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ABSTRACT

Mass spectrometry (MS) has shown great potential in detecting
disease-related biomarkers for early diagnosis of stroke. To discover
potential biomarkers from large volume of noisy MS data, peak
detection must be performed first. This article proposes a novel
automatic peak detection method for the stroke MS data. In this
method, a mixture model is proposed to model the spectrum.
Bayesian approach is used to estimate parameters of the mixture
model, and Markov chain Monte Carlo method is employed to
perform Bayesian inference. By introducing a reversible jump
method, we can automatically estimate the number of peaks in
the model. Instead of separating peak detection into substeps,
the proposed peak detection method can do baseline correction,
denoising and peak identification simultaneously. Therefore, it
minimizes the risk of introducing irrecoverable bias and errors from
each substep. In addition, this peak detection method does not
require a manually selected denoising threshold. Experimental results
on both simulated dataset and stroke MS dataset show that the
proposed peak detection method not only has the ability to detect
small signal-to-noise ratio peaks, but also greatly reduces false
detection rate while maintaining the same sensitivity.
Contact: XZhou@tmhs.org

1 INTRODUCTION
Stroke is a type of cardiovascular disease which occurs when a blood
vessel that carries oxygen and nutrients to the brain is either blocked
by a clot (ischemia stroke) or bursts (hemorrhagic stroke). It is the
third leading cause of death in the United States. About 700 000
Americans each year suffer a new or recurrent stroke. Numerous
studies have shown that early detection of stroke increases treatment
options and improves survival rates. Novel biomarkers of stroke can
be discovered by comparing the differences in protein expression
profiles between serum or tissue extract samples from stroke
patients and normal individuals. Mass spectrometry (MS) is
increasingly used to detect disease-related biomarkers from human
plasma or serum for early diagnosis, prognosis and monitoring of
disease progression or response to treatment (Issaq et al., 2002;
Vorderwulbecke, et al., 2005). In surface-enhanced laser desorption
and ionization (SELDI; Malyarenko et al., 2005), a biological
sample is bound to a pre-coated surface on ProteinChip. The coating
enables the ProteinChip surface to bind a particular class of proteins
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based on their chemical properties. Some proteins in the sample bind
to the surface, while others are removed by washing. After that, the
samples are analyzed by laser desorption/ionization time-of-flight
MS to generate mass/charge profiles of the applied sample.

MS data require complex pre-processing techniques before
subsequent statistical data mining analyses can be carried out
(Dijkstra et al., 2007). To extract features from the MS data, the
first step is peak detection. Peak detection is always performed
by a series of substeps such as baseline removal, denoising and
peak identification (Baggerly et al., 2004; Fung and Enderwick,
2002; Yasui et al., 2003). Successful baseline removal is very
challenging in MS data pre-processing. Once the baseline removal
step is performed, it is impossible to recover from the false baseline
correction result in the subsequent processing (Baggerly et al.,
2004). Similarly, denoising step also leads to a one-way result
in the whole preprocessing process. Once a peak is misjudged as
noise and removed by denoising algorithm, it will never be found
by the subsequent peak identification. Therefore, a good MS data
preprocessing method should be able to conduct baseline removal,
denoising and peak detection in the same time to avoid generating
errors and bias from each individual substep.

Another critical step in peak detection is to successfully remove
noise from spectrum. Normally, denoising is performed based on
some denoising threshold (Coombes et al., 2005b; Tan et al., 2006).
If the threshold is too high, some small peaks are erased along
together with noise. And if the threshold is too low, noise may be
still left in the denoised spectrum which is detected as false positive
peaks in peak detection results. Unfortunately, there is no effective
method to automatically choose a proper threshold for different
spectra currently. If the denoising threshold is inappropriate, final
peak detection result may either have a high false positive rate
or a low sensitivity. In order to avoid such a problem, a non-
parameter denoising method should be developed in pre-processing
MS data.

There are several existing methods for peak detection. Some
of them use deterministic method (Fung and Enderwick, 2002;
Yasui et al., 2003) to locate peak region and identify peak from
background noise. Some use wavelet-based transform such as using
discrete wavelet transform to denoising the spectrum (Coombes
et al., 2005b; Morris et al., 2005; Randolph and Yasui, 2006)
or continuous wavelet-based pattern matching to detect peaks
(Du et al., 2006). Also there are statistical and model-based
methods (Dijkstra et al., 2006; Wang et al., 2006; Noy and Fasulo
2007). However, most of these peak detection algorithms identify
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peaks based only on the peak amplitude, ignoring the additional
information such as shape of the peaks. Additionally, all of these
algorithms perform baseline removal, denoising and peak detection
at different stages, which greatly increases the risk of introducing
errors from each individual stage. And also some of these algorithms
have the problem of having a large amount of false positives
in their peak detection results because the manually assigned
denoising parameter or signal-to-noise ratio (SNR) threshold is hard
to optimize for different spectra.

Here we introduce a novel mixture model for stroke MS spectrum
data. Based on this model, we designed a non-parameter Bayesian
approach to estimate parameters in the model. We believe that
the peak detection result is inherently associated with different
parameters in this model (peak signal parameters, baseline signal
parameters and noise parameters). These parameters are estimated
automatically from a reversible jump Markov chain Monte Carlo
(MCMC) algorithm simultaneously. Therefore, our peak detection
method not only eliminates the risk of introducing errors and bias
from baseline correction and noise smoothing but also be able
to perform non-parametric denoising to the raw spectrum data.
Experimental results show that our method can clearly identify
small intensity peaks from relatively large variance of noise while
maintaining a low false detection rate (FDR).

2 METHODS

2.1 Mixture model for SELDI spectrum
A SELDI MS spectrum data contains a number of recorded mass to charge
ratio (m/z) values and observed corresponding intensities. There are three
parts of information in a normalized spectrum: peak information generated
by biological sample, baseline information from matrix background noise
(detected matrix molecules and fragments, dark current and detected air
molecules) and random white noise from the MS instrument system.
We model the whole MS spectrum as:

yi=
K∑

k=1

fk
(
xi

)+g
(
xi

)+ni i=1,2,...,N, (1)

where xi is the i-th m/z in the spectrum and yi is its corresponding output
intensity. N is the length of spectrum with a total number of K peaks.
f (xi) and g(xi) represent the peak information and baseline information of
the spectrum, respectively. ni∼N(0,σ 2) is the Gaussian random noise with
zero-mean and standard deviation σ . fk(xi) is the k-th peak signal (Fig. 1).
Here, we use radial basis functions to model f (xi) and use a polynomial

Fig. 1. Red curve indicates baseline of the spectrum g(xi), green lines
indicate peak functions fk(xi), k=1,2,...,K . Each peak is determined by
its location µk , amplitude Ak and shape ρk .

function for g(xi):

fk
(
xi

)
�Ake−ρk (xi−µk )2

i=1,2,...,N; k=1,2,...,K, (2)

g(xi)�
P∑

p=0

Bpxp
i i=1,2,...,N, (3)

where µk denotes the location of the k-th peak, Ak denotes its amplitude
and ρk determines shape of the peak. Bp is the coefficients of polynomial
function g(xi). Integrating Equation (2) and (3) into Equation (1), the whole
SELDI MS spectrum can be interpreted as:

yi=
K∑

k=1

Ake−ρk (xi−µk )2+
P∑

p=0

Bpxp
i +ni i=1,2,...,N . (4)

Given {xi}Ni=1 and {yi}Ni=1, the peak detection task of SELDI MS
spectrum is to detect the number of peaks K and all the peak locations
µk in the spectrum. Denote y� [ y1 y2 ... yN ]T , n� [ n1 n2 ... nN ]T , then
Equation (4) can be rewritten as:

y=D(µ1:K ,ρ1:K ,x1:N )α1:K+2+n, (5)

where α=[ B0 B1 ... BP A1 ... AK ]T and

D=

⎡
⎢⎢⎢⎢⎢⎣

1 x1 ··· xP
1 f (x1,µ1,ρ1) ··· f (x1,µK ,ρK )

1 x2 ··· xP
2 f (x2,µ1,ρ1) ··· f (x2,µK ,ρK )

.

.

.
.
.
.

.

.

.

1 xN ··· xP
N f (xN ,µ1,ρ1) ··· f (xN ,µK ,ρK )

⎤
⎥⎥⎥⎥⎥⎦.

Based on the SELDI MS spectrum data {(xi,yi)}Ni=1, we estimate number of

peaks K and the corresponding parameters α1:K+2, µ1:K � {µ1,µ2,...,µK },
ρ1:K � {ρ1,ρ2,...,ρK } and σ 2.

2.2 Bayesian approach and reversible jump MCMC
We assume that the number K and the parameters θK �

{
α,µ,ρ,σ 2

}
are unknown. Given a set of observations O� {x1,...,xN ,y1,...,yN }, our
goal is to estimate K and θK . Accurately estimating ρ1:K is not an
easy job. So we first assume ρ1:K as a constant and θK becomes θ ′K ={
α,µ,σ 2

}
. Following Andrieu et al. (2001), Bayesian inference is used

to estimate the unknown parameters K and θ ′K . Hyper-parameter �,δ2∈
R
+ are introduced and presumed to be independent of each other. We

assume σ 2 have a prior distribution of 1/σ 2. δ2 follows inverse-gamma
distribution, i.e. δ2∼IG(2,10), and � follows gamma distribution, i.e.
�∼Ga(1/2,0). According to Bayes theorem, the joint posterior distribution
can be formalized as:

p(K,α,µ,σ 2|x,y)∝p(y|K,α,µ,σ 2,x)p(K,α,µ,σ 2), (6)

where, p(y|K,α,µ,σ 2,x) is the likelihood and p(K,α,µ,σ 2) is the prior
distribution. The likelihood for mixture model (4) is:

p(y|K,θ′K ,x)= (2πσ 2)−N/2 exp

(
− 1

2σ 2
(y−D·α)′

(
y−D·α))

. (7)

The prior distribution p(K,α,µ,σ 2) is given by:

p(K,α,µ,σ 2)=p(α|K,µ,σ 2)p(µ|K,σ 2)p(K|σ 2)p(σ 2)

=p(α|K,σ 2)p(µ|K)p(σ 2).
(8)

Given likelihood and prior distribution, the joint posterior distribution (6)
can be obtained as the following expression:

p
(

k,α,µ,σ 2,�,δ2|x,y
)

∝
[

(2πσ 2)−N/2 exp

(
− 1

2σ 2

(
y−D·α)′(y−D·α))]

(9)

×
∣∣∣2πσ 2�

∣∣∣−1/2
exp

(
− 1

2σ 2
α′�−1α

)

×
(
− 1

σ 2

)[
II�(J,µ)

ζ J

][
�k/k!

�
kmax
k=0 �k/k!

]
,
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where �−1=δ−2D′D and II�= (k,µ) is the indicator function of the
set � [1 if (k,µ)∈�, 0 otherwise]. One might select the model order
K by argmax p(K|x,y) with K ∈{0,1,...,Kmax} and also can perform
parameter estimation by computing the conditional expectation E(θK |x,y)
based on (10) shown subsequently. However, it is difficult to obtain
these quantities analytically, as it involves integrals of high-dimension of
non-linear functions. Therefore, the reversible jump MCMC (rjMCMC)
method was proposed to perform necessary Bayesian computation. The
principle of MCMC is to draw random samples from an ergodic Markov
chain (K (i),θ ′(i)k )i∈N whose equilibrium distribution is the target posterior
distribution. The initial value of K is Kmax. The Markov chain generates T�1
sampling points, asymptotically convergent to the posterior distribution. We
discard the points resulted from the initial steps, which is so-called in-birth
period, and keep the last P steps for the computation. Here we set T = 2000
and P = 1000. Given a test sample xN+1, yN+1 can be then evaluated by:

ŷN+1= Ê
(
yN+1|x1,x2,...,xN+1,y1,y2,...,yN

)

= 1

P

P∑
i=1

D
(
µ(i),xN+1

)
E

(
α|K (i),θ (i),x1,x2,...,xN ,y1,y2,...,yN

)
.

(10)

The reversible jump MCMC sampler is able to sample directly from
the joint distribution and jump between subspaces of different dimensions.
A general state–space Metropolis–Hasting (MH) algorithm is performed, in
which candidates are proposed according to a set of proposal distributions.
The candidates are randomly accepted according to an acceptance ratio that
ensures reversibility and thus invariance of the Markov chain with respect
to the posterior distribution.

A big advantage of reversible jump MCMC algorithm is that it
can change the dimension of search space by performing randomly
birth/death/split/merge moves (Green, 1995). In our case, the number of
mixtures (corresponding to the number of peaks) is unknown. By using
rjMCMC sampler, it can be automatically determined by maximizing
p(K|x,y). The convergence of this rjMCMC approach has been proved in
Andrieu et al. (2001). Although this method is computationally intensive, it
provides a robust estimation of unknown true peak signal from noised data.
Therefore, it could be able to detect peak accurately from MS data even with
strong noise.

2.3 Incorporating estimation of ρ

Note that in the previous rjMCMC algorithm by Andrieu et al. (2001), the
parameter ρ is treated as constant. However, it could cause a lot of false
positives and false negatives in the peak detection result if we set the width of
peak as a constant. In this study, instead of using a general ρ to describe shape
character for all peaks, we estimate ρK for each individual peak. Once K and
µ1:K is estimated, the number of peaks and their locations in the spectrum are
known. Given K , µ, α, σ 2, x, y, the conditional posterior density function
g(ρj) is given by:

g(ρj)�p(ρj|K,α,µ,σ 2,x,y)

∝ (σ 2)−hj exp

⎛
⎝− 1

2σ 2

µj+hj∑
i=µj−hj

⎛
⎝yi−

K∑
j=1

Aje
−ρj

(
xi−µj

)2−
P∑

p=0

Bpxp
i

⎞
⎠

⎞
⎠p(ρj).

(11)

The prior distribution of ρj is set to be a uniform distribution between
[ρmin ρmax]. hj is set to be a very small distance, so the peak with location µj

is the dominate contributor to the signal observed in [µj−hj,µj+hj]. In the
t-th rjMCMC iteration, after obtaining µj , a new sample ρ∗j from a proposal
density function q(ρj) is proposed, then the sample’s probability with respect
to the proposal density and the targeting density g(ρj) are calculated. The
proposal density function q(ρj) is given similarly as ρj’s prior distribution.

The probability of accepting the sample is calculated by:

r=
g
(
ρ∗j

)
q
(
ρt−1

j

)
g
(
ρt−1

j

)
q(ρ∗j )

. (12)

After the number K and other parameters (µ1:K ,ρ1:K ,α1:K+2,σ
2) are

obtained, we can get all peak information (peak numbers, peak locations
and peak shapes) in the spectrum. Actually, real peak shape can be of
different varieties. Using only one fixed model [Equation (2)] is insufficient
to represent all kinds of possible peak signals. However, a combination of
mixtures could represent all the different kinds of peaks. Dijkstra et al. (2006)
claimed that all these small mixtures indicated real peaks. In this study,
we still use traditional peak definition by searching the local maximum on

estimated peak signal
∑K

k=1 Ake−ρk (xi−µk )2
. And peak intensity is defined as

the distance between peak signal intensity and baseline information intensity
at the local maximum.

2.4 Initialization
In processing the stroke SELDI MS data, we first use some regular denoising
techniques (for example, the wavelet transform-based denoising) to remove
noise from the spectra and get roughly peak information (approximate peak
numbers and approximate peak width) in the spectra. Then based on the
estimation, we set peak shape sampling region ρmin

1 to 3000 and ρmax to
20 000. Detail sample region hj is set to 1% of corresponding m/z of µj ,
j=1,2,...,K (Normally, peak width is small in low m/z region and large
in high m/z region). Kmax is set to twice the approximate peak numbers
from previous estimation. µ1,µ2,...,µKmax are initialized from a uniform
distribution between [min(x1:N ) max(x1:N )].

2.5 Implementation
Due to computation limitation, it is very slow to estimate all the peak
information from a whole spectrum by proposed algorithm. One possible
solution is to first focus on a small segment of the spectrum. In fact, our
experiment result (Section 3.2) shows that noise is not evenly distributed
within the whole spectrum. Noise variance tends to be high (a large σ ) in
low m/z region and low (a small σ ) in high m/z region. Instead of performing
denoising on the whole spectrum, region-based denoising may smooth the
data more precisely. The whole algorithm of detecting peaks from raw SELDI
MS data based on the mixture model of Equation (5) can be described in the
following steps:

(1) Divide the whole spectrum into segments.2

(2) Initialization: i = 0; set K (0) as Kmax; sample (µ(0)
1:K ,ρ

(0)
1:K ) according to

their prior distributions.

(3) while i ≤T3

• Random a decision and make move (birth/death/merge/split/
update/random walk) based on the decision, i.e. perform the
reversible jump process. K (i),µ

(i)
1:K are updated from the move

according to Equation (9).

• For each µ(i)
j

, from its neighborhood [µ(i)
j
−h(i)

j
, µ(i)

j
+h(i)

j
], and

update ρ
(i)
j using Equations (11) and (12).

1 In our program, we first convert m/z of the process spectrum to [0 1], so
the random sampler can work at a proper data range. ρ is related to this
transformation.
2 The memory requirement of the rjMCMC algorithm is K×N2. K is the
number of Gaussian mixtures (peaks) and N is the length of segment.
3 T is the maximum length of Marko Chain.
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• Update α
(i)
1:K+2,σ

2(i) according to Equation (9).

• i← i +1.

end

3 RESULTS
We first use simulated spectra generated from MS spectrum model in
Equation (4) to test the performance of the proposed peak detection
method in Section 2. We also use simulated spectra generated from
Coombes et al. (2005a) to compare the performance between the
wavelet-based method and our proposed method. Then we apply
our peak detection method on stroke SELDI MS data.

3.1 For simulation
In order to test the performance of our peak detection method,
we first use the simulated spectra. The spectra were generated
according to the SELDI data model described in Equation (4) and
we adjusted the parameters properly to make the simulated data have
the same characteristics as stoke SELDI MS data received from the
experiment. Stroke data has several characteristics: peaks in the low
m/z region tended to have a small peak width which looked sharp
and peaks in the high m/z region tended to have a large peak width
which looked broad; sometimes peaks were too close and together
they combined to a wider peak; noise intensity was decreased
while m/z was increasing and peak intensity generally followed
a decreasing trend from low m/z to high m/z (Vestal and Juhasz,
1998). Based on the characteristics above, we generated two datasets
of simulated spectrum. Each dataset had a total number of 100
simulated spectra. The real peak number was 35 in dataset A and was
50 in simulated dataset B. Peak location µ was randomly generated
from 2000 to 12 000 Daltons (Da), with exponentially decreased
probability of appearance. Peak area parameter ρ was restricted to
[2000 20 000] in datasetAand [5000 30 000] in dataset B, both with
an exponentially decreased tendency. Zero mean Gaussian noise was
generated with a variance from 0.4 to 0.08 in dataset A and from 0.6
to 0.1 in dataset B. Peak intensity was randomly generated from 0.5
to 30, with 80% probability in [0.5 5] and 20% in [5 30].

Figure 2 is one of the spectra from simulated dataset A. It is
obvious that the wavelet-based peak detection method has many
false detection results with confusing large noise into peaks, and it
misses some small peaks like the one with 3913, 3962 and 7661
Da. In contrast, our peak detection method successfully detects all
correct peaks with only one false result. And peak intensity is more
precise as compared to the wavelet-based method. Detail of peak
detection result from our proposed method and undecimated discrete
wavelet transform (UDWT) method are shown in Table 1.

Simulated dataset A has fewer peaks than dataset B, so the peak
overlapping chance is relatively higher in the second dataset. Also,
noise variance is higher in the second dataset, so it makes peaks in
simulated dataset B more difficult to be detected. From Table 1, we
can see that both peak detection methods have a good sensitivity in
the simulated dataset A. The performance of wavelet-based peak
detection method highly relies on the cutoff wavelet coefficient
threshold, and it is very hard to balance between the sensitivity and
FDR. Often, in order to be more sensitive, wavelet-based method has
to suffer a large number of false positives in their detection result.
However, our proposed method is able to achieve a good sensitivity
while keeping the false detection at a very low rate. In dataset B, due

(a)

(b)

(c)

Fig. 2. (a) Raw spectrum. (b) Peak detection result by wavelet-based method
(blue star) and our proposed method (red circle). Real peak is shown in blue
spike. (c) Close look about the denoised spectrum by wavelet-based (green)
and our proposed method (red), with circle point out detected peaks.

Table 1. Result on simulated data

SNR Sensitivity FDR

Dataset A
Proposed method 0.3 0.909 0.047
Proposed method 0.6 0.894 0.028
UDWT (low threshold) 1.5 0.868 0.262
UDWT (low threshold) 3 0.805 0.145
UDWT (high threshold) 1.5 0.822 0.129
UDWT (high threshold) 3 0.782 0.077

Dataset B
Proposed method 0.5 0.881 0.079
Proposed method 1 0.839 0.064
UDWT (low threshold) 4 0.731 0.542
UDWT (low threshold) 10 0.693 0.375
UDWT (high threshold) 4 0.689 0.154
UDWT (high threshold) 10 0.659 0.120

Low threshold in UDWT is set to 4 and high threshold is set to 10.

to presence of strong noise, our peak detection method still maintains
a good sensitivity and a relatively low FDR. Yet the performance
of wavelet-based method drops greatly with lower sensitivity and
significantly increasing of FDR. Although we set the SNR much
larger, FDR of the result is still beyond acceptable limits.

We also test our proposed method on the simulated spectra
from Coombes et al. (2005a). Figure 3 is a close look of one
simulated spectrum with m/z from 8000 to 12 000 Da. Figure 3a
and b are denoising results from the wavelet-based method with
low wavelet coefficient thresholds and high wavelet coefficient
thresholds, respectively. Clearly, a small threshold allows wavelet
denoising to preserve more details from the raw spectrum, but it
keeps many low frequency noises in the denoised result, which will
turn into false-positive peaks in detection. Using a high threshold
in wavelet denoising suppresses low frequency noise but it also
suppresses peaks with small intensity that leads to a low sensitivity.
Figure 3c is the denoising result from our proposed method.
While maintaining the ability to detect small peaks, our algorithm
successfully removes all kinds of noise. It can also be noticed that
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Fig. 3. (a) Result by the wavelet-based peak detection method with low
threshold. (b) Result by the wavelet-based peak detection method with high
threshold. (c) Result by our proposed method.
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Fig. 4. (a–c) Result by the wavelet-based peak detection method. Raw
spectrum is shown in blue. Denoised spectrum is shown in red. (d–f) Result
by our proposed method.

by using a hard threshold cutoff in the wavelet-based denoising,
denoised peak signal tends to have a lower intensity than true peak
signal. In contrast, by well modeling the MS spectrum, true peak
shape and intensity are well preserved after denoising. A detail
comparison of the denoising result from both wavelet-based method
and our proposed method is shown in Figure 4. We can see that
although being able to detect small peak signals, wavelet method
also keep much high frequency noise in the denoised signal.

Based on the simulation results, we can draw a receiver operating
characteristic (ROC) curve of sensitivity versus FDR. From the ROC
curve (Fig. 5) we can see that both the wavelet-based method using a
low threshold and our method could achieve a maximum sensitivity
of nearly 95%, i.e. both methods have the potential ability to detect
nearly all peaks. Because relatively small peaks will be smoothed
in denoising, the wavelet-based method using a high threshold can
only reach a maximum sensitivity of ∼80%, which means it could
only detect 80% of the peaks in simulated spectra. We can also
notice that by using an integrated peak detection method (performing
baseline estimation, denoising and peak identification together);
our algorithm can greatly reduce FDR while maintaining the same
sensitivity.

3.2 For stroke data
We used high-throughput SELDI technique to screen 48 stroke
patients and 32 healthy control patients to discover any potential
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Fig. 5. ROC curve on simulated dataset. Axis is log-transformed.

(a)

(b)

Fig. 6. (a) Raw blank spectrum (blue) and baseline information estimated by
our proposed peak identification method (red). (b) Estimated noise variance.

new biomarkers for the diagnosis of ischemic stroke. To increase
the coverage of proteins in SELDI protein profiles, the blood
samples were fractionated with HyperD Q (anion ion exchange)
into six fractions. The protein profiles of fractions 1, 3, 4, 5
and 6 were acquired with two SELDI Chips: IMAC and CM10.
One 96-well anion exchange resin plate was used to fractionate
samples into six discrete fractions (pH 9 + flow through, pH 7,
pH 5, pH 4, pH 3 and organic wash) as previously described by
Koopmann et al. (2004). Fractionation has been shown to greatly
increase the number of proteins that can be resolved. ProteinChip
arrays were analyzed utilizing a ProteinChip Reader, model PBSIIc
(Ciphergen Biosystems Inc., Fremont, CA, USA). Protein spectra
were externally calibrated using the All-in-One Protein Standard II
(Ciphergen Biosystems Inc.) consisting of seven calibrants between
7 and 147 kDa. Data was collected between 0 and 200 kDa with the
region between 2 and 20 kDa optimized.

First we use blank samples without protein sample to test the
ability of our algorithm to do baseline estimation and denoising.
Figure 6 is the spectrum using ProteinChip CM10 washed by the
first fraction method. It can be seen that MS data <2000 Da is highly
contaminated by irregular chemical noise and other noise from the
system. So in our experiment, we only use data >2000 Da and
discard the data at <2000 Da. Red line is the baseline information
estimated by our method. Noise variance is shown below. It is
clear that noise is not evenly distributed in the whole spectrum.
Noise variance gradually decreases as m/z is increased. So denoising
based on the whole spectrum is hardly able to correctly balance the
false alarm result and low sensitivity. Therefore, subregion-based
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denoising that estimates noise more accurately is clearly of greater
advantage. Using a blank spectrum, we can also find that low-level
polynomials (<3) are enough to fit baseline information.

The ultimate goal of biomarker discovery is to identify the
locations of peaks where peak intensities have strong contrast
between individuals from the control group and the disease group.
Unfortunately, we do not have the prior information on whether
or not the detected peak is a real peak generated by the biological
sample. In order to compare the performance of our peak detection
method with others, we consider both possible peaks and high
confidence peaks manually selected by expert from the raw spectra
as standard peaks for the evaluation. In the stroke MS data from the
first fractionated samples profiled on CM10 ProteinChip arrays, we
identified total of 32 high-confidence peaks and 198 possible peaks
from 2000 to 100 000 Da in a total number of 80 spectra.

Since the major task of an automatic peak detection method
is to locate all high confident peaks and possible peaks in the
spectrum while not introducing false results, we compared the
FDR between our proposed method and the wavelet-based peak
detection method at each different sensitivity level. Sensitivity of
high confidence peaks varied from 80% to 100% which stands
for three conditions where 80/90/100% of manually identified high
confidence peaks are correctly identified by peak detection method.
We also studied another three conditions where a peak detection
method could identify 70/80/90% of manually identified possible
peak locations. FDR is calculated by the proportion of false-
positive results and total positive results. From Table 2, we can
see that when identifying high confidence peaks, both the wavelet-
based and our proposed peak detection method have reasonable
results if they only used to recognize 80% of high confidence
peaks, and both methods will tend to more false-positive results
as criteria becomes more strict. When it is required to detect
100% of high confidence peaks, wavelet-based method result in
22% FDR, which means 22% of their final results were false
results; while in the same circumstance; only 14% of the results
from our proposed method were incorrect. According to previous
experiences of biomarker identification, high confidence peaks are
often insufficient to differentiate a disease group from the control
group. Peaks related to potential biomarkers are usually found in
possible peak locations. When it is required to detect 90% of possible
peaks from raw spectrum data, the wavelet-based method will result
in 65% false positives, which suggests that each time wavelet-based
method identifies a correct peak, it will produce approximately two
false alarm results (65%/(1−65%)≈2). All of these false-positive
results will put a huge burden on the following classifiers. By
using an integrated processing and robust denoising techniques, our
proposed peak detection method could greatly reduce the FDR while
maintaining the same sensitivity.

Figure 7 presents a close view of aligned spectra from control
group with m/z range from 3300 to 4200 Da. In this region, some
obvious peaks together with some irregularly appearing peaks are
highly contaminated by noise. In order to find reproducible peaks,
we use the wavelet-based peak detection method and our proposed
method to process the raw spectra and estimate the probability of
whether a peak appears in each 5 Da. From the figure we can see that
our proposed method works more effectively than wavelet-based
method. The proposed method could clearly find out the locations
of highly reproducible peaks while suppressing the interference from
noise.

Table 2. FDR on stroke data

Method High confident peaks Possible peaks

80% 90% 100% 70% 80% 90%

Wavelet-based method 4% 16% 22% 39% 48% 65%
Proposed method 0% 9% 14% 19% 27% 38%

Comparison of FDR both from the wavelet-based and our proposed method at fixed
sensitivity. There are 32 high confident peaks and 198 possible peaks from 2000 to
10 000 Da in a total number of 80 spectra.

(a)

(b)

Fig. 7. (a) Raw MS data with simple baseline correction and alignment for
better viewing. There are 32 spectra from control group. Each spectrum is
from different person in control group. (b) Peak reproducibility estimation
by the wavelet-based peak detection method (blue) and our proposed method
(green) in this article.

Figure 8 is a 3D plot of 48 spectra from the disease group with a
m/z range from 7300 to 8000 Da. The spectra were already processed
with simple baseline removal and alignment for better viewing.
Manually, we identified five possible peak locations in this region
(7345, 7472, 7650, 7773 and 7858 Da). Peak detection results both
from the wavelet-based method and our proposed method are shown
under the spectra. The wavelet denoising threshold is 10. SNR is set
at 8 for wavelet based method and 4 for our proposed method. From
the results, we can see that peak detection results by our method are
highly consistent through all spectra. All possible peaks have been
successfully detected with only a small number of false-positive
peaks in the final result. Yet, peak detection results from wavelet-
based method are more ‘noisy’. For small intensity peaks as located
in 7345 and 7472 Da, real peaks are more likely smoothed by wavelet
denoising, whereas for small intensity peaks as located in 7650, 7773
and 7858 Da, some large noise are still left in the denoised spectra
and become false positive in the final detection result.

4 CONCLUSION
Accurate peak detection from SELDI MS spectra is the most
crucial part in SELDI-based biomarker identification. By proposing
a novel mixture model, we can interpret the spectrum data more
appropriately. We use a Bayesian approach to estimate parameters
from the proposed mixture model, and use MCMC to perform
Bayesian inference. By introducing a reversible jump method, we
can automatically estimate the number of mixtures in the model.
Compared to previous method, our method does not need to
separate peak detection into substeps; therefore, minimizing the
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Fig. 8. (a) Raw data with simple baseline removal and alignment for better
viewing. There are 48 spectra from disease group. Each spectrum is from a
different person in the disease group. X-axis denotes m/z for each spectrum,
and Z-axis denotes intensity. Y -axis denotes spectrum index. (b) Peak
detection result by the wavelet-based method (blue) and our method (red).

risk of introducing errors while processing. Moreover, instead of
requiring a manually selected denoising threshold, our method can
automatically differentiate peak signal and noise signal without a
preset parameter. Experiment results both on simulated spectra and
stroke dataset show that our proposed peak detection method can
greatly reduce FDR at the same sensitivity level.
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