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ABSTRACT: The electronic, thermal, and thermoelectric trans-
port properties of ε-Ga2O3 have been obtained from first-principles
calculation. The band structure and electron effective mass tensor
of ε-Ga2O3 were investigated by density functional theory. The
Born effective charge and dielectric tensor were calculated by
density perturbation functional theory. The thermal properties,
including the heat capacity, thermal expansion coefficient, bulk
modulus, and mode Grüneisen parameters, were obtained using
the finite displacement method together with the quasi-harmonic
approximation. The results for the relationship between the
Seebeck coefficient and the temperature and carrier concentration
of ε-Ga2O3 are presented according to the ab initio band energies and maximally localized Wannier function. When the carrier
concentration of ε-Ga2O3 increases, the electrical conductivity increases but the Seebeck coefficient decreases. However, the figure of
merit of thermoelectric application can still increase with the carrier concentration.

1. INTRODUCTION

Ga2O3 is an emerging wide-band-gap material for semi-
conductor power devices due to its high breakdown voltage.1

Ga2O3 also exhibits transparency for the UV region, which
makes it a promising material for application in optoelec-
tronics, such as a solar blind deep-UV photodetector.2,3

Although Ga2O3 has broad application prospects, the
fundamental properties are still poorly understood due to its
polymorphism.4 Ga2O3 can form several polymorphs, denoted
as α-Ga2O3, β-Ga2O3, γ-Ga2O3, δ-Ga2O3, and ε-Ga2O3,

5,6

which makes the characteristics of Ga2O3 very complex.
Recently, ε-Ga2O3 thin films were successfully grown on
various substrates.7−10 It has been proved that an epitaxial ε-
Ga2O3 thin film can be thermally stable up to nearly 1000 K.11

Table 1 shows the phase transition temperatures in a dry
atmosphere of these five Ga2O3 phases, which was measured
by Roy et al.5 Theoretical calculations by Yoshioka et al.
indicated that the formation energy of these phases is in the
order β < ε < α < δ < γ.12 Although β-Ga2O3 is the most stable
at room temperature, ε-Ga2O3 can be stable up to 1000 K,

which makes it a promising material for application in
electronic devices. To date, a lot of the properties of Ga2O3
come from theory, such as density functional theory (DFT),
because it is not easy to prepare high-quality pure Ga2O3
samples for measurement.13

An essential factor to consider in high-power electronic
applications is the heat dissipation of the devices. Compared
with other wide-band-gap semiconductors, such as GaN and
GaAs, the thermal conductivity of Ga2O3 is much smaller and
thus a clear weak point of Ga2O3 in terms of power device
application.14 The details of electrical transport and energy
dissipation could help us develop high-performance electronic
devices. Hence, it becomes crucial to understand the details of
the thermal and thermoelectric properties of ε-Ga2O3. The
latest studies on the transport and thermoelectric properties of
β-Ga2O3 show numerical values for the Seebeck coefficient and
power factor, which encourages more research on further
improvements of Ga2O3. To the best of our knowledge, to
date, no specific theoretical research on the thermoelectric
properties of ε-Ga2O3 based on ab initio electronic structure
calculations combined with Boltzmann transport equations has
appeared, and only some experiments related to the electron
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Table 1. Transformation Relationship among Five Different
Phases of Ga2O3

5

phase transition temperature

δ-Ga2O3 → ε-Ga2O3 773 K
α-Ga2O3 → β-Ga2O3 873 K
γ-Ga2O3 → β-Ga2O3 923 K
ε-Ga2O3 → β-Ga2O3 1143 K
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transport and thermoelectric properties are available. In this
paper, we attempt and summarize the results of the theoretical
derivation of the transport and thermoelectric properties of ε-
Ga2O3 using the semiclassical Boltzmann transport theory.

2. RESULTS AND DISCUSSION
2.1. Electronic Properties. The optimized unit cell of ε-

Ga2O3 with 40 atoms is shown in Figure 1, which is rendered

by VESTA.15 The optimized lattice parameters of ε-Ga2O3 are
a = 5.12 Å, b = 8.79 Å, and c = 9.41 Å, which are 1.5%, 1.0%,
and 1.4% larger than the experimental values by Cora et al.10

but consistent with previous theoretical values by Yoshioka et
al.12

The calculated electron band structure along with the
Brillouin zone, the total density of states (DOS), and the
projection density of states (PDOS) are presented in Figure 2.
The band structure is interpolated by the Wannier function.
From the band structure and DOS shown in Figure 2, it can be
seen that the energy positions of each group of bands
(representing O 2s, Ga 3d, and O 2p in the higher part of the

valence band and Ga 4s, Ga 4p, and Ga 4d in the lower part of
the conduction band) are rather similar to the band structures
of β-Ga2O3. This is clearly reflected in the DOS. The band gap
of ε-Ga2O3 is about 4.9 eV as determined by optical spectra,
which is comparable to that of β-Ga2O3.

7,16 Our calculated
direct band gap at the zone center is 2.11 eV, underestimating
the expected experimental band gap of DFT.17 However, the
calculated band gap of ε-Ga2O3 is closest to the value of β-
Ga2O3 (see Supporting Information Note II). The effective
electron mass tensor is defined by18
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where EC is the dispersion of the lowest conduction band and
ki and kj are the ith and jth elements of k, respectively. If the
conduction band minimum is E0 and it locates at point Γ then
the first-order approximation of EC can be expressed as
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In order to obtain the effective electron mass tensor, the band
structure of ε-Ga2O3 was first calculated by Quantum
ESPRESSO with a coarse k mesh. Then, the band structure
of ε-Ga2O3 was interpolated by Wannier90 using a maximally
localized Wannier function. Considering that a good quadratic
fit requires very dense sampling at different directions in k
space close the center of the Brillouin region, the spacing is the
reciprocal of the lattice constant of 0.002. Finally, eq 2 was
used to fit the interpolated band structure near the conduction
band minimum using the Scikit-Learn python package, yielding
the inverse mass tensor. Then, we can invert this tensor to
obtain the mass tensor itself as follows

m m
0.219 0.000 0.000
0.000 0.216 0.000

0.002 0.001 0.215
0* =

− −

i

k

jjjjjjjjj

y

{
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where m0 is the free electron mass. The electron effective mass
of ε-Ga2O3 is quite isotropic with an average value of 0.217m0,

Figure 1. Optimized atomic structure of ε-Ga2O3, where the large
atoms are gallium and the small red atoms are oxygen.

Figure 2. Dispersion relation (left) and densities of states (right) of electrons in ε-Ga2O3. Gray dashed lines indicate the Fermi levels, which are set
at the center of the band gap.
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which is quite close to the effective mass of β-Ga2O3 (see
Supporting Information eq S1). Due to the strong Ga−O ionic
bond, the energy distribution of the empty and occupied
electronic states is little affected by the actual arrangement of
the Ga and O atoms.
2.2. Thermal Properties. Figure 3 shows the phonon

dispersion curves along with symmetry lines in the Brillouin
zone and the corresponding ε-Ga2O3 phonon DOS. There are
120 phonon modes that span frequencies up to a maximum
value of 21.9 THz at the Γ point. The diagonal Born effective
charges are Ga1 = (2.92, 2.93, 3.06), Ga2 = (3.51, 3.29, 2.88),
Ga3 = (3.35, 3.20, 3.49), Ga4 = (3.35, 3.45, 3.22), O1 = (−2.49,
−2.12, −2.31), O2 = (−2.11, −2.30, −2.13), O3 = (−2.13,
−2.15, −1.93), O4 = (−1.98, −2.06, −2.53), O5 = (−2.17,
−2.14, −1.96), and O6 = (−2.24, −2.10, −1.76) in units of
electron charge. The off-diagonal components are below 0.3,
and none of them are reported. The high-frequency dielectric
tensor of ε-Ga2O3 is somewhat isotropic with 4.4

11
ϵ =∞ ,

4.3
22

ϵ =∞ , and 4.3
33

ϵ =∞ . The dielectric tensor calculated by
DPFT is consistent with the quasi-particle calculation result
with ε∞ = 4.3 solved by the Bethe−Salpeter equation of many-
body perturbation theory.4 The dielectric constant of ε-Ga2O3
is slightly greater than that of β-Ga2O3 (see the Supporting
Information Note III), demonstrating the dielectric function-
ality of ε-Ga2O3.
The ε-Ga2O3 thermal performance prediction is one of the

key factors for rational acceleration of electronic devices,
including the specific heat capacity at constant volume (CV)
and heat capacity at pressure (CP), Debye temperature (ΘD),
speed of sound (vs), mode-resolved Grüneisen (γ(qj)), average
Grüneisen parameters (γ), thermal expansion coefficient (αv),
Debye temperature (ΘD), and lattice thermal conductivity
(κL).

19 The phonon dispersion is essential to determine other
thermal properties of a material such as the heat capacity. The
heat capacity CV is shown as a green solid line in Figure 4a.
The Dulong−Petit limit of 3R is plotted as a black dashed line
in Figure 4a, where R is the gas constant. CV reaches the
Dulong−Petit limit at high temperatures, analogous to the case
of β-Ga2O3.

20 Furthermore, if the ab initio-calculated CV data
were fitting to the Debye model, the Debye temperature ΘD of
ε-Ga2O3 could be predicted to be 673 K. For comparison, the
Debye temperature of β-Ga2O3 was also estimated to be 685 K

in the same way (see Supporting Information Note IV and
Figure S4), which was close to the experimental β-Ga2O3
Debye temperature of 738 K.21 Therefore, the Debye
temperature of ε-Ga2O3 predicted here is reasonable and is
close to the Debye temperature of β-Ga2O3. The thermal
expansion coefficient of ε-Ga2O3 is shown in Figure 4b. At
room temperature, the thermal expansion coefficient is about

Figure 3. Dispersion relation (left) and densities of states (right) of phonon in ε-Ga2O3.

Figure 4. Thermal properties of ε-Ga2O3. (a) Heat capacity of ε-
Ga2O3. Red and blue lines represent the heat capacity at constant
pressure (CP) and at constant volume (CV), respectively. (b) Thermal
expansion coefficient. (c) Bulk modulus.
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1.4 × 10−5 K−1, which is higher than that of β-Ga2O3 (see
Supporting Information Note IV.) The bulk modulus of ε-
Ga2O3 is shown in Figure 4c. At room temperature, the bulk
modulus of ε-Ga2O3 is about 162 GPa, which is also higher
than that of β-Ga2O3 (see Supporting Information Note IV).
From the phonon dispersion near the Γ-point in Figure 3, it

is clear that there are three branch acoustic phonons. The
lower two branches (denoted as T1 and T2) belong to the
transverse acoustic phonon, while the upper branch (denoted
as L) belongs to the longitudinal acoustic phonon. In order to
estimate the sound speed of ε-Ga2O3, the slopes of each
acoustic branch are calculated near the Brillouin zone center
along with three orthogonal directions by eq 19. The group
velocities vx, vy, and vz of acoustic phonon branch T1, T2, and L
at each orthogonal direction x, y, and z are shown in Table 2.

The group velocity at each acoustic branch is defined as the
average of the square

v v v v
1
3

( )x y z
2 2 2

̅ = + +
(4)

Two transverse sound speeds vT1
and vT2

and one longitudinal
sound speed vL are 3.1, 3.7, and 7.0 km/s, respectively. The
speed of sound is further estimated by the average of the
transverse and longitudinal sound speed using

v v v v
1
3

( )s T
2

T
2

L
2

1 2
= + +

(5)

Afterward, the sound speed of ε-Ga2O3 is vs = 4.9 km/s, which
is slightly smaller than the sound speed of β-Ga2O3 (see the
Supporting Information Note IV). Besides, the sound speeds at
the three orthogonal directions are 5.2, 4.6, and 4.8 km/s,
respectively.
The frequency-dependent mode Grüneisen parameters of ε-

Ga2O3 by the Phonopy software package are shown in Figure
5. The q mesh is set to 20 × 20 × 20. The colors of the mode

Grüneinen parameters are set for band indices with ascending
order of phonon frequencies, which is indicated by the color
bar in Figure 5. The Grüneisen parameters of the acoustic
modes are mostly positive. A negative Grüneisen parameter
indicates an increase in phonon frequency with increasing
volume. An average Grüneisen parameter, γ(T), can be
obtained using

T
C

C
( )

j j V

V

q q jqγ
γ

=
∑

(6)

where CV
jq
are the mode contributions to the heat capacity.

Using eq 6, we found that the average Grüneisen parameter of
ε-Ga2O3 is 1.4 at 300 K. A simple phenomenological
expression for the lattice thermal conductivity due to
phonon−phonon scattering has been given by Slack and
Morelli22,23

A
M

n TL
D
3

2 2/3κ
δ

γ
= ̅ Θ

(7)

where κL is the lattice thermal conductivity, M̅ is the average
atomic mass, n is the number of atoms per unit cell, δ3 is the
volume per atom, T is the temperature, γ is the average
Grüneisen parameter for the acoustic branches, and ΘD is the
Debye temperature. A is a Grüneisen parameter-dependent
quantity equal to

A
2.43 10

1

6

0.514 0.228
2

= ×
− +

γ γ (8)

if the temperature is in Kelvin, δ is in Angstroms, and the mass
is in atomic units, κL is in W/(m·K). This phenomenological
expression in eq 7 has been widely used for materials with
different crystal structures and with thermal conductivities
extending over several orders of magnitude.23 The lattice
thermal conductivity of ε-Ga2O3 calculated by eq 7 is shown in
Figure 6. The thermal conductivity of ε-Ga2O3 is estimated to
be 12 W/(m·K) at room temperature by eq 7, which is about
29% of the β-Ga2O3 thermal conductivity (see Supporting
Information Note IV). There are two reasons for the lower
thermal conductivity of ε-Ga2O3 than β-Ga2O3. First, the
number of atoms in a unit cell of ε-Ga2O3 is two times that of

Table 2. Group Velocities of ε-Ga2O3 Acoustic Phonons

acoustic phonon vx (km/s) vy (km/s) vz (km/s) v̅ (km/s)

T1 3.0 3.4 2.8 3.1
T2 4.1 3.6 3.5 3.7
L 7.4 6.3 7.1 7.0
vs 5.2 4.6 4.8 4.9

Figure 5. Frequency-dependent mode Grüneisen parameters. Figure 6. Lattice thermal conductivity as a function of temperature.
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β-Ga2O3. Second, the Grüneisen parameter of ε-Ga2O3 is
larger than that of β-Ga2O3. The mode Grüneisen parameter is
an indicator of the anharmonic properties of materials.24

Comparing the mode Grüneisen parameters of ε-Ga2O3 (see
Figure 5) with those of β-Ga2O3 (see Supporting Information
Figure S5), the mode Grüneisen parameters of an acoustic
phonon in ε-Ga2O3 are much larger than those of β-Ga2O3.
Therefore, the lower thermal conductivity of ε-Ga2O3 can be
due to the anharmonic properties of an acoustic phonon of ε-
Ga2O3. If we assume that all phonon relaxation times are the
same, the thermal conductivity along with three orthogonal
directions i can be proportional to the square of the sound
speed vsi

21

vi s
2
i

κ ∝ (9)

where i = x, y, z. Using the results in Table 2, the anisotropy of
thermal conductivity can be obtained, κx = 1.12κL, κy = 0.90κL,
and κz = 0.98κL. The thermal conductivity anisotropy of ε-
Ga2O3 is smaller than that of ε-Ga2O3. It is worth mentioning
that this phenomenological model does not take into account
the effect of doping and defects. Slomski et al. already
indicated that a moderate doping level of β-Ga2O3 does not
change the thermal conductivity appreciably.25 Oxygen
vacancy is the most common point defect in Ga2O3.

26

Normally, the temperature-dependent thermal conductivity
can be approximated by a simple power law κ(T) ∝ T−m.
When other phonon scattering mechanisms are considered, the
slope m will differ from 1. The point defects in Ga2O3 can
provide an additional term for the thermal resistance which is
proportional to the temperature and unrelated to the phonon−
phonon scattering.27 Therefore, the point defects can reduce
the thermal conductivity of ε-Ga2O3, which can cause the heat
dissipation problem in ε-Ga2O3-based electronic devices.
2.3. Thermoelectric Properties. A detailed understand-

ing of the electrical transport and energy dissipation
phenomena is crucial for the development of high-performance
electronic materials for application. In the past, the thermal
and electrical transport properties of ε-Ga2O3 have been
studied in detail. Although there have been many detailed
studies on the thermal and electrical transport properties of β-
Ga2O3 in the past,28,29 few systematic works have been
reported on the thermoelectric coefficients of ε-Ga2O3 over a
wide range of doping concentrations and temperatures. It is
clear that the most challenging computational task is the
determination of the band velocities vi(n, k) from an ab initio
perspective. To treat doping of ε-Ga2O3 in the transport
calculation, one of the simplest approaches is the rigid band
approximation.30 The band structure will be assumed to
remain unchanged as the Fermi level moves up and down to
simulate electron doping. To fill this gap, we systematically
computed the corresponding Seebeck coefficient S, electrical
conductivity σ, and power factor as a function of doping
concentrations at various values of the chemical potential φ.
The electron relaxation time is an important parameter to

determine the electron transport properties under a constant
relaxation time approximation. Similar to GaN and GaAs, a
polar optical phonon (POP) plays a vital role in the electron
scattering of ε-Ga2O3 because of the strong ionic Ga−O
bonding.32−34 Therefore, both acoustic phonon scattering and
polar optical phonon scattering were considered in the electron
relaxation time calculation. First, the electron relaxation time
will be calculated by eq 27. The material parameters for

calculation of the electron relaxation time of ε-Ga2O3 are
shown in Table 3. The mass density of ε-Ga2O3 is based on the

experimental lattice constant.35 The deformation potential of
ε-Ga2O3 is about 12.6 eV as calculated by eq 28, and it is a
little higher than the value of β-Ga2O3. The polar phonon
energy in Table 3 is estimated from the average of all of the
longitudinal optical phonon energies at all three Cartesian
directions. The polar phonon energy of ε-Ga2O3 is about 47.2
meV, which is slightly smaller than the value of β-Ga2O3 (see
Supporting Information Note V and Table S3). The electron
relaxation times due to both acoustic phonon and polar optical
phonon scattering are plotted in Figure 7. The polar optical

phonon scattering is always larger than that of the acoustic
phonon when the temperature is larger than about 100 K. In
particular, when the temperature is above room temperature,
the acoustic phonon scattering in ε-Ga2O3 can be neglected.
The electron relaxation time at room temperature is about 15.1
fs, which is smaller than that of β-Ga2O3 (Supporting
Information Note V and Figure S6). The calculated Seebeck
coefficient of ε-Ga2O3 versus carrier concentration (N) and
temperature (T) are shown in Figure 8a. The absolute value of
the Seebeck coefficient is evidently decreasing with increasing
carrier concentration. Furthermore, the Seebeck coefficient
decreases almost linearly with increasing log(ND). The
electrical conductivity of ε-Ga2O3 is shown in Figure 8b,
which increases with the doping concentration. It can be seen
that for a given temperature the electric conductivity of ε-
Ga2O3 has the highest value when the value of φ is close to the
bottom of the conduction band minimum. The electronic
thermal conductivity of ε-Ga2O3 is shown in Figure 8c, which
increases with both the carrier concentration and temperature.
The electronic thermal conductivity is much lower compared

Table 3. Material Parameters of β-Ga2O3 for Electron
Relaxation Time Calculations

parameter symbol value

electron effective mass (me) m* 0.217
deformation potential (eV) D 12.6
polar phonon energy (meV) ℏωLO 47.2
mass density (kg/m3) ρ 5.9 × 103

static frequency dielectric constant31 εs 13.2
high-frequency dielectric constant ε∞ 4.3
sound velocity (m/s) vs 4.9 × 103

Figure 7. Relaxation time of ε-Ga2O3.
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to the lattice thermal conductivity shown in Figure 6. The
power factor of a thermoelectric material is given by

P S2σ= (10)

where S is the Seebeck coefficient and σ is the electrical
conductivity. The power factor involves all of the important
electrical properties of the material. Figure 8d shows the power

factor of ε-Ga2O3, which indicates that the power factor
increases with increasing doping concentration.
Although the Seebeck coefficient decreases as the doping

concentration increases, the power factor of ε-Ga2O3 still
increases with increasing doping concentration as the electrical
conductivity increases more with increasing doping concen-
tration. To date, no measured Seebeck coefficient of ε-Ga2O3

Figure 8. Thermoelectric properties of ε-Ga2O3 versus carrier concentration (n) on a logarithmic scale and temperature from 300 to 900 K: (a)
Seebeck coefficient, (b) electrical conductivity (on a logarithmic scale), (c) electronic thermal conductibility (on a logarithmic scale), and (d)
power factor (on a logarithmic scale).

Figure 9. (a) Average figure of merit of ε-Ga2O3 (on logarithmic scale). (b) Figure of merit at the Cartesian directions when N = 5.5 × 1017 cm−3.
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can be found in the literature. The Seebeck coefficient of β-
Ga2O3 has been reported to be −(300 ± 20) μV/K with a 5.5
× 1017 cm−3 carrier concentration.28 Our calculated Seebeck
coefficient of β-Ga2O3 is 373 μV/K with a 5.5 × 1017 cm−3

carrier concentration (for more details see Supporting
Information Note V and Figure S7), while the calculated
Seebeck coefficient of ε-Ga2O3 is 572 μV/K with a 5.5 × 1017

cm−3 carrier concentration. Compared with β-Ga2O3, the
Seebeck coefficient of ε-Ga2O3 is nearly 1.5 times larger at
room temperature, when the carrier concentration of both
phases of Ga2O3 is the same. However, because of its lower
electrical conductivity, the power factor of ε-Ga2O3 is only
18% of β-Ga2O3 when the carrier concentration is 5.5 × 1017

cm−3 (see Supporting Information Note V). Furthermore, the
electrical conductivity and the Seebeck coefficient are quite
isotropic. The anisotropy of the electrical conductivity and the
Seebeck coefficient at the Cartesian directions is less than 1%
and 0.1%, respectively.
The validity of a material for thermoelectric applications

depends on a dimensionless parameter, figure of merit, which
can be described by36

ZT
S T2σ
κ

=
(11)

where S is the Seebeck coefficient, σ is the electrical
conductivity, T is the absolute temperature, and κ is the
thermal conductivity. Since κ = κL + κe and κL is much higher
than κe, κ ≈ κL. Then, the figure of merit of ε-Ga2O3 can be
further obtained from previous calculated results, which is
shown in Figure 9a. When the carrier concentration is 5.5 ×
1017 cm−3, the figure of merit of ε-Ga2O3 is about 6.4 × 10−4 at
room temperature, which is about 36% lower than the value of
β-Ga2O3 (see Supporting Information Note V). The main
reasons are that (1) the Seebeck coefficient of ε-Ga2O3 is
higher than that of β-Ga2O3 and the lattice thermal
conductivity of ε-Ga2O3 is lower than that of β-Ga2O3 when
the concentration ranges from 1 × 1016 to 1 × 1019 cm−3 at
room temperature and (2) the electrical conductivity of ε-
Ga2O3 increases more rapidly as the carrier concentration
increases at room temperature. Therefore, the figure of merit
of ε-Ga2O3 can increase by increasing the doping concen-
tration. Figure 9b shows the figure of merit at the Cartesian
directions, which is expressed using a function of temperature,
when the concentration is about 5.5 × 1017 cm−3. Figure 9b
indicates that the figure of merit at the y direction is always
largest among the Cartesian directions. The main reason is that
the electrical conductivity and the Seebeck coefficient are
nearly the same at all Cartesian directions due to the isotropic
band structure near the conduction band maximum. Therefore,
the anisotropy of the figure of merit is determined by the
anisotropy of the lattice thermal conductivity.

3. CONCLUSION

In conclusion, we obtained a suitable description using ab
initio calculation for the electronic structure of ε-Ga2O3. The
phonon dispersion and thermal properties of ε-Ga2O3 were
obtained by density perturbation functional theory, the finite
displacement method, and the quasi-harmonic approximation
method. In the study of the ε-Ga2O3 transport properties, the
band structure was first interpolated by a maximally localized
Wannier function. Then, the results of the ab initio band
energies were integrated with the semiclassical Boltzmann

transport theory. This study shows that an appropriate
description of the band structure together with phonon
dispersion facilitates the study of the transport and thermo-
electric properties of ε-Ga2O3. The thermoelectric coefficients
of ε-Ga2O3 have been investigated systematically and provide
predictive data. The electronic, thermal and thermoelectric
properties of ε-Ga2O3 are compared with those of β-Ga2O3.
The results reveal that (1) the effective mass, dielectric tensor,
heat capacity, average Grüneisen parameter, and thermal
conductivity of both ε-Ga2O3 and β-Ga2O3 can be comparable,
(2) the Seebeck coefficient of ε-Ga2O3 is larger than that of β-
Ga2O3, but the electrical conductivity of ε-Ga2O3 is smaller
than that of β-Ga2O3, and (3) the thermoelectric figure of
merit of ε-Ga2O3 increases as the carrier concentration
increases. Our estimated temperature and concentration
dependence of the electrical conductivity, Seebeck coefficient,
and figure of merit give guidelines for the thermal management
and design of ε-Ga2O3-based electronic devices.

■ COMPUTATIONAL METHODS
Density Functional Theory Calculation. The Quantum

ESPRESSO package is used for all density generalized function
theory (DFT) calculations.37,38 A plane-wave basis set and the
projector augmented-wave (PAW) method are used with the
Perdew−Burke−Ernzerhof (PBE) exchange-correlation func-
tional.39,40 All the pseudopotentials are taken from SSSP
pseudopotential library41 and pslibrary.42 Ga 3d10 4s2 4p1 and
O 2s2 2p4 are treated as the valence states. The system energy
convergence criterion is set as 1 × 10−9 eV. The plane-wave
self-consistence field calculation converges with a plane-wave
cutoff of 70 Ry and a 7 × 4 × 4 Brillouin zone grid.43

Optimization of the structure is truncated after the Hellmann−
Feynman force up to 3 × 10−4 eV/Å. Afterward, the details of
the ε-Ga2O3 band structure are obtained by maximally
localized Wannier functions (MLWFs).44,45 The SeeK-path
tool was used to define the k-point and q-point labels.46 The
dielectric constant and Born effective charge are calculated by
the PHonon package using density functional perturbation
theory (DFPT) with only the Γ-q-point.37,38,47,48

Finite Displacement Method. Under the harmonic
approximation, the atoms are assumed to move around their
equilibrium positions rl, where l is the label of atoms in each
unit cell. In the finite displacement method,49,50 the
approximation of the equation for the second-order force
constant can be expressed as

F r

r

( )
l l

l l

l
,

, ,

,
Φ ′ ≃ − ′ Δ

Δαβ
β α

α (12)

where α and β are the Cartesian indices, l and l′ are the indices
of atoms in a unit cell, Δrα,l is the finite displacement of atoms l
at α Cartesian index, and Fβ,l′(Δrα,l) is the force of atom l′ at β
Cartesian index due to Δrα,l. The atomic force can be obtained
from first principles by Quantum ESPRESSO. After the
second-order force constant is calculated, the dynamical matrix
Dαβ,l′l can be further calculated as long as the phonon
dispersion ω(qj). All of the harmonic phonon properties are
obtained using Phonopy packages.51 After we obtain the full
relaxation structure of ε-Ga2O3, we generate a series of 2 × 2 ×
1 ε-Ga2O3 supercells with atom displacement, resulting in a
total 60 different supercells. The displacement length of each
atom from its equilibrium position is 0.01 Å. All of the
supercells contain in total 160 atoms. Then, the ground state
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energies of these 60 supercells are calculated by Quantum
ESPRESSO. After the energies of these supercells are obtained,
the force constant can be calculated by Phonopy. From the
force constant we could further calculate the phonon band
structure and the phonon density of states. The phonon
dispersion is further interpolated with nonanalytical term
correction.47,52−54 Once the phonon band structure is
obtained, the phonon mode contribution to the harmonic
phonon energy can be calculated as

E
k Tq

1
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1
exp( ( )/ ) 1j

q q
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j j
ω

ω
= ℏ +

ℏ −
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É

Ö
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where j is the phonon band index and ω is the phonon
frequency. Then, we can express the total phonon energy as
follows
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On the other hand, the Helmholtz free energy can be
expressed as
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Afterward, the constant volume heat capacity CV can be
calculated as
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where CV
jq
is mode contributions to the heat capacity, which is

defined by
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Thereby, the heat capacity at constant volume CV can be
obtained directly as the second derivative of the Helmholtz
free energy with respect to temperature. According to the
Debye model, the heat capacity at constant volume CV(T) as
function of temperature can be approximated by
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If CV(T) is calculated by eq 16 with a temperature step of 10
K, which is used to fit eq 18 by the Python package Lmfit, the
Debye temperature ΘD can be obtained. Besides, when the
phonon dispersion is acquired, the group velocity vg can be
calculated by the finite difference method as follows

v
q q

q q

g
j j

ω ω
=

∂

∂
≈

Δ

Δ (19)

where q is the phonon vector and j is the phonon band index.
Because the acoustic phonon dispersion at the Γ point is
divergent, the group velocity of an acoustic phonon at the Γ
point will be approximated by the points slightly away from the

center in the different directions, i.e., vx, vy, and vz, where x, y,
and z are the Cartesian directions. The sound speed will be
further approximated by the average of the square root of the
group velocity along the three orthogonal directions.

Quasi-Harmonic Approximation. The thermal proper-
ties at constant pressure are further obtained by a quasi-
harmonic approximation,55 in which we need to calculate the
Gibbs free energy, which is defined as follows

G T p U V H T V pV( , ) min ( ) ( , )
V

electron phonon= [ + + ]

(20)

where V is the volume, p is the pressure, Uelectron(V) is the total
energy of the electronic structure with different volumes, and
Hphonon(T, V) is the Helmholtz free energy with different
temperatures and different volumes. In this work, 9 volume
points are used with a temperature step of 10 K, and the lattice
constant step is 0.025 Å. After we calculate the Helmholtz free
energy with different temperatures and volumes using eq 15,
we could further obtain the Gibbs free energy at the
temperature and the respective equilibrium volume V(T).
The volume thermal expansion coefficient can be acquired
from the equilibrium volume as

T
V T
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The heat capacity at constant pressure Cp is given by
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Furthermore, the equilibrium volume V(T) is used to fit the
Vinet equation of state, which is described by56
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where B0 is the isothermal bulk modulus and B0′ is the
derivative of bulk modulus with respect to pressure. If the
equilibrium volume at zero pressure is V0, η is cube root of the
specific volume, which is defined as
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(24)If the equilibrium volume V(T) obtained from eq 20 is
used to fit the equation of state in eq 23, the bulk modulus can
be obtained. The mode Grüneisen parameter γ(qj) at the wave
vector q and band index j is defined as51
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where V is the volume and ω(qj) is the phonon frequency. It is
easy to calculate γ(qj) from the volume derivative of the
dynamical matrix once the dynamical matrix D(q) is acquired

j
V

j
j

D
V

jq
q

e q
q

e q( )
2 ( )

( )
( )

( )2γ
ω

≈ −
[ ]

Δ
Δ (26)

where e(qj) is the eigenvector. The phonon dispersion is
calculated at three different volumes to determine the
Grüneisen parameters, one at the equilibrium volume and
the other two at slightly distorted volumes (±0.5% lattice
constant).
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Boltzmann Transport Theory. The calculations of the
thermoelectric and electronic transport are performed by
Boltzmann transport theory within the constant relaxation time
(τ) approximation implemented in the BoltzWann code.44,45

The acoustic phonon scattering rate as a function of T is given
by34,57,58

E T
m D k T
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4
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2

1/2

τ π ρ
=

*

ℏ (27)

where m* is the effective electron mass, kB is the Boltzmann
constant, T is the temperature, ρ is the mass density, vs is the
sound velocity, D is the deformation potential, and E is the
electron energy. The deformation potential is calculated by59,60
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where E0 is the conduction band minimum located at Γ and V0
is the equilibrium unit cell volume. To obtain the absolute
deformation potential of the conduction band minimum, the
energy change is calculated as the difference between the
conduction band minimum and a core level, e.g., the anion 2s
core level, using a constant of 0.1% to expand and compress
the lattice constant because the absolute position of the energy
level is not well established in infinitely periodic crystals.61

DFT calculation will be performed with several volumes by
expanding and compressing the lattice constant by a step of
0.5%. The results of the energy and volume change will be fit
to eq 27 by the Lmfit python package in order to obtain a
better estimation of the deformation potential. On the other
hand, the polar optical phonon scattering rate can be estimated
by32
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where ωLO is the longitudinal optical phonon frequency, ε0 is
the vacuum permittivity, ε∞ is the high-frequency dielectric
constant, εs is the static dielectric constant, and nq is Bose−
Einstein distribution function for longitudinal optical phonons
given by

n
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We acquire the net relaxation rate using Matthiessen’s rule
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The average electron relaxation time is given by
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where f(E, T) is the Fermi−Dirac distribution
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The average electron relaxation time will be finally evaluated
with numeric integration by SciPy.
On the basis of the Boltzmann transport equation, the

following expressions are used to calculate the electrical
conductivity σ, electronic thermal conductivity κe, and Seebeck
coefficient S as a function of the chemical potential φ and of
the temperature T

T e E
f E T

E
E( , ) d

( , , )
( )ij i j

2
,∫σ φ

φ
[ ] = −

∂
∂

Σ
−∞

+∞ i
k
jjjj

y
{
zzzz (34)

T
e
T

E
f E T

E
E

E

S ( , ) d
( , , )

( )

( )

ij

i j,

∫σ φ
φ

φ[ ] = −
∂

∂
−

Σ

−∞

+∞ i
k
jjjj

y
{
zzzz

(35)

T
T

E
f E T

E
E

E

( , )
1

d
( , , )

( )

( )

e ij

i j

2

,

∫κ φ
φ

φ[ ] = −
∂

∂
−

Σ

−∞

+∞ i
k
jjjj

y
{
zzzz

(36)

Here, i and j are Cartesian indices, σS denotes the matrix
product of the two tensors σ and S, and ∂f/∂E is the derivative
of the Fermi−Dirac distribution function with respect to the
energy. Moreover, the transport distribution function Σij(E) is
defined as
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where the summation is over all bands n and over all of the
Brillouin zone, En,k is the energy for band n at k, τnk is the
scattering time, and vi is the ith component of the band
velocity at (n, k) which can be computed by
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Within the relaxation time approximation, τnk is held constant
with respect to the electron on band n at wave vector k;
therefore, the Seebeck coefficient is independent of τ. This
constant relaxation time approximation is based on the
assumption that the variation of energy on the scale of kBT
does not cause the electron scattering time to vary with it. This
approximation is widely adopted in first-principles calculation
for bulk materials.30,36 BoltzWann code uses a maximally
localized Wannier function (MLWF) set to interpolate the
band structure obtained from first-principles calculations by
Quantum ESPRESSO. First, a 8 × 4 × 4 k-points grid is used
for construction of 56 MLWFs around the gap region. Then, a
80 × 40 × 40 k mesh is utilized to calculate the transport
properties. The band structure of the Wannier function
interpolation matches well with the first-principles calculations
of Quantum Espresso. In order to verify the computational
methods, we also calculate the electronic, thermal, and
thermoelectric properties of β-Ga2O3, which agree well with
previous studies (see the Supporting Information).
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parameters in developing interatomic potentials. J. Appl. Phys. 1997,
82, 5378−5381.
(25) Slomski, M.; Blumenschein, N.; Paskov, P. P.; Muth, J. F.;
Paskova, T. Anisotropic thermal conductivity of β-Ga2O3 at elevated
temperatures: Effect of Sn and Fe dopants. J. Appl. Phys. 2017, 121,
235104.
(26) Dong, L.; Jia, R.; Xin, B.; Peng, B.; Zhang, Y. Effects of oxygen
vacancies on the structural and optical properties of β-Ga2O3. Sci. Rep.
2017, 7, 40160.
(27) Callaway, J.; von Baeyer, H. C. Effect of Point Imperfections on
Lattice Thermal Conductivity. Phys. Rev. 1960, 120, 1149−1154.
(28) Boy, J.; Handwerg, M.; Ahrling, R.; Mitdank, R.; Wagner, G.;
Galazka, Z.; Fischer, S. F. Temperature dependence of the Seebeck
coefficient of epitaxial β-Ga2O3 thin films. APL Mater. 2019, 7,
022526.
(29) Kumar, A.; Singisetti, U. First principles study of thermoelectric
properties of β-gallium oxide. Appl. Phys. Lett. 2020, 117, 262104.
(30) Scheidemantel, T. J.; Ambrosch-Draxl, C.; Thonhauser, T.;
Badding, J. V.; Sofo, J. O. Transport coefficients from first-principles
calculations. Phys. Rev. B 2003, 68, 125210.
(31) Cho, S. B.; Mishra, R. Epitaxial engineering of polar ε-Ga2O3

for tunable two-dimensional electron gas at the heterointerface. Appl.
Phys. Lett. 2018, 112, 162101.
(32) Ma, N.; Tanen, N.; Verma, A.; Guo, Z.; Luo, T.; Xing, H. G.;
Jena, D. Intrinsic electron mobility limits in β-Ga2O3. Appl. Phys. Lett.
2016, 109, 212101.
(33) Ghosh, K.; Singisetti, U. Ab initio calculation of electron-
phonon coupling in monoclinic β-Ga2O3 crystal. Appl. Phys. Lett.
2016, 109, 072102.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06367
ACS Omega 2022, 7, 11643−11653

11652

https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06367/suppl_file/ao1c06367_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xianzhong+Zhou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4311-7287
mailto:zhouxzh@gdut.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qingsong+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zimin+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06367?ref=pdf
https://doi.org/10.1088/0268-1242/31/3/034001
https://doi.org/10.1088/0268-1242/31/3/034001
https://doi.org/10.1063/1.4984904
https://doi.org/10.1063/1.4984904
https://doi.org/10.1063/1.4984904
https://doi.org/10.1002/adma.201604049
https://doi.org/10.1002/adma.201604049
https://doi.org/10.1103/PhysRevB.93.115204
https://doi.org/10.1103/PhysRevB.93.115204
https://doi.org/10.1021/ja01123a039?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja01123a039?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevB.77.064107
https://doi.org/10.1103/PhysRevB.77.064107
https://doi.org/10.1103/PhysRevB.77.064107
https://doi.org/10.1063/1.4929417
https://doi.org/10.1063/1.4929417
https://doi.org/10.7567/JJAP.55.1202BC
https://doi.org/10.7567/JJAP.55.1202BC
https://doi.org/10.7567/JJAP.55.1202BC
https://doi.org/10.1063/1.4950867
https://doi.org/10.1063/1.4950867
https://doi.org/10.1039/C7CE00123A
https://doi.org/10.1039/C7CE00123A
https://doi.org/10.1016/j.actamat.2017.08.062
https://doi.org/10.1088/0953-8984/19/34/346211
https://doi.org/10.1063/1.5006941
https://doi.org/10.1002/pssa.201330197
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1039/C9CE01532A
https://doi.org/10.1039/C9CE01532A
https://doi.org/10.1039/C9CE01532A
https://doi.org/10.1103/PhysRevLett.51.1884
https://doi.org/10.1103/PhysRevLett.51.1884
https://doi.org/10.1016/j.commatsci.2016.07.043
https://doi.org/10.1016/j.commatsci.2016.07.043
https://doi.org/10.1016/j.commatsci.2016.07.043
https://doi.org/10.1063/1.5055238
https://doi.org/10.1063/1.5055238
https://doi.org/10.1063/1.5055238
https://doi.org/10.1063/1.4916078
https://doi.org/10.1063/1.4916078
https://doi.org/10.1063/1.366305
https://doi.org/10.1063/1.366305
https://doi.org/10.1063/1.4986478
https://doi.org/10.1063/1.4986478
https://doi.org/10.1038/srep40160
https://doi.org/10.1038/srep40160
https://doi.org/10.1103/PhysRev.120.1149
https://doi.org/10.1103/PhysRev.120.1149
https://doi.org/10.1063/1.5084791
https://doi.org/10.1063/1.5084791
https://doi.org/10.1063/5.0027791
https://doi.org/10.1063/5.0027791
https://doi.org/10.1103/PhysRevB.68.125210
https://doi.org/10.1103/PhysRevB.68.125210
https://doi.org/10.1063/1.5019721
https://doi.org/10.1063/1.5019721
https://doi.org/10.1063/1.4968550
https://doi.org/10.1063/1.4961308
https://doi.org/10.1063/1.4961308
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06367?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(34) Parisini, A.; Fornari, R. Analysis of the scattering mechanisms
controlling electron mobility in β-Ga2O3 crystals. Semicond. Sci.
Technol. 2016, 31, 035023.
(35) Liu, B.; Gu, M.; Liu, X. Lattice dynamical, dielectric, and
thermodynamic properties of β-Ga2O3 from first principles. Appl.
Phys. Lett. 2007, 91, 172102.
(36) Borges, P. D.; Scolfaro, L. Electronic and thermoelectric
properties of InN studied using ab initio density functional theory and
Boltzmann transport calculations. J. Appl. Phys. 2014, 116, 223706.
(37) Giannozzi, P.; et al. QUANTUM ESPRESSO: a modular and
open-source software project for quantum simulations of materials. J.
Phys.: Condens. Matter 2009, 21, 395502.
(38) Giannozzi, P.; et al. Advanced capabilities for materials
modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter
2017, 29, 465901.
(39) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.
(40) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the
projector augmented-wave method. Phys. Rev. B 1999, 59, 1758−
1775.
(41) Prandini, G.; Marrazzo, A.; Castelli, I. E.; Mounet, N.; Marzari,
N. Precision and efficiency in solid-state pseudopotential calculations.
npj Comput. Mater. 2018, 4, 72.
(42) Dal Corso, A. Pseudopotentials periodic table: From H to Pu.
Comput. Mater. Sci. 2014, 95, 337−350.
(43) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone
integrations. Phys. Rev. B 1976, 13, 5188−5192.
(44) Pizzi, G.; Volja, D.; Kozinsky, B.; Fornari, M.; Marzari, N.
BoltzWann: A code for the evaluation of thermoelectric and electronic
transport properties with a maximally-localized Wannier functions
basis. Comput. Phys. Commun. 2014, 185, 422−429.
(45) Pizzi, G.; Volja, D.; Kozinsky, B.; Fornari, M.; Marzari, N. An
updated version of BoltzWann: A code for the evaluation of
thermoelectric and electronic transport properties with a maximally-
localized Wannier functions basis. Comput. Phys. Commun. 2014, 185,
2311−2312.
(46) Hinuma, Y.; Pizzi, G.; Kumagai, Y.; Oba, F.; Tanaka, I. Band
structure diagram paths based on crystallography. Comput. Mater. Sci.
2017, 128, 140−184.
(47) Gonze, X.; Lee, C. Dynamical matrices, Born effective charges,
dielectric permittivity tensors, and interatomic force constants from
density-functional perturbation theory. Phys. Rev. B 1997, 55, 10355−
10368.
(48) Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P.
Phonons and related crystal properties from density-functional
perturbation theory. Rev. Mod. Phys. 2001, 73, 515−562.
(49) Chaput, L.; Togo, A.; Tanaka, I.; Hug, G. Phonon-phonon
interactions in transition metals. Phys. Rev. B 2011, 84, 094302.
(50) Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-Principles
Determination of the Soft Mode in Cubic ZrO2. Phys. Rev. Lett.
1997, 78, 4063−4066.
(51) Togo, A.; Tanaka, I. First principles phonon calculations in
materials science. Scr. Mater. 2015, 108, 1−5.
(52) Pick, R. M.; Cohen, M. H.; Martin, R. M. Microscopic Theory
of Force Constants in the Adiabatic Approximation. Phys. Rev. B
1970, 1, 910−920.
(53) Gonze, X.; Charlier, J.-C.; Allan, D.; Teter, M. Interatomic
force constants from first principles: The case of α-quartz. Phys. Rev. B
1994, 50, 13035−13038.
(54) Wang, Y.; Wang, J. J.; Wang, W. Y.; Mei, Z. G.; Shang, S. L.;
Chen, L. Q.; Liu, Z. K. A mixed-space approach to first-principles
calculations of phonon frequencies for polar materials. J. Phys.:
Condens. Matter 2010, 22, 202201.
(55) Togo, A.; Chaput, L.; Tanaka, I.; Hug, G. First-principles
phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2 and
Ti3GeC2. Phys. Rev. B 2010, 81, 174301.
(56) Vinet, P.; Smith, J. R.; Ferrante, J.; Rose, J. H. Temperature
effects on the universal equation of state of solids. Phys. Rev. B 1987,
35, 1945−1953.

(57) Bardeen, J.; Shockley, W. Deformation Potentials and
Mobilities in Non-Polar Crystals. Phys. Rev. 1950, 80, 72−80.
(58) Hu, Y.; Hwang, J.; Lee, Y.; Conlin, P.; Schlom, D. G.; Datta, S.;
Cho, K. First principles calculations of intrinsic mobilities in tin-based
oxide semiconductors SnO, SnO2, and Ta2SnO6. J. Appl. Phys. 2019,
126, 185701.
(59) Qiao, J.; Kong, X.; Hu, Z.-X.; Yang, F.; Ji, W. High-mobility
transport anisotropy and linear dichroism in few-layer black
phosphorus. Nat. Commun. 2014, 5, 4475.
(60) Dong, B.; Wang, Z.; Hung, N. T.; Oganov, A. R.; Yang, T.;
Saito, R.; Zhang, Z. New two-dimensional phase of tin chalcogenides:
Candidates for high-performance thermoelectric materials. Physical
Review Materials 2019, 3, 013405.
(61) Li, Y.-H.; Gong, X. G.; Wei, S.-H. Ab initio calculation of
hydrostatic absolute deformation potential of semiconductors. Appl.
Phys. Lett. 2006, 88, 042104.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06367
ACS Omega 2022, 7, 11643−11653

11653

https://doi.org/10.1088/0268-1242/31/3/035023
https://doi.org/10.1088/0268-1242/31/3/035023
https://doi.org/10.1063/1.2800792
https://doi.org/10.1063/1.2800792
https://doi.org/10.1063/1.4904086
https://doi.org/10.1063/1.4904086
https://doi.org/10.1063/1.4904086
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1038/s41524-018-0127-2
https://doi.org/10.1016/j.commatsci.2014.07.043
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1016/j.cpc.2013.09.015
https://doi.org/10.1016/j.cpc.2013.09.015
https://doi.org/10.1016/j.cpc.2013.09.015
https://doi.org/10.1016/j.cpc.2014.05.004
https://doi.org/10.1016/j.cpc.2014.05.004
https://doi.org/10.1016/j.cpc.2014.05.004
https://doi.org/10.1016/j.cpc.2014.05.004
https://doi.org/10.1016/j.commatsci.2016.10.015
https://doi.org/10.1016/j.commatsci.2016.10.015
https://doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/PhysRevB.84.094302
https://doi.org/10.1103/PhysRevB.84.094302
https://doi.org/10.1103/PhysRevLett.78.4063
https://doi.org/10.1103/PhysRevLett.78.4063
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1103/PhysRevB.1.910
https://doi.org/10.1103/PhysRevB.1.910
https://doi.org/10.1103/PhysRevB.50.13035
https://doi.org/10.1103/PhysRevB.50.13035
https://doi.org/10.1088/0953-8984/22/20/202201
https://doi.org/10.1088/0953-8984/22/20/202201
https://doi.org/10.1103/PhysRevB.81.174301
https://doi.org/10.1103/PhysRevB.81.174301
https://doi.org/10.1103/PhysRevB.81.174301
https://doi.org/10.1103/PhysRevB.35.1945
https://doi.org/10.1103/PhysRevB.35.1945
https://doi.org/10.1103/PhysRev.80.72
https://doi.org/10.1103/PhysRev.80.72
https://doi.org/10.1063/1.5109265
https://doi.org/10.1063/1.5109265
https://doi.org/10.1038/ncomms5475
https://doi.org/10.1038/ncomms5475
https://doi.org/10.1038/ncomms5475
https://doi.org/10.1103/PhysRevMaterials.3.013405
https://doi.org/10.1103/PhysRevMaterials.3.013405
https://doi.org/10.1063/1.2168254
https://doi.org/10.1063/1.2168254
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06367?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

