two-qubit quantum logic gate is the next step for donor-
based architectures.

Three %pproaches exist for donor qubits: a controlled phase
(CZ) gate®; the controlled-rotation (C-ROT) gate’ and a direct
two-electron SWAP operation'®. While the first two protocols
require the use of high frequency microwave fields for electron
spin resonance!!, a direct two-electron SWAP necessitates the
ability to turn on and off the exchange interaction between the
electrons over orders of magnitude for high fidelity two-qubit
operations. Notably, while the extent of a single donor wave-
function is well understood!?~'4, modelling the exchange cou-
pling between two donor electrons is more complex'>~!” due to
multi-valley interference effects'S. To this end, a critical challenge
for donor-based architectures is to know the distance required
between the donors in order to turn the exchange interaction on
and off with external gates!>!°.

To date, two main methods for donor placement in silicon
exist: ion implantation and atomic manipulation via scanmng-
tunnelling-microscopy (STM) hydrogen lithography?®. Despite
much success in accessing randomly placed donor spins, ion
implantation has yet to demonstrate donor placement precision
below ~6 nm, while STM hthography has demonstrated donor
placement down at the atomic scale?!.

In this paper we use STM hthography that allows both the
precision placement of donor atoms for direct and independent
spin-measurement of electrons near a readout structure and, most
importantly, the control of the exchange interaction between
them. We measure the anti-correlated spin states that arise due to
the formation of two-electron singlet-triplet states as a function of
their wavefunction overlap, which is controlled by in-plane
detuning gates. By observing the onset of these anti-correlated
spin states as a function of detuning pulse voltage and time, we
estimate the magnitude of tunnel coupling between the two donor
qubits, and provide a roadmap towards coherent exchange gates
for future devices.

Results

Independent spin readout of a 2P-1P system. In the original
Kane proposal an exchange gate between the donors was sug-
gested to directly tune the exchange coupling between the qubits’.
Recent tight binding simulations have shown that it is difficult to
tune the exchange energy in a 1P-1P donor configuration using
such a gate??. Instead, it has been proposed that the exchange
energy could be tuned over five orders of magnitude?? by con-
fining electrons in an asymmetric 2P—1P configuration and by
utilising ‘tilt’ control using two opposing detuning gates rather
than a central J-gate; see Fig. 1a. Motivated by these predictions
with estimates for the required inter-donor separation, in this
paper we demonstrate the ability to control exchange coupling in
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donor-based qubits at the (1,1)—=(2,0) charge region using a 2P—1P
donor system.

The device, shown in Fig. la, was patterned using STM
hydrogen lithography. The qubits-L and -R (left and right) are
composed of two donors and one donor respectively, determined
by examining the size of the lithographic patches (1nsets in
Fig. 1a) as well as their measured charging energies’>?* (see
Supplementary Figs. 1, 6). Three gates {Gy, Gy, Gr} control the
electrostatic environment of the qubits which are tunnel coupled
to a larger readout structure made up of approximately 1000 P
atoms which serves as a single-electron-transistor (SET) charge
sensor. The SET quantum dot is operated with a source-drain bias
of 2.5mV, has a charging energy of ~6 meV and is controlled
predominantly via gate Gg. All data in this paper was taken in a
dilution refrigerator with a base temperature of ~100mK
(electron temperature ~200 mK).

Figure 1b shows the charge stability map of the 2P—1P device.
Current peaks running diagonally correspond to charge transi-
tions of the SET island. Two sets of breaks in the SET current
peaks are observed with different slopes and correspond to
electron transitions from either L or R to the SET island. An
avoided crossing (triple-point) between these two transitions
(dashed white line) indicates the region where electrons can
tunnel between L and R, in this case at the (1,1)-(2,0) charge
transition. Only one more charge transition corresponding to L is
observed at lower gate voltages leading to the assignment of the
charge regions.

The direct measurement of anti-correlated electrons hinges
upon the ability to independently measure their spin states®”. To
measure the spin of R we employ an energy-selective tunnelling
technique?> where the electrochemical potential of the single-
electron transition from the 1 -0 charge state is split by the
Zeeman energy in a static magnetic field B,; see blue arrows in
Fig. 1c. Whether the electron is able to tunnel to the SET reservoir
therefore depends on its spin state, i.e. the readout is a spin-
dependent unloading mechanism from the qubit to the SET. This
readout technique is employed for the electron at R because the
(1,1) region for this qubit borders the 1 -0 charge states.

For L we use a variant of this method, first reported Watson
et al.?®. The charge transition for this qubit borders the 1-2
charge states, but because the chemical potential from the one-
electron spin-up and -down states to the two-electron singlet state
are also split by the Zeeman energy, a similar readout method is
allowed (red arrows in Fig. 1c?°). In this case, we utilise a spin-
dependent loading mechanism from the SET to L. The
combination of these two distinct readout techniques avoids the
need to pulse over large voltages in order to reach the (1,1)—(2,0)
charge transition. Both readout methods are equivalent and give
rise to a current ‘blip’ through the SET which is used to
discriminate between spin-up and -down electrons. The average
readout fidelity of spin-up and -down are estimated to be 96.2 +
1.1% and 97.6+2.1% for qubit-L and -R respectively (see
Supplementary Figs. 2, 3 and Table 1 for full analysis).

Importantly, the readout of each electron must be completely
independent of the spin-state of the other. That is to say, the
exchange energy at the detuning-position where readout is
performed must be vanishingly small, such that no spin flip-
flops occur during the readout window. This is demonstrated in
Fig. le, f. For these measurements we prepare one of two states,

T 11 LT 1 R DTN

where |i,j) indicates the spin state i and j on qubit-L and -R
respectively. Loading spin-down for one qubit is performed
deterministically as a result of the spin readout protocol. Spin-up
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Fig. 1 Two qubit 2P—1P device with independent sequential readout. a An STM micrograph of a precision placed two spin-qubit donor device showing the
lighter coloured lithographic outline where the hydrogen mask has been removed. Two spin-qubits, L and R, are separated by 16 +1nm and sit equidistant
at 19 +1nm away from a larger readout structure which serves as both an electron reservoir and single-electron-transistor (SET) charge sensor with

source (S) and drain (D) reservoirs and gates {G,, Gy, Ggr, Gs}; the scale bar is 20 nm. The insets show close-up STM micrographs of L and R where the
green (blue) circles show fully (half) desorbed silicon dimers. White lines indicate the silicon dimer rows and the scale bars are 2 nm. b Current through the
SET charge sensor as a function of Vg and Vgg at the (1,1)-(2,0) charge transition. Electron spin readout is performed at the SET breaks (solid white lines,
where tunnelling of qubit electrons to or from SET can occur) at the red and blue circles for L and R respectively. The approximate wait position for spin
relaxation measurements is shown by the green square and the detuning axis between (1,1)-(2,0), ¢, is indicated by the white arrow. The dashed white line
indicates where electrons can tunnel between qubit sites, i.e. where e = 0. ¢ The relevant electrochemical potentials in a magnetic field for spin readout of L
(red arrows) and R (blue arrows). d A schematic representation of the controllable exchange interaction in a 2P=1P donor spin-qubit system. For detuning
€ < 0 the electrons are in the (1,1) charge configuration and the spins are independent. For ¢ > O the ground state (2,0) charge configuration is the two-
electron singlet state. e, f Independent spin readout of L (R) demonstrated by spin relaxation, when the electron on R (L) is deterministically loaded with
[1). In each case the qubit initially prepared as spin down shows no decay behaviour indicating that the readout is independent at this detuning position, i.e.

the exchange is negligible at the readout positions. All measurements were performed with B,=25T

cannot be loaded deterministically; instead a random mixture of
spin up and down is loaded by plunging the qubit far below the
SET fermi-level. After initialisation we pulse inside the (1,1)
charge region midway between the two readout positions (green
square in Fig. 1b) and wait for up to 10 s for the randomly loaded
electron spin to decay to spin down. Sequential spin-readout of L
and then R is performed, in that order, to minimise the effect of
the shorter T} of qubit-L. The spin-up fractions show relaxation
of the qubit initially loaded with random spin, with T; times
measured to be 2.9 + 0.5s and 9.3 + 2.4 s for electrons on L and R
respectively at B, =2.5 T. Importantly, the electron initially loaded
as spin-down shows no significant spin-up fraction during this
time, demonstrating that at these readout positions there is no
significant spin—spin interaction over ~10s.

Controllable exchange of precision placed donors. The rea-
lisation of a two-qubit logic gate hinges on the ability to con-
trollably turn on and off an interaction between quantum
particles. We show this here by pulsing towards the (1,1)—(2,0)
charge transition where an exchange interaction between the two
electrons arises as a consequence of the Pauli-exclusion princi-
ple27. The Hamiltonian is given by H, =JS - Sk, where Sy and Sy
are the left and right electron spin vectors and ] is the strength of
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the exchange interaction®. The magnitude of J is given by the
energy difference between the symmetric and anti-symmetric
two-electron ~ states |T°) = (|T1) +|I1))/v2 and |[S) =
(IT1) = [11))/V/2 respectively. Similar to gate defined quantum
dots, it has been shown that the exchange between donors can
also be parameterised in terms of the tunnel coupling and
detuning between the (1,1) and (2,0) charge statesZ8,

05+ e .

(2)
where ¢ is the detuning and . is the tunnel coupling (such that J
(0)=t.). The detuning axis € is applied along Vg =-0.9 Vgr
(along the SET Coulomb blockade) and is shown by the white
arrow in Fig. la. It effects a tilting from the (1,1) towards the (2,0)
charge state, shown schematically in Fig. 1d. The detuning energy,
€, is related to the applied gate voltage Vi, via the lever arm a, =
0.071 eV/V, such that e=a, Vgi.

We start by initialising either state from Eq. (1) by loading one
qubit randomly and deterministically down on the other, and
subsequently apply a 50 ms pulse along the axis ¢ to control the
strength of the exchange interaction®, shown by the open black
circles in Fig. 2a. This time is long enough to allow for a
significant exchange interaction, but much shorter than any
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Fig. 2 Controllable exchange interaction between precision placed donor-based spin qubits. a We prepare a random spin on one qubit and deterministically
spin-down on the other near the readout positions in the (1,1) charge region shown by the red and blue circles. After moving into the (1,1) region equidistant
between the readout positions for 1ms (start of arrow), a 50 ms pulse is applied along the detuning axis shown by the black arrow to the positions marked
by the black circles. Subsequent pulses are applied to perform spin readout on both qubits. b-d The probabilities of the joint two-spin outcomes from

sequential spin-readout of L and R plotted against the detuning energy, e. For the initially prepared state p,; the blue circles show the outcome of two-
electron spin readout which is performed at approximately e = =7 meV detuning in the (1,1) charge region where exchange is negligible (see Fig. 1). The red

crosses show the equivalent data set for an initially prepared state p;,
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Fig. 3 Experimental estimation of tunnel coupling. Starting with p;,, the measured probability P;; (a) and the theoretical prediction (b) as a function of
pulse wait time and detuning position. For the model we have used a value of t. = 200 MHz. ¢ Solid green and blue curves show theoretical predictions for
wait times of 0.3 and 1 ms respectively (corresponding cuts shown in a). Blue and green crosses show measurements for these wait times. The dashed and
dotted lines show the theoretical predictions for tunnel coupling values of t. =500 and 50 MHz respectively

electron spin relaxation such that readout is not hindered. Upon
pulsing back into the (1,1) charge region we perform independent
spin readout of L and then R. In addition to the single spin
outcomes for each qubit we also determine the joint probabilities
bj for ije {11, 11, 11,11}, as shown in Fig. 2b—d.

In the case where p; , is initialised, after pulsing to ¢ < 0 we
observe Py, ~0.5 and P, ; ~ 0, indicating no spin flip-flops have
occurred during the 50ms pulse duration. However, anti-
correlated spins can be seen in Fig. 2b, ¢ as we pulse closer to
the (1,1)—(2,0) charge transition, at e=0 where both P;, and
P, — 0.25. Furthermore, we see that both P;; and P, remain
constant at approximately 0 and 0.5 respectively as they represent
populations of the triplet states [11) and |||) and are not subject
to the exchange interaction. Statistical analysis (see Supplemen-
tary Fig. 4) of these results indicates a correlation coefficient of
¢=-0.243 +0.028 with a p-value < 0.01 for 0 <e <2.4meV,
demonstrating the presence of statistically significant spin anti-
correlations in this region.

Estimate of inter-donor exchange coupling. To ascertain the
value of the inter-dot tunnel coupling, t., we repeat the same
pulsing scheme as above while modifying the detuning pulse
duration from 0.1 to 2 ms and compare our results to a spin-level
theoretical model; see Fig. 3. The quantum mechanical behaviour
of a donor-based two-qubit system is described by the following
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terms in the Hamiltonian:

H, =y.B-(SL+ Sr),
Hp = yoB - (In, + I, + Ing),
Hps = A1Sy - (In,, + In,) + ArSg - Ing,
Hey = ]St - Sy,

(3)

where H,. and H,, are the electron and nuclear Zeeman energies,
with y.=28.024 GHz/T and y,=17.235 MHz/T gyromagnetic
ratios respectively?’. The hyperfine term, Hiyy is separated into
two components as it has been predicted that the hyperfine
constants will be different for varying donor cluster configura-
tions?>3%, Here for sim}zalicity we assume the bulk-like value of Ay,
=Ar=A=11753 MHz*® and define the static field to be
B = (0,0, |B,|). We numerically calculate the time evolution of
the density matrix via a fourth-order Runge—Kutta method with
the inclusion of relevant decoherence channels (see Supplemen-
tary Fig. 5).

For the theoretical data shown in Fig. 3b we prepare the initial
state py, from Eq. (1) and simulate non-adiabatic pulses to
detuning positions for varying pulse durations, 7,. For this
simulation we use a tunnel coupling, f.=200MHz, assume
dynamic P nuclear spins as well as a single-spin dephasing time of
T; = 55ns due to the constantly fluctuating Overhauser field of
the 2%Si nuclear spins. The equivalent measured data set is shown
in Fig. 3a with cuts at 0.3 and 1ms shown in Fig. 3c and
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Fig. 4 Theoretical predictions for the observation of coherent exchange oscillations. a The value of exchange energy, J, as a function of tunnel coupling, t.
and detuning, . The boundary separating the two-electron product states with singlet-triplet states occurs where the difference in magnetic field between
the two qubits, AB, is equal to the exchange energy. For donor-based systems AB, is dominated by the donor hyperfine strength, and is equal to A for a 1P
—1P system (solid green line), and can take the two values A/2 or 3A/2 for a 2P-1P system (dashed and dotted green lines respectively) dependent on the
nuclear spin orientation (examples shown in inset). We assume the bulk 1P value for the hyperfine, A=117.53 MHz. The dashed blue line indicates the
values of J accessible for the current device with t.~200 MHz. b Theoretical prediction of coherent exchange oscillations for a 2P=1P device in natural
silicon with tunnel coupling t. = 2.5 GHz. The two-electron state is initialised as |1]) at a point where the exchange energy is negligible, and subsequently a
non-adiabatic detuning pulse is applied to e = =25 GHz (circle marker in a). We have assumed voltage noise equivalent to 850 MHz along the detuning
axis, € (obtained from measurements) as well as a single electron T; = 55ns measured in previous works32. From this result an oscillation frequency v and
dephasing time 74 are extracted. ¢ The product of oscillation frequency, v and dephasing time, 74 as a function of tunnel coupling and detuning. The green
dashed line represents the boundary between product and singlet-triplet eigenstates of the two-electron system. The Bloch sphere cross sections indicate
the relative magnitudes of AB, (purple) and J (blue) in different regions. d Theoretical prediction of vzg4 along the line AB,=J as a function of tunnel
coupling for a 2P-1P double quantum dot. Solid (dashed) line shows results including (excluding) the 2°Si Overhauser field

compared with the theoretical predictions for t.=50, 200 and
500 MHz. From these results we can estimate the tunnel coupling
within an order of magnitude accuracy to be t. ~ 200 MHz for this
device. Following Eq. (2), this result places an equivalent bound
on the achievable exchange energy J <200 MHz inside the (1,1)
charge re§ion (see Fig. 4a).

In ref. 22 the authors investigated multiple different 2P intradot
configurations, and found that disorder at the lattice-site level had
little effect on the final exchange energy. They showed that the
exchange energy for a 2P—1P system with a 15 nm separation was
tunable over five orders of magnitude for electric field strengths
—2<|E|<2MV/m at the donor sites. The voltage applied to the
in-plane gates in our device amount to a potential difference of ~
100 mV between Vg and Vgr at the (1,1)-(2,0) inter-dot
transition. From an electrostatic model of our device we estimate
|E| = 0.49+0.10 MV/m at the donor sites. Our estimate of ¢.=
0.2 GHz (which is equal to J at ¢=0) is within an order of
magnitude of the theoretical prediction for J in a 2P—1P system
given this |E|?2.

Requirements for coherent control of exchange. In this final
section we investigate the potential for achieving coherent
exchange between two electrons confined to donors in natural
silicon. Based on Eq. (2) the plot in Fig. 4a shows the obtainable
exchange energies, J, as a function of detuning and tunnel cou-
pling, where the vertical blue dashed line shows .= 0.2 GHz for
our device. Importantly, the boundary where the difference in
magnetic field at the two qubit sites AB, is equal to the exchange
energy J, separates the two-electron product eigenstates and
singlet-triplet eigenstates. For donor qubits AB, is dominated by
the phosphorus nuclear-spin hyperfine, A. The exact value of AB,
varies depending on the number of donors at each qubit site and
their nuclear spin orientations: For a 2P—1P device with random
nuclear spin configurations AB, fluctuates between 3A/2 or A/2
with a 1:3 ratio.

It can be seen from Fig. 4a that for the device studied here there
exists only a small range in detuning (approximately 10 pV in
gate voltage) over which one could implement coherent exchange
oscillations inside the (1,1) charge region (negative €). When one
takes into account any voltage noise on gates (which influences €
and ultimately J) this makes the operation of coherent oscillations
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challenging®!. Indeed, in this particular device we measured gate
RMS voltage noise of 50 pV from shot to shot, equivalent to
detuning noise of de =850 MHz, indicating that pulsing repeat-
edly to the same exchange energy would not be possible for € < 0.
For the same reasons, charge noise also destroys coherence when
adopting the approach to pulse € > 0. We carried out experiments
with pulses down to 10ns for both ¢ <0 and ¢>0 but were
unable to observe a coherent exchange phenomenon.

Figure 4b shows the predicted number of exchange oscillations
(~15) that would be observed in a device with t.=2.5 GHz after
pulsing to a detuning e=-25GHz (circle marker in Fig. 4a).
Conversely, using the same model we estimate that a noise floor
of <6 pV (~100 MHz in detuning or ~50 mK, much lower than
the electron temperature) would be required to observe the
signature of coherent oscillations in the present device. Note that
in addition to the realistic detuning noise we have also included
the effect of a constantly fluctuating 2°Si Overhauser field
expected in natural silicon®? as well as randomised P donor
nuclear spins of the donor atoms themselves.

From these simulations we can extract the frequency of
oscillations, v as well as the dephasing time 74, allowing us to
determine the figure of merit vz4 as a function of tunnel coupling
and detuning pulse position; see Fig. 4c. Interestingly, the product
vty only becomes significant beyond the boundary AB,=3A/2 for
values of t.>2 GHz, providing a lower bound on the required
tunnel coupling for coherent control. Figure 4d gives vr4 as a
function of tunnel coupling for a detuning pulse to the boundary
AB,=3A/2. These results indicate that at high tunnel coupling,
the observation of exchange oscillations will ultimately be
hindered by the presence of the fluctuating 2°Si Overhauser field.
In the case where qubits exist in a spin vacuum, as in 28Si, only
charge noise is relevant and vry can be seen to increase
monotonically as a function of tunnel coupling (dashed line in
Fig. 4d).

Discussion

In summary, we have demonstrated a controllable exchange
interaction resulting in two-electron spin anti-correlations on
precision placed 2P—1P donors qubits in Si using in-plane
‘detuning’ gates. The results are consistent with the exchange
interaction behaviour expected at the (1,1)—(2,0) charge transition
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and represent the first direct measurement of correlated electron
spins in donor-based devices. While the small tunnel coupling
(0.2GHz) in the present device prohibited measurement of
coherent oscillations, we show our results agree with recent stu-
dies'” in which much smaller distances than previously predicted
are required to achieve a sufficiently large exchange coupling for
coherent control. Furthermore, while detuning noise presents a
problem for devices with a small tunnel coupling, we theoretically
predict that for larger tunnel couplings of ¢t.>2 GHz it can be
overcome. Theoretical work on coupled donor systems suggest a
separation of 13—14 nm between a 1P—2P system will be required
to achieve this magnitude of exchange coupling®?. Importantly,
there is no reason to believe that this small change in donor site
separation will lead to a significant reduction in electrical con-
trollability based on previous experimental works?42>28:33, This
benchmark for a larger interaction strength between neighbour-
ing donor-based qubits provides the focus for future experiments.

With the atomic precision placement of donors using STM
lithography it will be possible to further optimise the inter-donor
distance to control the coherent coupling between two donor
qubits with order-of-magnitude accuracy>*. While extensive
studies have been conducted for deterministic single P donor
incorporation®, similar studies will need to be developed to
determine the optimal lithographic patch for deterministic 2P
incorporation. Crucially, recent theory predicts that the 2P—1P
configuration we present in this paper both increases the tun-
ability of the tunnel coupling and at the same time suppresses the
‘exchange fluctuations’ known for two single donors, and may
therefore be less sensitive to the exact atomistic donor positions
than two coupled single donors?2. Furthermore, our ability to
directly place the donor with <1nm accuracy along with the
reproducible demonstration of high fidelity single-shot spin-
readout in multiple devices?>, bode well for the future scalability
of donor qubit quantum computers.

Methods

Device fabrication. The device, shown in Fig. 1, was fabricated using scanning-
tunnelling-microscopy hydrogen lithography to selectively remove hydrogen from
a passivated Si(100) 2 x 1 reconstructed surface. The lithographic mask is subse-
quently dosed with PH; and annealed (320 °C) to incorporate P atoms into the
silicon substrate®® with ~1/4 monolazer density (2 x 10'%/cm?) allowing for quasi-
metallic conduction in all electrodes™’.

Measurement setup. For all electrical measurements, the device was mounted on
a high-frequency printed circuit board within a copper enclosure, thermally
anchored to the cold finger of a dilution refrigerator with a base temperature of 50
mK. Voltage pulses were applied to gates G and Gy by an arbitrary waveform
generator (Agilent 81180A), connected via a bias tee to the gate along with a
constant-voltage source. The SET current, Isgr, was amplified and converted into a
voltage signal at room temperature, low-pass filtered to 1 kHz bandwidth, and
acquired with a fast digitising oscilloscope.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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