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Abstract

Membrane proteins were found to be involved in various cellular processes performing various important functions, which
are mainly associated to their types. However, it is very time-consuming and expensive for traditional biophysical methods
to identify membrane protein types. Although some computational tools predicting membrane protein types have been
developed, most of them can only recognize one kind of type. Therefore, they are not as effective as one membrane protein
can have several types at the same time. To our knowledge, few methods handling multiple types of membrane proteins
were reported. In this study, we proposed an integrated approach to predict multiple types of membrane proteins by
employing sequence homology and protein-protein interaction network. As a result, the prediction accuracies reached
87.65%, 81.39% and 70.79%, respectively, by the leave-one-out test on three datasets. It outperformed the nearest neighbor
algorithm adopting pseudo amino acid composition. The method is anticipated to be an alternative tool for identifying
membrane protein types. New metrics for evaluating performances of methods dealing with multi-label problems were also
presented. The program of the method is available upon request.
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Introduction

Membrane proteins are one of the three main protein classes. It

is approximately estimated that 20-30% of all genes in most

genomes encode membrane proteins [1]. Gao et al. [2] estimated

the number of membrane proteins was about 8000 in human.

Membrane proteins also play wide varieties of important roles

invloved cellular processes [3], in the immune response, serve as

enzymes, etc. In addition, membrane proteins constitute 60% of

drug targets [4], which were crucial to new drug discovery as well

as to understand the mechanism of the cellular activities [4,5,6]. It

is reported that functions of a membrane protein are closely

associated with its type [7]. However, it is time-consuming and

costly to determine types of uncharacterized membrane proteins

by using traditional biophysical methods [8]. Thus, there is a

growing need for effective computational methods to predict the

membrane protein types.

In the past decades, it was considered the importance of the

predictions. Many tools were developed based on machine

learning techniques, in which both features extracted from samples

and the learning algorithms were equally affecting. Features used

for the predictions were mainly including: amino acid composition

(AAC), sequence homology information such as position-specific

scoring matrices (PSSMs), pseudo amino acid composition

(PseAAC), physicochemical properties of amino acids and

functional domains. AAC was the simplest but often the most

efficient to represent protein sequence. Cai et al. [9] used only

AAC feature by using support vector machine (SVM) to predict

membrane protein types. Reflecting the order of amino acid in the

sequence and complementing AAC, PseAAC of protein sequence

is considered to be the extension of it. Those features were widely

applied to recognize types of uncharacterized membrane proteins

[7,10,11,12,13]. Wang et al. [14], however, pointed out that the

feature space of PseAAC was redundant, and they utilized a

Supervised Locally Linear Embedding (SLLE) algorithm [15] for

nonlinear dimensionality reduction. Pu et al. [16] proposed

IAMPC, in which they extracted features from both PSSMs and

protein primary sequences by using a so-called SVM fusion to

identify membrane proteins types. Hayat et al. [17] used both the

split amino acid composition (SAAC) and seven different

physicochemical properties of proteins to represent protein

sequences. They also employed SVM as the classifier. The

method has been implemented in a web servicer called Mem-

PHybrid (http://111.68.99.218/Mem-PHybrid). The hybrid fea-
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tures of PSSM and the SAAC of protein sequences were also used

by Hayat et al. [18] to construct a web-based predictor. Ding et al.

[19] used tripeptide compositions to recognize mycobacterial

membrane protein types. Jia et al. [8] constructed a classifier based

on hybrid feature space of domain profiles and physiochemical

properties of membrane proteins. Hayat et al. [20] used features of

split amino acid as well as the ensemble classifier. Chen et al. [21]

suggested novel multiple-source features such as transmembrane

segments, lipid-binding domains, signal peptides, signal anchors,

GPI-anchoring signals, surface amino acids, cationic patches, and

so on. On the other hand, some machine learning algorithms have

been applied for the prediction of membrane protein types. For

example, Fourier spectrum [22,23], wavelet analysis and cascaded

neural network [24], wavelet transform (DWT) combined with

SVM [25], neighborhood preserving embedding algorithm and K-

nearest neighbor algorithm [26]. However, most of these methods

did not consider the fact that one membrane protein possesses

multiple types, which is common for membrane proteins.

Sequence homology reflects evolutionary relationships, which in

turn helps infer structures and functions of proteins. Large bodies

of protein-protein interactions available provide global perspective

on relationship between different proteins at system-level. It is

reported that proteins share identical properties and functions with

interactive proteins more probably than with none-ones. There-

fore, it is possible to identify membrane protein types by means of

these. In this study, we proposed an integrated method by using

both the homologies between protein sequences and the similar

properties between interactive proteins to predict multi-types of

membrane proteins in human. To widely examine the method,

three datasets were constructed from UniProt database [27]. It was

suggested from the performance of the method that it could be

quite effective to identify membrane protein types.

Materials and Methods

Datasets
3,789 sequences of experimentally verified membrane proteins

of human were downloaded from the UniProt database (release

2012_09 - Oct 3, 2012) [27]. According to their intramolecular

arrangements and positions in a cell, membrane proteins are

generally classified into the following six types: (1) GPI

(Glycosylphosphatidylinisotol)-anchor; (2) lipid-anchor; (3) multi-

pass; (4) peripheral; (5) single-pass type I; (6) single-pass type II

membrane proteins [28]. Correct identification of the types of

membrane proteins can help distinguish proteins between different

functions.

To evaluate the perfomance of the prediction method, we

employed the sequence clustering program CD-HIT (Cluster

Database at High Identity with Tolerance) [29] to construct three

datasets: S1, S2, and S3 from 3,789 proteins. S1 contained 2,883

protein sequences in which proteins had less than 70% sequence

identity. S2 consisted of 2,081 protein sequences with sequence

identity lower than 40%. S3 had 1,469 protein sequences with

sequence identity less than 25%. As one membrane protein can

have one or more types, Figure 1(A, B, C) shows the number of

proteins having 1-6 types. It can be seen that no proteins have four

or more types. The average numbers of types of proteins in

datasets S1, S2 and S3 were 1.028, 1.035, 1.037, respectively. We

also represented the distribution of membrane proteins to their

types in the three datasets in Figure 1(D, E, F). Detail

information containing protein IDs, sequences and types were

available in Table S1.

Prediction method
In this section, the detailed procedure of the integrated

prediction method was described. The integrated method included

three methods: BLAST/PSI-BLAST method, network-based

method and shortest-distance method.

Suppose there are n proteins, say p1,p2, . . . ,pn, with known

types in the training set S. For one protein pi in S, its types were

encoded into a vector

Fi~(f1i,f2i, � � � ,f6i)
T ð1Þ

where

fki~
1 If pi has the kth type

0 Otherwise

(
ð2Þ

BLAST/PSI-BLAST method. The basic local alignment

search tool (BLAST), initiated by Altschul et al. [30], can be used

to search for local similarity between two sequences. The idea

underlying BLAST is to employ similarity measure optimized by

background probabilities to directly approximate sequence align-

ments based on dynamic programming algorithm. This method

can detect weak but more biologically significant sequence

similarities. Gapped BLAST and PSI-BLAST (Positional Specific

Iterated BLAST) [31] are the improved versions, improving on

three major aspects: consuming-time of the extension, gapped

alignment, and iterative search. Here, the BLAST/PSI-BLAST

program (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/2.

2.26/) was adopted to calculate the alignment score, denoted by

Sb(p1,p2), of proteins p1 and p2. For an uncharacterized

membrane protein pq, we searched a protein pk in S whose

Sb(pq,pk)~ maxfSb(pq,pj) : 1ƒjƒng. Then the types of pk were

assigned to pq as the predicted results. However, if the protein pq

has no homologous proteins in S, this method cannot provide

meaningful predicted results. In this case, the following two

prediction methods make further predictions.

Network-based method. This method utilized the informa-

tion of protein interactions in human retrieved from STRING

[32] (http://string.embl.de/), which was a well-known database

covering 5,214,234 proteins with their interactions in 1,133

organisms. These interactions consist of known and predicted

protein interactions including direct (physical) and indirect

(functional) associations derived from the following four sources:

(1) Genomic context; (2) High-throughput experiments; (3)

(Conserved) coexpression; (4) Previous knowledge. There was a

confidence score for every pairwise interaction quantifying the

likelihood of the interaction occurrence. Let us denote the

confidence score of a pairwise interaction between two proteins

p1 and p2 as Si(p1,p2). Two proteins were regarded interactive in

this study if the confidence score of the interaction between them

was greater than zero. For an uncharacterized protein pq, the

confidence scores of interactions between pq and proteins in S were

represented by

W~(w1q,w2q, � � � ,wnq)T ð3Þ

where wjq denoted the confidence score of the interaction between

pq and pj in S, i.e. wjq~Si(pq,pj). The probability of assigning the

protein pq the kth type was calculated by

Prediction of Multi-Type of Membrane Protein
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P(pq[k)~
Xn

j~1

fkjwjq, k~1,2, � � � ,6 ð4Þ

The greater the probability P(pq[k) was, the more probably the

query protein belonged to the kthtype. To handling multiple types,

we took the top t highest probability types as the predicted results,

where t was regarded as the smallest integer larger than or equal to

the average number of types in the dataset. That is, if

P(pq[k1)wP(pq[k2)w � � �wP(pq[kt)w � � �wP(pq[k6), the

protein would be predicted to have kth
1 ,kth

2 , � � � ,kth
t type. This

method was very similar to that in our previous work [33], which

was used to predict protein functions. However, this method was

not always effective. If there were no interactive proteins with pq in

S, the outputs of equation (4) were all zeros. In this case, the last

method described below would make the final prediction.

Shortest-distance method. As mentioned above, the higher

the confidence score between two proteins, the stronger the

interaction, and the more the two proteins shared identical or

similar types. As shown in Figure 2(A), proteins a and b were

assumed to have stronger interaction with each other than any

other pairs, followed by proteins b and c. In this case, protein a
would more likely have the same types as protein b, and protein b
would more likely have the same types as protein c. Consequently,

it could be inferred that proteins a and c would more probably

share the same types, however they were not interacted directly

with each other. In view of this, we constructed a weighted graph

G in which nodes represent proteins and an edge between two

nodes existed if and only if the confidence score of the interaction

between them was greater than zero. In addition, the weight of the

edge between nodes n1 and n2 was defined as

w(n1,n2)~1000{Si(p1,p2) ð5Þ

where Si(p1,p2) was the confidence score of the interaction

between proteins p1 and p2 which are corresponding proteins of

nodes n1 and n2. As shown in Figure 2(B), proteins a and c were

each other the shortest-distance neighbors except their direct

neighbors. Therefore, the shortest-distances between proteins in G

hold the clue to function relationship between them. This kind of

weighted graph had been used in our previous work [34].

Therefore, even if two proteins had no direct interaction, it was

possible to utilize the shortest distance in G to infer its types. By

applying Dijkstra’s algorithm which is one of the most well-known

shortest-distance algorithms, the shortest distance between any two

proteins p1 and p2 was calculated, denoted by Sd (p1,p2)and termed

as shortest-distance score. For an uncharacterized membrane

protein pq, its types were predicted as the same as those of protein

pk in the training set S whose

Sd (pq,pk)~ minfSd (pq,pi) : 1ƒiƒng:
Integrated method for predicting membrane protein

multiple types. The integrated method combined the

BLAST/PSI-BLAST method, the network-based method and

the shortest-distance method, as shown in Figure 3. For an

uncharacterized protein pq, the prediction procedure by using the

integrated method was as follows:

Figure 1. The distributions of membrane proteins in different types and in different multi-types. A, B and C depict the distribution of the
type number on three datasets, D, E and F show the distribution of types of membrane proteins on three datasets, respectively.
doi:10.1371/journal.pone.0093553.g001
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(I) If there was a homologous protein withpqin the training set

S, i.e. Sb(pq,pk)w0 for some k, only the BLAST/PSI-

BLAST method was applied.

(II) If no homologous proteins but there was an interactive

protein with pq in the training set S, i.e. Si(pq,pk)w0 for

some k, only the network-based method was applied.

(III) If it was not the two cases above, the shortest-distance

method was finally used.

Metrics
Among the three ways examining performances of classification

algorithms: cross-validation test, leave-one-out test and indepen-

dent test, the leave-one-out test is considered as the best [35,36],

because the independent test requires additional datasets and the

cross-validation test generates unstable results, while the leave-one-

out test always provides the unique results for a given a dataset.

Here, the leave-one-out test was adopted.

The commonly used mesurements sensitivity, specificity, accuracy

and matthew’s correlation coefficient in binary classification problems

were not applicable to this study problem as one protein may

simultaneously have more than one types. Deng et al. [37] used

both concepts of Precision and Recall to measure performances of

methods for multi-label classification problems. Assume

RFi~fri
1,ri

2, � � � ,ri
kg as a label set of actual types for the i-th

protein in the dataset, and PFi~fpi
1,pi

2, � � � ,pi
mg as its predicted

label set of types, the Precision and Recall were defined as:

Precision~

Pn
i~1

RFi\PFij j
Pn
i~1

PFij j

Recall~

Pn
i~1

RFi\PFij j
Pn
i~1

RFij j

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ

where |A| denoted the number of elements in set A, and n refered

to the total number of predicted proteins. However, neither

Precision nor Recall can be used alone for the evaluation. If

predicted types PFi contained all the elements in actual types RFi,

Recall would be equal to 1. This is of no mean, because any one

can tell all possible types of a membrane protein. On the other

hand, if the predicted types PFi was a non-empty subset of the

actual types RFi, i.e. PFi(RFi, Precision would be equal to 1. To

overcome these weaknesses, we presented a new evaluation

indicator called Accuracy (Acc), which was defined as:

Acc~
1

n

Xn

i~1

(
RFi\PFij j

RF ij j |
1

1z PFi{RFij j ) ð7Þ

The first part
RFi\PFij j

RF ij j on the right of the equation was

approximately equivalent to Recall, while
1

1z PFi{RFij j was a

penalty for PFi due to incorrect predictions. When PFi was

identical to RFi, the penalty was of no role. On the contrary, the

more incorrect type the PFi included, the lower the Acc was.

Therefore, Acc reflected both Precision and Recall.

Results and Discussion

Choice of E-value in the BLAST/PSI-BLAST method
It was ploted in Figure 4 the performances of the BLAST/PSI-

BLAST method with different E-values. It was obviously observed

from Figure 4(A) that the lower the threshold of E-value chosed

in the BLAST program, the higher the Acc was, however the more

the number of annotated proteins remained from Figure 4(B).
The commonly expected goal of prediction is of course to reach

high Acc and simultaneously reduce the number of unannotated

membrane proteins. However, this ideal objective is impossible to

obtain because we are caught in the dilemma of choosing the

cutoff of E-value. While lower E-values increased the statistical

significance of alignment scores, it would be too strict and would

accordingly lessen the number of proteins considered homologies.

On the contrary, higher E-values may result in wrong homology,

and thus reduce Acc. To balance Acc and the number of

unannotated proteins, we set E-value 0.01 in this study.

Figure 2. A sample of PPI interaction network and the weighted graph conversion. A represents a sample of the interaction network with
edges representing confidence scores and B is the weighted graph derived from A.
doi:10.1371/journal.pone.0093553.g002
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Performances of the individual methods and the
integrated method

Three methods and the integrated method were all conducted

on the three datasets S1, S2 and S3, respectively, evaluated by the

leave-one-out test. Results were shown in Tables 1-3. It can be

observed from Table 1 that the BLAST/PSI-BLAST method

achieved the best performance with the highest Acc 94.71%,

91.15% and 85.02% on datasets S1, S2 and S3, respectively.

However, 481, 529 and 620 proteins cannot be annotated because

there were no homologous proteins in the corresponding datasets.

The network-based method achieved the second highest Acc, i.e.

66.68%, 62.46%, 58.75% on the three datasets, respectively. Since

no interactive proteins can be found in the corresponding datasets,

there were 86, 38, 41 proteins unannotated. Although Acc was

lower, the number of unannotated proteins was much less than

those in the BLAST/PSI-BLAST method. In the shortest-distance

method, the lowest Acc achieved (54.97%, 48.75%, 44.99% on the

Figure 3. The program flow diagram of the integrated method.
doi:10.1371/journal.pone.0093553.g003
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three datasets, respectively). However, all proteins can be

annotated. The shortest distance method was capable of annotat-

ing all proteins, although it was least effective.

The integrated method combined the three methods above.

The detail contributions of the three single methods were shown in

Table 2. It was obvious that the BLAST/PSI-BLAST method

contributed the most, annotating 2,402, 1,552 and 849 proteins

and achieved Acc of 94.71%, 91.15% and 85.02% on datasets S1,

S2 and S3, respectively. The network-based method annotated

467 of the remaining 481 unannotated proteins in S1, 513 of the

remaining 529 in S2 and 596 of the remaining 620 in S3,

respectively, and obtained Acc of 53.10%, 53.51%,52.60% on the

three datasets. The rest proteins in the three datasets were

predicted by the shortest-distance method with Acc of 28.57%,

28.13%, 18.75% on the three datasets. By combining the above

predicted results for each dataset, the integrated method reached

Acc of 87.65%, 81.39% and 70.79% on S1, S2, S3, respetively,

which was listed in column 2 of Table 3. It was suggested that the

integrated method could balance the prediction accuracy and the

ratio of annotated proteins, benefiting from the high accuracy of

BLAST/PSI-BLAST method and the wide range of the network-

based method and shortest-distance method.

Membrane proteins may have multiple types. Statistical analysis

were performed on the proteins having 1, 2, 3 types in each of the

three datasets, respectively, with results shown in Figure 5. It can

be seen that the prediction of 1 type proteins was the best, the 2

type ones was the second, and the 3 type ones was the least. For

the 2 type proteins, nearly 50% could be correctly predicted or

partly correctly predicted. It was indicated that the presented

method could handle the multi-type membrane protein predic-

tions.

Comparison with other methods
We compared our method to two other methods: the nearest

neighbor algorithm (NNA) based on pseudo amino acid compo-

sition (PseAAC) and the real weighted combination (RWC). The

procedure of these two methods was described in the following two

paragraphs and their performances on datasets S1, S2 and S3

were in the fourth paragraph of this section.

NNA based on PseAAC. The concept of PseAAC was

originally initiated by Chou to predict protein subcellular

localization and membrane protein types [38]. The main idea of

this method was to encode each protein sequence into a numeric

vector containing information of sequence order effects. Here, the

brief description of this method was as follows. Detail description

Figure 4. The performance of the BLAST/PSI-BLAST method under various E-values.
doi:10.1371/journal.pone.0093553.g004

Table 1. Performances of the three single methods tested on the three datasets.

BLAST/PSI-BLASTmethod Network-based method Shortest-distance method

Dataset Acc NU* Acc NU Acc NU

S1 94.71% 481 66.68% 86 54.97% 0

S2 91.15% 529 62.46% 38 48.75% 0

S3 85.02% 620 58.75% 41 44.99% 0

*NU represents the number of unannotated membrane proteins.
doi:10.1371/journal.pone.0093553.t001

Prediction of Multi-Type of Membrane Protein
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about this method can be found in Chou’s work [38]. Without loss

of generality, let P1P2 � � �PL be a protein sequence with L amino

acid residues. Accordingly, a set of discrete correlation factors can

be computed by

hj~
1

L{j

XL{j

i~1

H(Pi,Pizj) j~1,2, . . . ,l,lvL ð8Þ

where H(Pi,Pj) is defined by

H(Pi,Pj)~½F (Pj){F (Pi)�2 ð9Þ

F(Pi) is a feature value of the amino acid Pi. In fact, it is converted

from the 20 original feature values of 20 amino acids by

F (Pi)~

Fo(Pi){
P

X[AAS

Fo(X )

20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X[AAC

½Fo(Pi){
P

X[AAS

Fo(X )

20
�2

20

vuuut
ð10Þ

where AAS is a set consisting of 20 amino acids. If the original

feature values were known, h1,h2, � � � ,hl can be computed by

equations (8), (9) and (10). Table 4 listed the original feature

values of 20 amino acids for some physicochemical and

biochemical properties of amino acids. Then, the PseAAC of a

protein sequence can be encoded into a numeric vector:

V~½v1,v2, � � � ,v20,v21, � � � ,v20zl�T ð11Þ

where vi(1ƒiƒ20zl) can be computed by

vi~

fiP20

k~1

fkz$
Pl
j~1

hj

1ƒiƒ20

$hi{20P20

k~1

fkz$
Pl
j~1

hj

21ƒiƒ20zl

8>>>>>><
>>>>>>:

ð12Þ

where $ is the weight for the sequence order effects, fk(1ƒkƒ20)

the occurrence frequency of the 20 amino acids in the protein

sequence. In this study, we set $~0:15, l~50 and considered the

following five physicochemical and biochemical properties of

amino acids: (1) Codon diversity; (2) Electrostatic charge; (3)

Molecular volume; (4) Polarity; (5) Secondary structure. Their

original feature values of each amino acid were listed in Table 4,

which were retrieved from 39,40,41]. Each of the five properties

contributed l~50 components to contain the sequence order

effects. Therefore, there are totally 20+5065 = 270 components

which can comprise a 270-D vector to represent a protein

sequence. The same PseAAC scheme to encode protein sequences

including same parameters had been applied in Wang et al.’s study

[42]. Given an uncharacterized protein pq and the training set

S~fpi,i~1,2, � � � ,ng, where n is the size of the training set, the

PseAAC of these proteins can be easily obtained. The NNA based

on PseAAC computed the distance between pq and pi(1ƒiƒn) by

the following equation:

D(pq,pi)~1{
V (pq).V (pi)

T

V (pq)
�� ��: V (pi)k k

ð13Þ

where V (Pi) is the PseAAC of protein Pi. The query protein pq

was then assigned the types of protein pk in the training set whose

D(pq,pk)~ minfD(pq,pi) : 1ƒiƒng:
RWC. RWC utilized another integrated way combining the

information of BLAST alignment score, protein interaction

confidence score and shortest-distance score. For two proteins p1

and p2, the score measuring their relationship was calculated by

Sintegrated(p1,p2)~Sb(p1,p2)|0:8

zSi(p1,p2)|0:15zSd (p1,p2)|0:05
ð14Þ

Given an uncharacterized membrane protein pq, its types were

predicted to be the types of protein pk in the training set whose

Sintegrated(pq,pk)~ maxfSintegrated(pq,pi) : 1ƒiƒng:
Performance of NNA based on PseAAC and RWC. The

NNA based on PseAAC and RWC were also conducted on the

three datasets S1, S2 and S3, respectively, evaluated by leave-one-

out test, with results listed in Table 3. The Acc obtained by NNA

based on PseAAC on S1, S2 and S3 was 70.41%, 61.70% and

Table 2. Contributions of the three methods to the integrated method.

BLAST/PSI-BLAST method Network-based method Shortest-distance method

Dataset Acc NA* Acc NA Acc NA

S1 94.71% 2,402 53.10% 467 28.57% 14

S2 91.15% 1,552 53.51% 513 28.13% 16

S3 85.02% 849 52.60% 596 18.75% 24

*NA represents the number of annotated membrane proteins.
doi:10.1371/journal.pone.0093553.t002

Table 3. Comparison of the integrated method with NNA
based on PseACC and RWC on the three datasets.

Dataset The integrated method NNA based on PseACC RWC

S1 87.65% 70.41% 81.34%

S2 81.39% 61.70% 71.40%

S3 70.79% 56.33% 56.82%

doi:10.1371/journal.pone.0093553.t003
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Figure 5. Distributions of correct and incorrect predictions for different multi-type proteins. The subfigures A, B and C were the
predicted results on the dataset S1, while D, E and F were for those on the dataset S2, and G, H and I for S3. c denotes the number of completely
correct predictions of membrane proteins, e is the number of incorrect predicted membrane proteins, and p represents the number of partly correct
type predictions.
doi:10.1371/journal.pone.0093553.g005

Table 4. Original feature values of physicochemical and biochemical properties of the 20 amino acids.

Amino acid Polarity Second structure Molecular volume Codon diversity Electrostatic charge

A 20.591 21.302 20.733 1.57 20.146

C 21.343 0.465 20.862 21.02 20.255

D 1.05 0.302 23.656 20.259 23.242

E 1.357 21.453 1.477 0.113 20.837

F 21.006 20.59 1.891 20.397 0.412

G 20.384 1.652 1.33 1.045 2.064

H 0.336 20.417 21.673 21.474 20.078

I 21.239 20.547 2.131 0.393 0.816

K 1.831 20.561 0.533 20.277 1.648

L 21.019 20.987 21.505 1.266 20.912

M 20.663 21.524 2.219 21.005 1.212

N 0.945 0.828 1.299 20.169 0.933

P 0.189 2.081 21.628 0.421 21.392

Q 0.931 20.179 23.005 20.503 21.853

R 1.538 20.055 1.502 0.44 2.897

S 20.228 1.399 24.76 0.67 22.647

T 20.032 0.326 2.213 0.908 1.313

V 21.337 20.279 20.544 1.242 21.262

W 20.595 0.009 0.672 22.128 20.184

Y 0.26 0.83 3.097 20.838 1.512

doi:10.1371/journal.pone.0093553.t004
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56.33%, respectively, while it was 81.34%, 71.40% and 56.82%

obtained by RWC. It can be seen that our method performed

significantly better than the two methods. Acc obtained by our

method was on average 17% higher than that by NNA based on

PseAAC and 10% higher than that by RWC. These suggested the

efficiency of the proposed integrated method in predicting

membrane protein multi-types.

Discussions
Membrane proteins are embedded in or temporarily attached to

the phospholipid bi-layer of the membrane. They interact with

membranes via specific structures or comformations. Therefore,

the protein structures were regarded as the determinate factors in

the in vivo types. Based on the principle of Lock and Key Theory,

the affinity and specificity of molecules is strictly determined by the

local binding site shape and binding pocket size [43,44]. To date,

many efforts have been made to computationally predict the

protein structures [45,46,47,48,49,50] and to identify the mem-

brane protein types based on structures, although some of them

are devised for water-soluble proteins with large molecular

volumes [51,52,53,54].

In this paper, we employed the sequence alignment rather than

protein structures for the general concept that similar amino acid

sequences were prone to have similar structures. Indeed,

homology modeling predictions derived from sequence alignment

methods were regarded as precise and ubiquitous for analyzing

structures and types [55]. Therefore, the BLAST/PS-BLAST was

efficient to acquire the optimal prediction. Take the membrane

protein ICAM5_HUMAN (uniprot: Q9UMF0) as an example.

This protein belongs to single-pass type I. In the dataset S3, it was

correctly predicted by the integrated method (via BLAST/PSI-

BLAST method indeed) but wrongly by NNA based on PseAAC

and RWC. The homologous proteins with Q9UMF0 in S3 and

their types were shown in Figure 6(A). It was obvious that the

protein shared the same or similar types with most of its

homologous proteins (number 5 in the Figure 6(A)).

Interactive proteins could share the same or similar types since

they have close distance when they perform biological functions in

vivo. In Figure 6(B), shown were all the interactive proteins of

another example membrane protein PEX12_HUMAN (uniprot:

O00623) in the dataset S3, with their types. By our integrated

method (via network-based method indeed), it was correctly

predicted to be type of multi-pass, but wrongly to be type of

peripheral by NNA based on PseAAC and to be type of single-pass

single I by RWC. In the integrated method, the BLAST/PSI-

BLAST can utilize the entire sequence order, and STRING can

directly use the comprehensive functional-links. However, pseudo

amino acid composition only can represent local information of

sequence order. In RWC, the score calculated by equation (14)

between membrane proteins was the weighted combination of

alignment score, confidence score and shortest-distance score. The

three types of scores were obtained in different ways; simple

combination of them cannot characterize the complex in type

relationships between membrane proteins. Experimental results

also suggested that the combination of the three scores was less

efficient than those by using separate ones.

However, the integrated method had some drawbacks because

the BLAST/PSI-BLAST method was not primarily designed for

specific proteins. Applying the ‘‘low-complexity filter’’ option in

BLAST/ PSI-BLAST was not recommended for membrane

proteins consisting of hydrophobic regions, because these regions

could be the main factor determining the conformation and this

would probably causes omission of the hydrophobic regions [56].

There was another problem that BLAST method would fail

when membrane proteins have no homologies with known

membrane proteins. However, it was still possible to discover the

types according to the similarity of motifs or certain patterns with

known proteins. Considering the variability of membrane proteins

and the limited number of experimental high-resolution mem-

brane protein structures, we did not further employ the similarity

of motifs. This would probably reduce the prediction performanc-

es. Instead, the network-based method was implemented. Inter-

action of proteins might help and thus prediction would be more

accurate. Although our prediction accuracy (Acc = 87.65%,

81.39%, 70.79%) prima facie suggested our integrated method

performed better than individual predictions (except the BLAST

method which was the most reliable one), this method come with a

caveat. As the BLAST/PSI-BLAST method was suitable to

annotate 2,402 of 2,883, 1,552 of 2,081, and 849 of 1,469 proteins

and obtained Acc of 94.71%, 91.15% and 85.02%, respectively, it

was quite possible that higher accuracy of the combined method

was ascribed to the constitution of our dataset where most proteins

have homologies and were annotated by the BLAST/PSI-BLAST

method. However, in most cases, we were confronted with a

Figure 6. The homologous proteins of the membrane protein Q9UMF0 (A) and the interactive proteins of the membrane protein
O00623 (B) in the dataset S3. The numbers represent the membrane protein types: 1 GPI-anchor, 2 lipid-anchor, 3 multi-pass, 4 peripheral, 5
single-pass type I and 6 single-pass type II.
doi:10.1371/journal.pone.0093553.g006
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dataset with few proteins having homologies with known proteins.

Despite the most reliable predictions by BLAST, the network-

based method was still required to annotate the remaining

proteins. Here, we combined these different approaches to

complement each other. Our integrated method benefited from

the BLAST method and employed network-based method

utilizing protein-protein interactions as complement, achieving

nice performance.
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(PDF)
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