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Aims Artificial intelligence (AI) enabled electrocardiography (ECG) can detect latent atrial fibrillation (AF) in patients with sinus
rhythm (SR). However, the change of AI-ECG probability before and after the first AF episode is not well characterized.
We sought to characterize the temporal trend of AI-ECG AF probability around the first episode of AF.

Methods
and results

We retrospectively studied adults who had at least one ECG in SR prior to an ECG that documented AF. An AI network
calculated the AF probability from ECGs during SR (positive defined.8.7%, based on optimal sensitivity and specificity).
The AI-ECG probability was reported prior to and after the first episode of AF and stratified by age and CHA2DS2-VASc
score. Mixed effect models were used to assess the rate of change between time points. A total of 59 212 patients with
544 330 ECGs prior to AF and 413 486 ECGs after AF were included. The mean time between the first positive AI-ECG
and first AF was 5.4+ 5.7 years. The mean AI-ECG probability was 19.8% 2–5 years prior to AF, 23.6% 1–2 years prior
to AF, 34.0% 0–3 months prior to AF, 40.9% 0–3 months after AF, 35.2% 1–2 years after AF, and 42.2% 2–5 years after
AF (P, 0.001). The rate of increase prior to AF was higher for age .50 years CHA2DS2-VASc score ≥4.

Conclusion The AI-ECG probability progressively increases with time prior to the first AF episode, transiently decreases 1–2 years
following AF and continues to increase thereafter.
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Introduction
Ambulatory electrocardiography (ECG) is routinely performed in
patients suspected to have latent atrial fibrillation (AF), including pa-
tients with cerebrovascular events.1–5 However, the diagnostic yield
of a single ECG for AF detection is low because AF events can be
fleeting and asymptomatic. While prolonged cardiac monitoring in-
creases the diagnostic yield, it can be costly and burdensome for
patients.6

Artificial intelligence (AI) is a powerful emerging modality that
could help identify patients more likely to have undiagnosed AF using
a 12-lead ECG obtained in sinus rhythm (SR) with a high predictive
accuracy.7 The electrophysiological basis of the AI-ECG algorithm
is not completely understood; however, changes in P-wave ampli-
tude and morphology, intra-atrial conduction block, and other subtle
features undetected by the human eye may contribute to model per-
formance.7–10 Since progressive atrial remodelling ultimately leads to
AF, the probability of AF while in SR should also progressively in-
crease prior to AF, although this has not been studied.
Determining the rate of increase of AI-ECG probability could be
of clinical interest and could help predict time to first AF episode.
Following an AF episode, it is unknown if the AI-ECG probability in-
creases or decreases. However, if the AI algorithm detects anatomic
substrate change, the AI-ECG probability should continue to rise

following AF, whereas if it detects electrical triggers, the AI-ECG
could decrease following AF after treatment of the contributing
factors.
We therefore conducted a retrospective analysis to evaluate the

trends of AI-ECG probability around the time of the first AF episode.
The objectives of the study were (i) to evaluate AI-ECG probability
over time in relation to the first AF episode, and (ii) to identify the
effect of age and CHA2DS2-VASc on the rate of change in the
AI-ECG probability in relation to the first AF episode.

Methods

Development of the neural network
The development of the convolutional neural network has been previ-
ously described.7 After application to a single 12-lead ECG, the AI algo-
rithm reports a probability of latent AF (0–100% scale). The AI network
was trained to detect the electrocardiographic signature of AF in SR using
the Keras Framework with a Tensorflow (Google, Mountain View, CA,
USA) backend and Python. The input to the AI model was the ECG
data contained in eight independent ECG leads (Leads I, II, and V1–6).
An 8× 5000 matrix was created based on this data, the long axis
(5000) of which represented the temporal axis, while the short axis
(8) represented the spatial axis and was only used on layer to fuse the
data from all the leads. Subsequent convolutional layers were run on
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the temporal axis which allowed the network to detect features of AF in
SR which may be undetectable to the human eye. The AI-ECG algorithm
is broadly available for use as part of the electronic medical records and
can also be applied on demand to ECGs to report the AI-ECG probability
on a percentage scale (0–100%).

Data sources and study population
The study was approved by the Mayo Clinic Internal Review Board. We
screened consecutive patients who underwent 12-lead ECG between 26
May 1987 and 6 December 2019 at Mayo Clinic. Inclusion criteria for the
study were (i) age 18 years or older, (ii) at least one ECG in AF, and (iii) at
least one ECG in SR prior to detected AF. The ECGs used to train the
neural network previously were not included in the present study.
Patients without research authorization were excluded. Following the
first AF episode, all subsequent ECGs with AF were excluded and the
AI-ECG algorithm was only applied to ECGs during SR. We also ex-
cluded (i) patients with pacemakers or implantable cardioverter defibril-
lators placed any time prior to AF and (ii) patients on antiarrhythmic
therapy (including Class I and Class III agents) at any point prior to AF,
because either pacing or antiarrhythmic therapy would alter electrical
conduction and therefore they would compromise the AI network’s ac-
curacy. Since antiarrhythmic therapies are commonly initiated for rhythm
control of AF and device implantation is common in patients with
tachycardia-bradycardia syndrome or prior to ablation of the atrioven-
tricular node, we did not apply the same exclusion criteria after the first
episode of AF. All ECGs were digital, standard 10 s, 12-lead tracings
acquired in the supine position at a sampling rate of 500 Hz. A
GE-Marquette ECG machine (Marquette, WI, USA) was used and the
raw data were stored using the MUSE data management system. The
ECGs in our laboratory are initially read by the GE-Marquette ECG sys-
tem and then over-read by a physician-supervised, trained technician.
Since atrial flutter is often thought along the same lines as AF from a
clinical standpoint (particularly for deciding whether anticoagulation is
warranted), it was also classified as AF.

AI-ECG probability and statistical analysis
The convolutional neural network was used to calculate the probability
(0–100%) of future AF on ECGs during SR. Based on our previous model
derivation study, we selected a probability threshold of 8.7% for a posi-
tive test, at which point the sensitivity of AI-ECG testing equals specifi-
city.7 The AI-ECG diagnostic accuracy using this cut-off has been
internally validated in the 31-day window prior to development of AF
as described by Attia et al.7 We examined both AI-ECG probability as
a continuous variable and rate (%) of positive or suprathreshold ECGs
(probability .8.7%) as a binary variable at time intervals of 20–40 years,
10–20 years, 5–10 years, 2–5 years, 1–2 years, 3–12 months, and less
than 3 months prior to the development of AF and equivalent time-
frames after AF. We stratified both AI-ECG probability and rate of posi-
tive ECG screens both by age (,50 years and .50 years) and
CHA2DS2-VASc score (0–1, 2–3, and ≥4). The CHA2DS2-VASc score
was calculated by summing points determined by risk factors as follows:
congestive heart failure (1 point), hypertension (1 point), age (1 point 65–
74 years and 2 points≥75 years), diabetes mellitus (1 point), stroke/tran-
sient ischaemic attack (2 points), vascular disease (1 point), female gender
(1 point).11 Descriptive data were presented as mean and standard devi-
ation (SD) or median and interquartile range (IQR). Mixed effect models
were used to assess the statistical significance of change between time
points. The model outcome was set as the predicted risk (continuous
variable), the independent variable was set as time (continuous variable),
and patient identification was set as a random effect. All analyses were

done using SAS Studio version 3.7 (SAS Institute Inc., Cary, NC, USA;
Tables 1 and 2).

Results
After application of inclusion and exclusion criteria, we identified
59 212 patients with 544 330 ECGs prior to AF and 413 486 ECGs
after the first AF episode (Figure 1). All patients contributed a
mean 16.2+ 13.5 and median 13 (IQR 7–21) ECGs. Prior to the first
AF episode, patients had a mean 9.2+ 8.2 and median 7 (IQR 4–12)
ECGs, and after the first AF episode, they had 8.4+ 9.7 and median
5 (IQR 2–11) ECGs. About 274 317 (50.3%) ECGs prior to first AF
were positive (mean 5.5+ 6.0 positive ECGs per patient). The mean
and median time between the first suprathreshold ECG and first AF
were 5.4+ 5.7 and 3.7 (IQR 0.4–8.6) years, respectively.
The absolute probability and rate of positive ECGs prior and after

AF are illustrated in Figure 2. The absolute AI probability 1–2 years prior
to the first episode of AF was 23.6% (62.2% rate of positive screen)
but increased to 34.0% (75.6% rate of positive screen) in the last
3 months (P, 0.001). Immediately after the first episode of AF, the
absolute probability increased to 40.9% (86.3% rate of positive screen)
(P, 0.001) and decreased to 35.2% (78.1% rate of positive screen)
1–2 years after index AF episode (P, 0.001). After this time point,
the AI probability gradually increased up to 53.5% (93.4% rate of posi-
tive screen) 20–40 years post AF (P, 0.001).
Similar results were noted after stratifying for age and

CHA2DS2-VASc score. Patients with age ≥50 years and
CHA2DS2-VASc score ≥4 had both a higher AI-ECG probability
and a higher rate of increase over time (Figures 3 and 4). The mean
absolute probability at 3 months prior to first AF was 18.9% in pa-
tients ,50 years but 34.6% in patients ≥50 years. Similarly, the
mean absolute probability at 3 months prior to first AF was 22.8%
in patients with CHA2DS2-VASc 0–1 but 38.1% in patients with
CHA2DS2-VASc ≥4.

Table 1 Patient demographics

Age at AF (years)

Mean (SD) 73.6 (12.2)

Median (IQR) 75 (67–82)

Age group (years)

,50 2199 (3.7%)

.50 57 013 (96.3%)

Gender

Female 25 896 (43.7%)

Male 33 316 (56.3%)

CHA2DS2-VASc

Mean (SD) 4.0 (1.9)

Median (IQR) 4 (3–5)

CHA2DS2-VASc group

0–1 5524 (9.3%)

2–3 18 402 (31.1%)

4+ 35 286 (59.6%)

AF, atrial fibrillation; SD, standard deviation; IQR, interquartile range.
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Table 2 Breakdown of data and variability of AI-ECG probability by study time period

Study timeframe Number
of ECGs

Number
of patients

Number of patients with
multiple ECGs

Mean (SD) change in %
probability of AFa

20–40 years pre AF 21 990 7907 4399 0.61 (8.15)

10–20 years pre AF 108 474 26 524 19 104 3.61 (13.83)

5–10 years pre AF 118 008 33 492 23 806 4.34 (16.39)

2–5 years pre AF 107 161 35 565 23 643 3.83 (18.23)

1–2 years pre AF 45 710 23 685 8774 2.44 (18.87)

3–12 months pre AF 43 470 21 228 8272 2.63 (19.15)

0–3 months pre AF 99 517 47 001 22 706 7.15 (24.27)

0–3 months post AF 126 373 34 470 23 952 −1.59 (26.48)

3–12 months post AF 50 418 20 048 9465 1.70 (21.97)

1–2 years post AF 53 403 20 826 9841 2.73 (21.10)

2–5 years post AF 97 197 22 978 16 505 4.76 (21.23)

5–10 years post AF 66 054 12 508 9553 5.94 (22.27)

10–20 years post AF 19 603 3519 2625 7.35 (22.76)

20–40 years post AF 438 108 73 7.47 (18.83)

Total 957 816 309 859 182 718 —

AF, atrial fibrillation; ECG, electrocardiogram; SD, standard deviation.
aReflects mean change of probability from earliest to latest ECG in each timeframe from the same patient.

Figure 1 Study inclusion criteria and analysis plan. AF, atrial fibrillation; ECG, electrocardiogram; SR, sinus rhythm.

Electrocardiography to detect atrial fibrillation 231



Discussion
The present study demonstrates that the AI-ECG probability of AF
(i) gradually increases prior to the first AF episode and (ii) continues
to increase immediately after the first AF episode. Patients≥50 years
and patients with increased CHA2DS2-VASc score have both in-
creased AF probability and rate of increase prior to AF. The contin-
ued increasing probability of AF on the AI-ECG prior to a
documented episode suggests ongoing changes in cardiac substrate
and/or electrophysiology resulting in subtle, likely non-linear

electrocardiographic changes over years before the first episode of
manifest, which are detectable by a neural network. It is unknown
whether individuals with a rising probability of AF on the AI-ECG
over time may benefit from risk factor modification to avert AF de-
velopment, but our findings suggest this warrants further study.
Understanding and interpreting the AI-ECG is important for clin-

ical use. In the study by Attia et al., the AI network was trained to de-
tect AF in all ECGs in patients who never developed AF and all ECGs
starting 31 days prior to the first AF in patients with at least one AF
episode.7 However, the AI-ECG’s high predictive accuracy in the

Figure 2 Positive rate of artificial intelligence electrocardiograms (A) andmean artificial intelligence electrocardiogram probability (B) as a function
of time before and after first atrial fibrillation (dashed line).
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interval validation data set was specifically demonstrated in the
31-day window of the study. Therefore, the AI-ECG performance
was demonstrated for concurrent (within 31 days) AF. The absolute
AI-ECG probability was not reported in the study but was selected
to balance sensitivity and specificity (approximately 8.7% based on in-
ternal data). The performance of AI-ECGwas reported with AI-ECG
treated as a binary variable (i.e. suprathreshold vs. negative ECG);
however, there were no implications of (i) absolute probability and
(ii) future AF incidence based on this probability. In the follow-up,

Mayo Clinic Study of Aging (MCSA) which showed that a probability
of 50%was associated with a risk of AF of 21.5% at 2 years and 52.2%
at 10 years in patients who had never had prior AF.12 TheMCSA pro-
vided a temporal component to the AI-ECG allowing for longitudinal
correlation of AI-ECG absolute probability and AF incidence.
The present study adds further characterization of the AI-ECG per-

formance by describing the trend and rate of change of AI-ECG before
and after the first AF episode. Several important observations have sig-
nificant clinical impact and are worthy of discussion: (i) the study clearly

Figure 3 Impact of age on positive rate of artificial intelligence electrocardiograms (A) and mean artificial intelligence electrocardiogram prob-
ability (B) before and after first atrial fibrillation (dashed line).
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demonstrates a positive rate of increase in AI-ECG probability (and
positive ECG screens) prior to AF which solidifies the predictive accur-
acy of AI-ECG for AF; (ii) although a single suprathreshold ECG can be
treated with criticism in clinical decision-making, future ECG demon-
strating higher AI-ECGprobabilitieswith a positive trend are a concern-
ing finding and merit clinical attention, particularly in older patients with
increased risk factors for AF; and (iii) prediction of time to future AF can
be made to some degrees based on sequential ECGs. For example, an
increase of mean AI-ECG probability to 30–35% from 20–25% 1 year

prior and confirmed by multiple ECGs could be a herald of impending
AF in the next year (Figure 2). Such application may increase the yield
of healthcare resources by utilizing monitoring on those individuals
most likely to benefit. It also underscores the potential utility of serial
assessment of AI-ECG screenings recognizing that it may fluctuate
with variations in health and risk status.
The analysis of AI-ECG probability after the first AF episode is less

important for clinical decision-making; however, it can be studied to
help understand what the AI network recognizes as AF and could

Figure 4 Impact of CHA2DS2-VASc score on positive rate of artificial intelligence electrocardiogram (A) and mean artificial intelligence electro-
cardiogram probability (B) before and after first atrial fibrillation (dashed line).
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potentially be a biomarker/surrogate measure for the impact of
rhythm control treatments. Our analysis showed a transient increase
of probability immediately following paroxysmal AF but a subsequent
decrease after 1–2 years, regardless of age or CHA2DS2-VASc score.
The transient dip inAI-ECGprobability 1–2 years after the first AF epi-
sode can have different interpretations. Several triggers of AF (such as
heart failure and inflammation) may only persist 0–3 months after the
AF event but subsequently decrease after 1–2 years. Additionally, at-
tempts to achieve rhythm control in AF either with antiarrhythmic
agents or ablation may also decrease the AI-ECG probability in the
intermediate term. The results of the present study will likely need
to be individualized, since the time from first AF to second (or subse-
quent) AF may vary between individuals and therefore not all patients
will have the same pattern of AF probability after their initial AF.

Limitations
Some important study limitations warrant discussion. The AI-ECG al-
gorithm was applied at a single centre and generalizability of the algo-
rithm in populations with different age, ethnicity, or prevalence of AF
is uncertain. Including patients with at least one episode of AF inevit-
ably introduces selection bias, since patients with positive AI-ECG
screens may not ever develop AF. We did not analyse the AI-ECG
trend for AF in patients who were never shown to have AF. As the
risk of AF increases with age, it is hard to interpret whether the in-
crease of AF probability with time is a result of impending AF episode
vs. increasing age. However, increasing age alone does not explain the
rapid change of AI-ECG probability in the year prior to the index AF
event, nor does it explain the dip of AI-ECG 1–2 years post first AF.
Additional selection bias is created by the fact that patientswith symp-
toms (such as palpitations or shortness of breath) have higher likeli-
hood of AF and are more likely to be screened with ECG. The true
first episode of AF is challenging to determine particularly in asymp-
tomatic patients or patients who were evaluated in different medical
centres. As asymptomatic patient do not typically undergo extensive
ambulatorymonitoring, their first true episode of AFmay significantly
predate the first reported episode and therefore the rate of AI-ECG
probability change may underestimate the timing of the first episode
in these patients. Patients with implantable devices including pace-
maker and defibrillators were excluded the study. There, no conclu-
sions can be drawn for this patient population. Following the index AF
episode, a subset of patients were treated with antiarrhythmic ther-
apies or underwent device implantation but those patients/ECGs
were not screened out as explained in the Methods section. We
did not exclude patients or ECGs with subsequent AF from the ana-
lysis which can create uncertainty in the interpretation of the AI-ECG
following the first AF episode. Atrial flutter was not differentiated
from AF in the present study. The original AI-ECG algorithm was de-
veloped in patients with either AF or atrial flutter. However, from an
electropathophysiological standpoint, atrial flutter is distinct from AF
and the features that the AI-ECG algorithm detects during SRmay be
different in different atrial arrhythmias. Including different tachyar-
rhythmias in the AI model may decrease the specificity of the algo-
rithm. Lastly, since not all AFs are associated with underlying
progressive structural disease, AI-ECG may have not predicted AF
in patients with triggers not anticipated by the AI network (such as
non-cardiac surgery or acute metabolic disorders).

Conclusion
In conclusion, the present study demonstrates that the AI-ECG re-
ported probability of AF gradually increases over time prior to AF
with a rate that is a function of patient age and CHA2DS2-VASc
score. The study may have implications for the prediction of AF epi-
sodes in the clinical setting.
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