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External characteristic 
determination of eggs and cracked 
eggs identification using spectral 
signature
Chuanqi Xie & Yong He

This study was carried out to use hyperspectral imaging technique for determining color (L*, a* and b*) 
and eggshell strength and identifying cracked chicken eggs. Partial least squares (PLS) models based 
on full and selected wavelengths suggested by regression coefficient (RC) method were established to 
predict the four parameters, respectively. Partial least squares-discriminant analysis (PLS-DA) and RC-
partial least squares-discriminant analysis (RC-PLS-DA) models were applied to identify cracked eggs. 
PLS models performed well with the correlation coefficient (rp) of 0.788 for L*, 0.810 for a*, 0.766 for b* 
and 0.835 for eggshell strength. RC-PLS models also obtained the rp of 0.771 for L*, 0.806 for a*, 0.767 
for b* and 0.841 for eggshell strength. The classification results were 97.06% in PLS-DA model and 
88.24% in RC-PLS-DA model. It demonstrated that hyperspectral imaging technique has the potential 
to be used to detect color and eggshell strength values and identify cracked chicken eggs.

Egg is one of the most important foods because of its healthy function to people. It is rich in protein, lipid and 
carbohydrates, and it also contains mineral elements and vitamins1. In food industry, eggs can be used for making 
cakes, breads, ice creams, etc. Also, eggs have therapeutic and diagnostic functions2. However, eggs can often be 
damaged due to their fragile eggshells. According to a previous study, cracked eggs made up from 6% to 8% of 
the total eggs production3. The eggshell is a natural protection for egg, and thus it is significant to get a high value 
of eggshell strength4. The eggshell strength, reflecting the resistance ability to damage, can protect eggs when 
they are in collecting, packaging, storage and transportation. It can be found the higher the eggshell strength, the 
stronger resist to damage. Cracked eggs can finally cause economic loss in two ways, one is that they cannot be 
sold at a high price, another is cracked eggs may raise the risk of bacterial contamination to intact eggs, which 
can even produce food quality and safety problems5–7. Therefore, cracked eggs should be identified and taken 
out before they are sent to the market. Egg color is also an important factor in egg industry. It can affect people’s 
choice due to the regional or national cultural preferences for different colors, directly affecting eggs’ produc-
tion8–9. Thus, the determination of egg color and eggshell strength is of importance.

Hyperspectral imaging technique can produce spectral information as well as spatial information for objec-
tives at the same time. A spatial hyperspectral cube can be generated when one sample was scanned by the hyper-
spectral imaging camera. The hyperspectral cube (hyperspectral image) contains a series of images covering the 
whole wavelengths, and each pixel for one image has both spectral and spatial information10. Because of this 
feature, it can be used to detect external characteristics, such as fruit defect11,12, color13 and sugar beet disease14, 
and internal information, such as moisture content10 and other chemical indexes15,16. By studying spectral fea-
tures at different wavelengths, it may be possible for color and eggshell strength determination and cracked eggs 
identification, which can be seen in many previous studies. Wu et al. predicted beef color (L*, a* and b*) using 
hyperspectral imaging technique17. Wu et al. investigated color distribution in salmon fillet by using hyperspec-
tral imaging18. Iqbal et al. detected the color in turkey hams by hyperspectral imaging method19. Huang et al. 
studied color feature in vegetable soybean during drying based on hyperspectral imaging20. All of these studies 
showed the feasibility of hyperspectral imaging technique for color determination.

This study investigated the determination of egg color and eggshell strength values and detection of cracked 
eggs using hyperspectral imaging technique. The specific objectives of this study were: (1) to detect egg color and 
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eggshell strength values by using spectral information; (2) to select significant wavelengths for predicting color 
and eggshell strength values and (3) to develop a technique to classify intact and cracked eggs based on full and 
selected wavelengths, respectively.

Results and Discussion
Spectral feature. Spectral reflectance curves of all chicken eggs were shown in Fig. 1. It is obviously there 
was some noise at the beginning of the wavelengths. The general trend of the spectral reflectance curves for dif-
ferent eggs were very similar. In order to classify intact and cracked eggs quantitatively, the classification model 
should be considered using the information from spectral curves. In a previous study, wavelengths between 570 
and 750 nm were used to detect egg freshness21. In order to reduce the noise influence, wavelengths from 450 to 
950 nm were used in this study.

Color and eggshell strength values. The minimum, maximum, mean and standard deviation of L*, a* 
and b* values for cracked and intact eggs can be found in Fig. 2(a–c). In this figure, the L*, a* and b* values for 
both intact and cracked eggs were very similar. This is because the eggs which were used to create crack were 
randomly selected from the total eggs. However, for each sample, it has a different and specific color feature. 
The eggshell strength values of intact eggs were higher than those of cracked ones as shown in Fig. 2(d). This is 
because cracked eggs have more fragile eggshells, directly resulting in lower values of eggshell strength. In order 
to avoid bias in subset partition, all samples were arranged in an ascending order according to the Y variables 
(L*, a*, b* and eggshell strength, respectively) for each model22. Then one egg was selected from every three ones 
consecutively, resulting in the calibration set and prediction set at a ratio of 2:1. No single sample was used in both 
calibration and prediction sets at the same time. Thus, there were 68 samples in the calibration set and 34 ones in 
the prediction set. The statistical values of L*, a*, b* and eggshell strength for both sets can be seen in Table 1. For 
each parameter, a broad range values can be found in the two sets. Therefore, the samples in both sets can repre-
sent the range of all possible values, which contributed to develop an accurate and robust model23.

PLS models based on full wavelengths. Four different partial least squares (PLS) models based on the 
full spectral wavelengths were developed for predicting L*, a*, b* and eggshell strength, respectively. Performance 
of each prediction model was evaluated according to the values of correlation coefficient of calibration (rc), cor-
relation coefficient of prediction (rp), root mean square error of calibration (RMSEC) and root mean square error 
of prediction (RMSEP). The results were shown in Table 2. Each model obtained a good result with high values 
of rc and rp and low values of RMSEC and RMSEP. The values of rp were 0.788 for L*, 0.810 for a*, 0.766 for b* and 
0.835 for eggshell strength, respectively. The results proved that spectral information could be used to determine 
color and eggshell strength values for chicken eggs.

Significant wavelengths. In this study, regression coefficient (RC) method was used to select the effective 
wavelengths. The size of the coefficients gives an indication of which wavelengths were important for predicting 
Y values. It can be seen in Fig. 3(a–d) that some peaks and valleys with high absolute values were identified as the 
optimal wavelengths. The horizontal lines showed the upper and lower cutoff threshold values. As a result, five 
wavelengths were selected for L* (544, 568, 596, 649 and 672 nm), three ones for a* (543, 664 and 950 nm), four 
ones for b* (458, 615, 649 and 936 nm) and eight ones for eggshell strength (450, 456, 624, 649, 687, 741, 754 and 
816 nm). The numbers of these selected wavelengths only took up 1.26%, 0.76%, 1.01% and 2.02% of that of the 
full spectral wavebands, respectively. They were then used to replace the full wavelengths for predicting L*, a*, b* 
and eggshell strength values.

Prediction results based on selected wavelengths. Based on the selected wavelengths, four different 
RC-PLS models were established for L*, a*, b* and eggshell strength, respectively. Each model obtained a good 
result with high values of rc and rp and low values of RMSEC and RMSEP as can be seen in Table 3. Though the 
results based on selected wavelengths did not change too much compared with the corresponding values based 

Figure 1. Spectral reflectance curves of samples. 
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on full spectral wavelengths, the number of input variables was fewer. The fewer input variables will be helpful to 
develop a multispectral imaging detection system. Also, it can be found the rp values for b* and eggshell strength 
in RC-PLS models were even a little higher than those in PLS models. Thus, it proved the selected wavelengths 
can be equal to or even more efficient than full spectral wavelengths24. This may because the whole wavelengths 

Figure 2. Distribution of color (L*, a* and b*) and eggshell strength values. (a) L*, (b) a*, (c) b* and (d) 
eggshell strength.

Statistics

Calibration Prediction

L* a* b*
eggshell 

strength /N L* a* b*
eggshell 

strength /N

Minimum 53.56 9.61 25.43 5.84 56.02 12.94 24.68 8.08

Maximum 69.60 21.25 32.51 50.5 67.12 19.91 32.39 51.13

Mean 61.89 16.10 29.60 24.02 61.16 16.15 29.58 24.88

S.D.a 3.53 2.19 1.63 12.91 3.11 2.02 1.74 13.23

Table 1.  Color (L*, a* and b*) and eggshell strength values in calibration and prediction sets. a: Standard 
Deviation.

Parameters

Calibration Prediction

rc RMSEC slope offset rp RMSEP slope offset

L* 0.817 2.019 0.667 20.608 0.788 1.899 0.617 23.637

a* 0.834 1.199 0.695 4.912 0.810 1.224 0.519 7.903

b* 0.816 0.936 0.665 9.911 0.766 1.115 0.519 14.311

eggshell strength 0.869 6.347 0.755 5.899 0.835 7.356 0.800 5.452

Table 2.  Prediction results of PLS models for color (L*, a* and b*) and eggshell strength values.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:21130 | DOI: 10.1038/srep21130

contained too much redundant information that directly affected the prediction performance. It demonstrated 
that RC method could be used to identify the useful wavelengths and abandon the uninformative ones.

Classification based on spectral information. This study was then carried out to classify intact and 
cracked chicken eggs based on spectral information. Partial least squares-discriminant analysis (PLS-DA) model 
was firstly established to identify cracked samples. The threshold was set as ± 0.3. RC method was also carried 
out to select the useful wavelengths for the classification model, and eighteen wavelengths (451, 457, 469, 475, 
497, 573, 633, 701, 800, 804, 816, 821, 848, 884, 915, 925, 938 and 942 nm) were identified (shown in Fig. 4). They 
were then used to substitute the whole spectral wavelengths for building RC-PLS-DA model. The results of both 
PLS-DA and RC-PLS-DA models were shown in Table 4. The PLS-DA model performed excellently with the 
total classification accuracy (CA) of 100% in the calibration set and 97.06% in the prediction set. It also obtained 
a good result with the total CA of 95.59% in the calibration set and 88.24% in the prediction set for RC-PLS-DA 
model. Though RC-PLS-DA model performed a little worse compared with PLS-DA model, the result was accept-
able. Also, the number of the input variables decreased largely, which only accounted for 4.55% of the whole 
wavebands. The results demonstrated that spectral reflectance information extracted from the hyperspectral 
images could be used to detect cracked chicken eggs effectively. Based on hyperspectral imaging technique, intact 
and cracked eggs can be classified effectively and non-destructively. A multispectral imaging detection system can 
be developed for identifying cracked eggs, which makes the detection on-line. It not only saves the cost but also 
speeds up the detection efficiency. When the cracked eggs are identified and taken out, there is no contamination 
for intact eggs, which can extend the eggs’ shelf lives and also increase the profit.

Figure 3. Effective wavelengths selected by RC method. The horizontal lines show the upper and lower cutoff 
threshold values. (a) L*, (b) a*, (c) b* and (d) eggshell strength.

Parameters
Number of 
variables

Calibration Prediction

rc RMSEC slope offset rp RMSEP slope offset

L* 5 0.813 2.038 0.661 20.996 0.771 1.967 0.577 26.101

a* 3 0.817 1.251 0.668 5.347 0.806 1.223 0.545 7.538

b* 4 0.773 1.026 0.598 11.911 0.767 1.102 0.558 13.068

eggshell strength 8 0.859 6.564 0.738 0.309 0.841 7.069 0.732 6.350

Table 3. Prediction results of RC-PLS models for color (L*, a* and b*) and eggshell strength values.
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Conclusions
The results showed that hyperspectral imaging technique could be used as an accurate and non-invasive method 
to predict color and eggshell strength values and detect cracked eggs. PLS models were effective for the predic-
tion of color and eggshell strength parameters, and PLS-DA models performed excellently for the identification 
of cracked eggs. The numbers of the selected wavelengths for L*, a*, b*, eggshell strength features and cracked 
samples classification only accounted for 1.26%, 0.76%, 1.01% , 2.02% and 4.55% of that of the whole wavebands. 
In full wavelengths-based models (PLS), the rp values for each feature were 0.788, 0.810, 0.766 and 0.835, respec-
tively. The overall classification result was 97.06% in PLS-DA model. While the prediction results were 0.771, 
0.806, 0.767 and 0.841 for the four features using RC-PLS models, and the CA was 88.24% in RC-PLS-DA model. 
The results based on the selected wavelengths were quite similar with those acquired by the full spectral wave-
lengths, which was consisted with two previous studies13,25. The wavelengths obtained in this study were useful for 
developing a multispectral imaging system in egg industry. In further studies, more samples need to be used for 
building more accurate and robust models. Also, other wavelength selection methods should be studied.

Materials and Methods
Samples. The eggs (fresh local eggs,) were purchased from the supermarket in China. The contamination on 
the surface were cleaned and then kept in the refrigerator at 4 °C. In our daily lives, most of the cracked eggs are 
generated in collecting, storage, transportation, as they are easily broken when contacting with other hard objec-
tives. Thus, in order to imitate the cracked eggs generated in the real daily life, egg cracks were created by slightly 
hitting the experiment desk in this study. The structure diagram of the hitting device can be seen in Fig. 5. Finally, 
fifty-one intact and fifty-one cracked eggs were obtained for study.

Hyperspectral imaging system and operation platform. A laboratory hyperspectral imaging sys-
tem, which covers the spectral region from 380 to 1023 nm, was used in this study. The schematic diagram of 
the hyperspectral imaging system can be seen in Fig. 6. It consists of an imaging spectrograph (V10E, Specim, 
Finland), a charge coupled device (CCD) camera (C8484-05, Hamamatsu City, Japan), a lens (OLE-23), two light 
sources (Oriel Instruments, Irvine, USA) provided by two 150W quartz tungsten halogen lamps, a conveyer and 
a computer. The spectral resolution is 2.8 nm, and the area CCD array detector of the camera has 672 ×  512 (spa-
tial ×  spectral) pixels. All samples were scanned by the camera line by line. The ENVI 4.7 (Research System Inc., 
Boulder, Co., USA), MATLAB R2009a (The Math Works Inc., Natick, MA, USA) and Unscrambler V9.7 (CAMO 
Process AS, Oslo, Norway) software were used in this study.

Figure 4. Effective wavelengths selected by RC method for classification. The horizontal lines show the 
upper and lower cutoff threshold values.

Models Type
Number of 
variables

Calibration Prediction

No.a Correct CA/%b No. a Correct CA/% b

PLS-DA

Intact 396 34 34 100 17 16 94.12

Cracked 396 34 34 100 17 17 100

All 396 68 68 100 34 33 97.06

RC-PLS-DA

Intact 18 34 31 91.18 17 17 100

Cracked 18 34 34 100 17 13 76.47

All 18 68 65 95.59 34 30 88.24

Table 4. Classification results of PLS-DA and RC-PLS-DA models. a: Number of samples; b: Classification 
accuracy.
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Image acquisition and correction. Before images acquisition, the exposure time, moving speed and ver-
tical distance between the lens and samples should be adjusted in order to obtain the hyperspectral image with-
out distortion and overexposure26. Finally, the exposure time was set as 0.13 s, the moving speed was 2.1 mm/s, 
and the vertical distance between the lens and sample was 40.2 cm. Then a white Teflon board (CAL-tile 200, 
200 mm ×  25 mm ×  10 mm) with the reflectance of about 99% was scanned firstly, and a dark image with the 
reflectance of about 0% was acquired by covering the camera lens with its cap and turning off the light. Each egg 
was placed on the moving conveyor to be scanned line by line. For cracked samples, the cracks were oriented to 
the hyperspectral imaging camera. Finally, the hyperspectral images with the spectral wavelengths from 380 to 
1023 nm were acquired. Each hyperspectral image had 672 pixels in the spatial dimension and 512 bands in the 
spectral dimension. Once the raw hyperspectral image was generated, it should be corrected based on the dark 
and white images according to equation (1).

=
−
− ( )

I I I
I I 1corrected

raw dark

white dark

where Icorrected is the corrected hyperspectral image, Iraw is the raw hyperspectral image, Idark is the dark image, and 
Iwhite is the white image.

Color and eggshell strength measurement. The three color values (L*, a* and b*) were measured by the 
colorimeter (Konica Minolta, CR-400, Japan) with a standard C illuminant. Before color acquisition, the colorim-
eter should be calibrated by a standard white calibration plate. The colorimeter should totally cover the detection 
area of the sample, otherwise, color features of other objectives around the sample might be acquired, which made 
the result incorrect. The CIELAB color scale, which is a three dimensional cube color space, can represent the 
three color parameters (L*, a* and b*) precisely27. Eggshell strength was determined by the egg shell force gauge 
(ESFG-1, Nanjing Wanma Uitrasonic Motors Co., Ltd, China). When the egg was put on the plate, a probe would 

Figure 5. Structure diagram of the hitting device. 

Figure 6. Schematic diagram of the hyperspectral imaging system. 
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move down. It didn’t stop until the egg was broken. Then, the value shown on the screen was the eggshell strength. 
The unit of eggshell strength is N.

Models and evaluation index. PLS models were built to predict the color and eggshell strength values in 
this study. This method is very effective in predicting collinear variables, and has been used in many previous 
studies28–30. The prediction result is acquired by extracting a set of orthogonal factors, which contain most of 
the useful information31. PLS method can also be used for discrimination analysis in the form of PLS-DA. This 
method can explain differences between overall class properties, thus, the interpretation becomes more compli-
cated with the class number increasing32. PLS-DA models were established for identifying the cracked eggs in 
this study. Both PLS and PLS-DA models were calculated using Unscrambler V9.7 software. Performance of pre-
diction models were evaluated according to the values of rc, rp, RMSEC and RMSEP. Excellent prediction models 
should have high values of rc and rp, low values of RMSEC and RMSEP33. The performance of classification model 
was determined by CA value, which should be between 0% and 100%. The higher the CA value, the better the 
classification model. The equations for r and RMSE could be defined as follows:

=
∑ ( − )( − )

∑ ( − ) ∑ ( − ) ( )

=

= =
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where xi is the measurement value of the sample i; x is the average value of xi; yiis the predicted value of the sam-
ple i; y is the average value of yi; n is the number of samples.

Regression coefficient. In order to improve the prediction performance and simplify the model, effective 
wavelengths were then selected. These selected wavelengths aimed at identifying a small subset of spectral fea-
tures to replace the full spectral wavelengths. Selected wavelengths can produce results that a better or identic to 
results obtained using the whole wavelengths24. RC method was applied to select the useful wavelengths in this 
study. This method is very efficient for selecting key wavelengths and has been used in many previous studies34,35. 
In RC algorithm, the high positive and negative peaks represent the wavelengths at these points contain the most 
effective information36. The RC algorithm was operated in Unscrambler 9.7 software.

Experiment design. All samples were scanned by the hyperspectral imaging system firstly. Then the three 
color values (L*, a* and b*) were measured by the colorimeter, and the eggshell strength was determined by the 
egg shell force gauge. Spectral reflectance information was extracted from the corrected hyperspectral image and 
treated as the independent variable (X variable). PLS models were established to predict the three color parame-
ters and eggshell strength value. The significant wavelengths were selected by RC method. Based on these selected 
wavelengths, RC-PLS models were built for the prediction of color and eggshell strength values. In this study, 
PLS-DA and RC-PLS-DA models were then applied to detect cracked chicken eggs.
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