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Abstract

Background: An excess of caffeine is cytotoxic to all eukaryotic cell types. We aim to study how cells become tolerant to a
toxic dose of this drug, and the relationship between caffeine and oxidative stress pathways.

Methodology/Principal Findings: We searched for Schizosaccharomyces pombe mutants with inhibited growth on caffeine-
containing plates. We screened a collection of 2,700 haploid mutant cells, of which 98 were sensitive to caffeine. The genes
mutated in these sensitive clones were involved in a number of cellular roles including the H2O2-induced Pap1 and Sty1
stress pathways, the integrity and calcineurin pathways, cell morphology and chromatin remodeling. We have investigated
the role of the oxidative stress pathways in sensing and promoting survival to caffeine. The Pap1 and the Sty1 pathways are
both required for normal tolerance to caffeine, but only the Sty1 pathway is activated by the drug. Cells lacking Pap1 are
sensitive to caffeine due to the decreased expression of the efflux pump Hba2. Indeed, ?hba2 cells are sensitive to caffeine,
and constitutive activation of the Pap1 pathway enhances resistance to caffeine in an Hba2-dependent manner.

Conclusions/Significance: With our caffeine-sensitive, genome-wide screen of an S. pombe deletion collection, we have
demonstrated the importance of some oxidative stress pathway components on wild-type tolerance to the drug.
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Introduction

The methylxanthine derivative caffeine is an analogue of purine

bases which has been involved in a variety of cellular processes in

eukaryotic cells, including mammals, plants and fungi. Caffeine

has shown a wide array of pharmacological and biological effects

that interfere with DNA repair and recombination pathways,

delay cell cycle progression and modulate intracellular calcium

homeostasis. However, the manner in which caffeine triggers these

pleiotropic effects is still largely unknown. Many groups have used

genetically tractable organisms to study the biological and toxic

effects of caffeine. Thus, in Saccharomyces cerevisiae, caffeine has been

reported to affect cell cycle progression [1,2] and cell morphology

and integrity [3]. In Schizosaccharomyces pombe, caffeine has been

demonstrated to inhibit repair mechanisms [4,5], and to interfere

with both meiotic [6] and UV-induced mitotic [7] recombination.

Furthermore, caffeine is known to be an inhibitor of cAMP

phosphodiesterase in different eukaryotic cell types [8].

Most of the reports which use unicellular eukaryotes to unravel

the effects of caffeine are based on the isolation of strains which

display enhanced resistance to cytotoxic levels of the drug, either

by a chromosomal mutation [9,10] or by over-expression from a

multicopy plasmid [11]. In order to become tolerant to a toxic

drug, over-expression or modification of a target molecule would

allow cells to withstand a higher concentration. Also, amplification

of repair or scavenger activities could improve survival. Finally,

cells with altered import (reduced) or export (increased) of the drug

would display higher tolerance to caffeine.

In S. pombe, the Sipiczki laboratory isolated a number of

caffeine-resistant mutants which defined single loci. Thus, the

caf1–21, caf2–3, caf3–89, caf4–83 and caf5 mutants displayed

pleiotropic, albeit slightly different, phenotypes to the cells:

caffeine resistance, increased sensitivity to UV-irradiation, a

reduction in fertility, lengthening of the cell cycle and some

morphological aberrations [10]. These common features suggested

that all the caf genes had related functions and define a single

caffeine-responsive ‘‘tolerance’’ pathway. Indeed, all five muta-

tions have finally been reported to be connected to the Pap1

pathway. Pap1 is an AP1-like transcription factor with cytosolic

localization prior to stress; moderate doses of hydrogen peroxide

(H2O2) trigger oxidation of Pap1 and its fast accumulation in the

nucleus, with the concomitant activation of an adaptive antiox-

idant response [12,13]. Further studies enabled the identification

of the genes which were altered in the caf mutants [11,14]. Thus,
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caf2–3 carries a loss-of-function mutation at crm1; Crm1 is the

nuclear exporter of Pap1, and the defective caf2–3 allele leads to

constitutive nuclear localization of Pap1 [9,14]. Hba1 is a cofactor

of the Crm1-mediated export of Pap1, and the caf1–21 mutation

contains an early stop codon in the open-reading frame [15]. caf3–

89 has a gain-of-function of the pap1 gene: the encoded Pap1

protein has constitutive nuclear localization [11]. caf4–83 carries a

loss of function mutation at trr1; the lack of the thioredoxin

reductase Trr1 leads to the constitutive oxidation and therefore

nuclear localization of Pap1 [13]. Lastly, over-expression of the

caf5 locus mutation has been described to enhance the protein

levels of an ABC transporter, Caf5 [11]; the expression of this

transporter is dependent on Pap1 [16].

Using microbes as model systems, several groups have isolated

genes related to oxidative stress pathways in the search for mutants

with increased resistance to unrelated drugs (multidrug resistant

phenotype). This could be due to a natural induction of the stress

pathway by the drugs, since they could trigger reactive oxygen

species production. Alternatively, many oxidative stress regulons

include ATP-binding cassette (ABC)-family transporters among

the genes induced upon stress, which may act as efflux pumps to

extrude the drugs from the intracellular compartment. In S. pombe,

there are two alternative oxidative stress pathways; the Pap1-

dependent one responds to moderate concentrations of H2O2, and

the MAP kinase Sty1 pathway becomes activated not only upon

toxic doses of H2O2 but also in response to heat shock, osmotic

stress and other situations which compromise cell viability (for a

review, see [17]). Only over-expression of the Pap1, but not Sty1,

pathway has arisen as beneficial in overcoming high doses of

caffeine [9,10].

We decided to initiate an alternative approach to gain insights

into the molecular targets of caffeine, and to study in depth its

relationship with oxidative stress pathways. We searched for

mutants from S. pombe with inhibited growth on caffeine-

containing agar plates, using a deletion collection of about 2,700

haploid mutant cells, of which 98 were sensitive to the drug. The

genes mutated in these sensitive clones were involved in a number

of cellular roles including the stress, the integrity and the

calcineurin pathways. Also, genes involved in the establishment

of cell morphology, chromatin remodeling and protein traffic were

identified as essential to maintain a wild-type tolerance to caffeine.

We confirmed the sensitivity of most clones by sequential dilutions

on solid plates, and investigated the role of the Pap1 and Sty1

stress pathways with regard to caffeine toxicity.

Results

Genome-wide screen of caffeine-sensitive mutants
Different concentrations of caffeine in liquid media can either

partially or completely inhibit the growth of S. pombe, in a similar

way as H2O2 does (Figure 1) [18]. A comparable cytotoxic effect

can be observed when caffeine is added to solid plates. In order to

paint a global picture of the cellular mechanisms used by S. pombe

to cope with toxic doses of caffeine, we carried out a genome-wide

isolation of mutants displaying growth defects in the presence of

10 mM caffeine. We spread a collection of about 2,700 haploid

mutants, and searched for cells with impaired growth on YE plates

containing the drug. We obtained 98 putative isolates. The

sensitivity to caffeine of 59 of those strains was confirmed by

sequential spotting (see below).

With our screen, a number of mutants were isolated whose

sensitivity to caffeine had already been established, but many other

were new. We grouped the mutants by functional categories, and

analyzed each one of them by sequential spots on solid plates

containing caffeine (see Materials and Methods). Since most

mutations enhancing resistance to the drug had been described as

leading to constitutive activation of the oxidative stress-dependent

Pap1 pathway (see Introduction), we also plated our putative

caffeine-sensitive strains in H2O2-containing plates. Only those

mutants confirmed to be sensitive to caffeine by sequential spotting

are shown in Supplementary Table S1. We have also included in

this table some S. pombe mutants that were not positive in the initial

screen (either because the genome-wide plating was less sensitive

than the sequential spots, or because those particular mutants were

not present in the deletion collection), but were subsequently

checked (and came up as positives) in the spot assays. Among the

strains isolated in the initial screen, both Dsty1 and Dpap1 cells

displayed a strong sensitive phenotype, and were used thereafter,

together with a wild-type strain, as controls in all the spot assays

we performed.

Involvement of the Pap1 pathway in cellular tolerance to
caffeine

Deletion of the gene coding for the Pap1 transcription factor

rendered cells sensitive to caffeine (Figure 2D). Pap1, which

becomes oxidized by moderate doses of H2O2 and thereafter

accumulates at the nucleus to trigger an anti-oxidant gene

response (Figure 2A) [13], did not become oxidized (Figure 2B)

nor did it accumulate at the nucleus (Figure 2C) by any dose of

caffeine we tested. Thus, the pap1 gene is essential for normal

tolerance to caffeine, and other proteins related to the pathway,

such as the Pap1-regulated Srx1 and Trx1, are essential as well

(Supplementary Figure S1). Conversely, activation of the pathway,

e.g. by deletion of the thioredoxin reductase Trr1, enhances the

resistance to caffeine (Figure 2D), as described earlier [14].

Since AP1-like transcription factors have been described to

promote caffeine resistance by up-regulating efflux pumps [19], we

analyzed whether lack of the ABC-transporter Hba2/Bfr1 and/or

Caf5, whose genes are under the control of the transcription factor

Pap1 [20], would abolish the caffeine-resistant phenotype of Dtrr1

cells. Indeed, Dtrr1 cells lacking both hba2 and caf5 genes were very

sensitive to caffeine (Figure 2D). In fact, cells lacking Hba2 were

almost as sensitive to caffeine as Dpap1 cells (Figure 2D), indicating

that Hba2 is the major caffeine exporter in S. pombe. It has been

reported, and we have confirmed it by Northern blot analysis (data

not shown), that hba2 basal transcription is 3-fold lower in Dpap1

than in wild-type cells [20], which explains the sensitivity to

caffeine of cells lacking Pap1.

Figure 1. Growth curves of wild-type S. pombe in the presence or
absence of caffeine or H2O2. Log-phase cultures at an OD600 of 0.1 of
the wild-type strain 972 were treated or not with the indicated
concentrations of caffeine or H2O2, and grown into microculture wells.
Growth was monitored by measuring OD600 every 10 min at 30u for 14 h.
doi:10.1371/journal.pone.0006619.g001

Caffeine and Oxidative Stress
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Activation of the MAP kinase Sty1 stress pathway by
caffeine

Components of the general stress pathway, centered on the MAP

kinase Sty1 (Figure 3A), were sensitive to caffeine and to H2O2

(Figure 3B). Pcr1, a b-ZIP transcription factor known to hetero-

dimerize with Atf1 to induce the Sty1-dependent gene response, is

dispensable for the cellular response to caffeine (Figure 3B), as

described above for other stresses [21]. It is worth pointing out that the

screens performed by others to isolate genes whose mutations

increased resistance to multidrugs had never brought up components

of the Sty1 pathway. Consistently, we tested that constitutive activation

of the pathway, either by expression of a constitutively activated MAP

kinase kinase Wis1DD or by deletion of the MAP kinase phosphatase

Pyp1, enhanced resistance to toxic doses of H2O2 but did not increase

or just slightly improved the tolerance to caffeine (Figure 3C).

The Sty1 pathway is activated in response to a whole variety of

stress signals (for a review, see [17]). We determined that caffeine

also induced phosphorylation of the Sty1 MAP kinase (Figure 3D),

which triggered a rapid translocation of Sty1-GFP from the cytosol

to the nucleus (Figure 3E) and the phosphorylation and

accumulation of its main substrate, the transcription factor Atf1

(Figure 3D). Therefore, caffeine activates the main global anti-

stress response pathway known to be required for survival upon

compromised environmental situations.

Once established that both stress pathways, Pap1 and Sty1, are

essential to maintain normal sensitivity to caffeine, we centered

our attention on three genes isolated in our screen which regulate

protein levels, and which may therefore exert their effects through

regulation of Pap1, Sty1 or its main transcription factor, Atf1: moe1

(may regulate translation or protein stability) [22,23], csn1

(involved in the signalosome) [24] and pof3 (F-box protein, may

specifically regulate protein levels) [25]. As shown in figure 4A,

only deletion of moe1 confers sensitivity to both caffeine and H2O2.

Concomitantly, only cells lacking Moe1 have altered levels of Atf1,

Figure 2. Pap1 is not activated by caffeine, but is required for normal tolerance to caffeine. (A) Scheme of the physiological activation of
the transcription factor Pap1 by extracellular peroxides. The role of Tpx1 and Trr1 in activation and inactivation, respectively, of Pap1 are indicated. (B)
Pap1 is not oxidized by caffeine in vivo. Wild-type strain 972 was grown in minimal media and treated or not with H2O2 or caffeine at the indicated
concentrations, during 5 minutes. The redox state of Pap1 was analyzed by Western blot after non-reducing electrophoresis. Reduced/inactive
(red.Pap1) and oxidized/active (ox.Pap1) Pap1 forms are indicated with arrows. (C) Pap1 is not accumulated in the nucleus upon caffeine treatment.
The cellular distribution of GFP-Pap1 was determined by fluorescence microscopy in strain EHH14, treated or not with H2O2 or caffeine at the
indicated concentrations, during 5 minutes. (D) Survival to caffeine or H2O2 exposure in YE media plates of strains deleted on components of the
Pap1 pathway. Strains 972 (WT), AV25 (Dpap1), NG28 (Dhba2), NG24 (Dtrr1), NG42 (Dtrr1 Dhba2), NG29 (Dcaf5), NG37 (Dtrr1 Dcaf5 Dhba2), and NG39
(Dtrr1 Dcaf5) were grown in liquid YE media, and the indicated number of cells were spotted onto plates with or without caffeine or H2O2, at the
indicated concentrations.
doi:10.1371/journal.pone.0006619.g002
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and display a deficient activation of Sty1 (Figure 4B and 4C). The

participation of the Moe1-interacting partner Int6 in wild-type

tolerance to caffeine and its relationship with Atf1 protein levels

has been recently assessed [26,27]. Further work will be required

to determine the role of Moe1 in Sty1 phosphorylation.

Other cellular processes
In our screen we isolated other mutations in genes coding for

activities related to processes previously connected to caffeine, and

that validates the results obtained. Thus, we found that several

strains carrying deletions in genes coding for proteins of the cell

integrity pathway whose central component is the MAP kinase

Pmk1 (Figure 5A) were sensitive to caffeine, as described earlier

[28,29], but not to H2O2 (Figure 5B). Similarly, strains carrying

deletions in genes involved in cell polarity, cell wall biosynthesis or

cytokinesis, which are related to the cell integrity pathway, are also

over-represented (Supplementary Figure S2).

A role for caffeine in the regulation of S. cerevisiae calcium

homeostasis has been described earlier [30]. Mutations in

components of the calcineurin pathway also led to caffeine

Figure 3. Sty1 is activated by caffeine, and is required for normal tolerance to caffeine. (A) Scheme of the activation of the MAP kinase
Sty1 by extracellular stressors. Other upstream and downstream components of the pathway are indicated. (B, C) Survival to caffeine or H2O2 of
strains harboring mutations in components of the Sty1 pathway. We analyzed by sequential spotting (as described in Figure 2D) the survival of strains
972 (WT), AV25 (Dpap1), AV15 (Datf1), KS2088 (wis1DD), and the deletion collection strains Dmak1, Dmcs4, Dwis1, Dpcr1, and Dpyp1. (D) Sty1 is
phosphorylated and Atf1 is activated in response to caffeine. The levels of Sty1 phosphorylation (Sty1-P) in the wild-type strain 972 grown in minimal
medium, which had been treated or not with caffeine or H2O2, were determined by Western blot analysis using anti-phosphorylated p38 antibody.
The same blots were hybridized with polyclonal anti-Atf1. The slower-migrating phosphorylated (Atf1-P) and the non-phosphorylated (Atf1) forms are
indicated with arrows. Polyclonal antibodies against Sty1 and tubulin (Tub2) were used as loading controls. (E) Sty1-GFP is accumulated in the
nucleus upon caffeine treatment. The cellular distribution of Sty1-GFP in the strain EHH5 grown in minimal medium, and treated or not with H2O2 or
caffeine (Caf) for the times indicated was determined by fluorescence microscopy.
doi:10.1371/journal.pone.0006619.g003

Caffeine and Oxidative Stress
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sensitivity in our screen (Figure 5C) suggesting that caffeine also

inhibits extracellular Ca2+ uptake in fission yeast.

Other cell functions linked to caffeine toxicity have been

impaired recombination and DNA damaging [31]. In agreement

with those studies, several deletions in genes coding for activities

related to recombination and/or repair have been isolated in the

screen, such as rad3, ssb3, rad54 and rad51 (Figure 6A). Similarly,

intracellular protein traffic is one of the major functional

categories, with many gene deletions conferring lower tolerance

to caffeine (vacuole protein sorting, Golgi or ER function, etc.)

(Supplementary Figure S3). Probably this traffic is required to

eliminate the caffeine. On the other hand, a pathway traditionally

linked to caffeine tolerance is the protein kinase A. However, the

sensitivity to caffeine of S. pombe cells lacking Pka1 was only slightly

higher, if any, of that of a wild-type strain (Supplementary Figure

S4). Furthermore, strains bearing mutations in other components

of the pathway did not display any growth inhibition by caffeine

(Supplementary Figure S4).

Other genes isolated in the screen and that therefore have

functions related to the cell response to caffeine might be indirectly

affecting pathways required to counteract the effects of caffeine or

required to facilitate its degradation. Thus, general regulators of

mRNA abundance, such as the chromatin remodeler SPAC25A8.01c,

members of the Ccr4 complex, or the histone acethyl transferase Sin3

are present in this global list (Figure 6B). Several genes related to

general metabolic pathways also altered the tolerance to caffeine

(Supplementary Figure S5), as well as genes known to regulate the

meiotic or mitotic cell cycles (Supplementary Figure S6).

Discussion

Caffeine, which elicits well-documented cytotoxic effects to

eukaryotic cells, has been proposed to target and inactivate many

cellular activities (Fig. 7). Several genetic approaches had been

undertaken to identify those targets, frequently based on the

isolation of caffeine-resistant microbial cells, and very often

constitutive activation of oxidative stress pathways had been

connected to caffeine tolerance. With our caffeine-sensitive,

genome-wide screen of an S. pombe deletion collection, we have

demonstrated the importance of some oxidative stress pathway

components on wild-type tolerance to the drug. Furthermore, we

have demonstrated with a parallel screen on H2O2-containing

plates that some, but not all, of the caffeine-sensitive mutants also

display defects in the presence of H2O2. Thus, cells lacking

components of the Pap1 and Sty1 pathways, the intracellular

protein transport system, cell polarity machinery, DNA recombi-

nation/repair systems, and chromatin remodelling regulators are

both sensitive to caffeine and to H2O2 (Supplementary Table S1).

We do not, however, believe that any of the toxic effects of caffeine

is mediated through direct generation of reactive oxygen species,

Figure 4. Regulators of protein stability are required for normal tolerance to caffeine. (A) Survival to caffeine or H2O2 exposure at the
indicated concentrations of strains harboring mutations in genes coding for regulators of protein homeostasis. We analyzed by sequential spotting as
described in Fig. 2D the survival of strains 666 (WT), and the deletion collection strains Dpap1, Dsty1, Dcsn1, Dpof3 and Dmoe1. (B) Csn1 and Pof3 do
not regulate the Pap1 or Sty1 pathways. Wild-type strain 666 (WT) and the deletion collection strains Dcsn1 and Dpof3 were grown in minimal media.
TCA extracts were prepared from treated (5 min 0.2 mM H2O2) or untreated (Unt) cultures, and the redox state of Pap1, and phosphorylation levels of
Sty1 and Atf1 were determined as described in Fig. 2B and Fig. 3D. (C) Moe1 regulates Atf1 protein levels and Sty1 phosphorylation. Strains 666 (WT)
and Dmoe1 were grown in minimal media, and were treated or not (Unt) for 5 min with H2O2 or caffeine at the indicated concentrations. TCA extracts
and immunoblot assay was performed as described in B. Sty1 total protein (Sty1) and tubulin (Tub2) were used as loading controls.
doi:10.1371/journal.pone.0006619.g004
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since the sensitive Pap1 pathway is not induced at any concentration

of the drug (we have tested caffeine concentrations ranging from 0.05

to 30 mM, and none of them activate Pap1; data not shown). The

global stress response pathway, centered on the MAP kinase Sty1,

does become activated by caffeine. However, this pathway is not only

triggered by H2O2, but also by any type of environmental stress

which compromises cell viability, and caffeine does so. Up-regulation

of the Sty1 pathway had never been isolated as a genetic component

of resistance to caffeine, and that is consistent with our results:

inactivation of the pathway by the deletion of some components

increases sensitivity to the drug, but hyper-activation of the pathway

through the lack of the Sty1 phosphatase Pyp1, or through expression

of a constitutively active Wis1 kinase, does not significantly enhance

the tolerance to caffeine.

In contrast, lack of Pap1 triggers sensitivity and up-regulation of

Pap1 induces resistance to caffeine. We show here that such an

effect is mainly due to a downstream target of Pap1, the gene

coding for the efflux pump Hba2. The development of multidrug

resistance in microorganisms may be due to a number of

mechanisms. The most documented one is enhanced extrusion

of drugs mediated by efflux pump proteins belonging to either the

ABC (ATP-binding cassette) or MFS (major facilitator) superfam-

ilies; these efflux pumps are able to extrude structurally diverse

compounds. The abundance of the drug transporters and their

wider specificity suggest that they may not be exclusively drug

exporters in microbes and may have other cellular functions. In

some cases, their expression levels are regulated by environmental

signals; that is the case of the oxidative-stress dependent acrAB

Figure 5. The cell integrity and the calcineurin pathways are required for normal tolerance to caffeine. (A) Scheme of the activation of
the MAP kinase Pmk1 by cell wall damage. Other upstream and downstream components of the pathway are indicated. The calcineurin components
are also indicated. (B, C) Survival to caffeine or H2O2 exposure at the indicated concentrations of strains harboring mutations in genes coding for
components of the Pmk1 (B) or Cnb1 (C) pathways. Survival of the deletion collection strains 666 (WT), Dpap1, Dshk2, Dpck1, Dmkh1, Dpek1, Dpmp1,
Dsty1, Dcnb1 and Dprz1 was analyzed by sequential spotting, as described in Fig. 2D.
doi:10.1371/journal.pone.0006619.g005
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locus of Escherichia coli [32], the mexGHI-ompD four-gene operon of

Pseudomonas aeruginosa, which encodes a multidrug efflux pump

system involved in quorum-sensing signal homeostasis and which

may be activated by superoxide [33], or the export pumps for

glutathione S-conjugates, which have been cloned from mammals,

yeast, plants, and nematodes (for a review, see [34]). In the case of

the Pap1 regulon, up-regulation of the pathway increases the

expression of both Hba2 and Caf5 [20], and these efflux pumps

induce a multidrug resistant phenotype. Our data indicate that

Hba2 is the major efflux pump for caffeine, since deletion of its

gene causes sensitivity to the drug (Figure 2D). However, Caf5 is

also able to partially extrude caffeine, since the triple Dtrr1 Dhba2

Dcaf5 strain displays stronger sensitivity to the drug that Dtrr1

Dhba2 cells (Figure 2D). It is worth noting that over-expression of

the Pap1 homolog YAP1 of S. cerevisiae also confers resistance to

several drugs [35], and that such a phenotype is dependent on the

presence of two efflux pumps, FLR1 and YCF1, whose expression

is under the control of YAP1 [36]. However, deletion of the YAP1

gene does not result in sensitivity to cycloheximide [37] or

diazaborine [36], indicating that either YAP1 in S. cerevisiae is not

such a strong determinant of multidrug resistance as Pap1 is in S.

pombe, or that the basal levels of FLR1/YCF1 transcripts are

unchanged in DYAP1 cells (hba2 basal transcription is 3-fold lower

in Dpap1 cells than in wild-type cells) [20].

The demonstration of linkage between a gene deletion and a

phenotype is only a first step that might unveil details of a whole

cellular response to an environmental stress. With our screen, we

have further explored additional cellular pathways involved in

caffeine resistance and we have identified genes belonging to

pathways participating in S. cerevisiae survival to caffeine (Fig. 7).

These genes validate our screen and corroborate the biological

significance of conserved processes between the two distant yeasts.

Thus, it was not surprising to isolate genes coding for the cell integrity

MAP kinase pathway (Figure 5A & B) as well as cell morphology

genes related to that pathway (Supplementary Figure S2). For several

microorganisms, caffeine is currently used as a phenotypic criterion to

evaluate the function of cell wall integrity pathways [38]. Similarly, it

has been described that S. cerevisiae uptake of the extracellular Ca2+ is

inhibited by caffeine [30], and, according to our results, that is

probably the case in fission yeast (Figure 5C).

It was also predictable to find intracellular protein traffic as one

of the major functional categories, with many caffeine-sensitive

gene deletions (Supplementary Figure S3). Caffeine acts as a

competitive inhibitor for adenosine and its presence likely causes

an artificial metabolic stress to the cells. Probably traffic to the

vacuole is required to eliminate the caffeine in S. pombe as in S.

cerevisiae [39]. Additionally, some metabolic pathways might be

required to counteract the caffeine competitive inhibition effect.

Caffeine was the first drug reported to override checkpoints and

several reports described caffeine inhibition of Rad3 [31], and

Rad-related kinases ATM or ATR in mammalian cells [40–42].

Importantly enough, three genes known to be involved in

replication, recombination and/or repair (rad3, rad51 and rhp54)

were isolated as essential for normal tolerance to both caffeine and

H2O2 (Figure 6A), highlighting the importance of DNA homeo-

stasis in the response to both insults.

Figure 6. Several regulators of chromatin remodeling (A) and DNA repair/recombination pathways (B) are required for normal
tolerance to caffeine. We analyzed by sequential spotting as described in Fig. 2D the survival to caffeine or H2O2 exposure at the indicated
concentrations of the deletion collection strains 666 (WT), Dpap1, Drad3, Dssb3, Drad54, Drad51, DC25A8.01c, Dccr4, Dcaf1 and Dsin3.
doi:10.1371/journal.pone.0006619.g006

Caffeine and Oxidative Stress
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A surprising result from our screen concerns the cAMP-

signalling pathway traditionally involved in caffeine tolerance,

with cAMP phosphodiesterase being perhaps the best known

protein target inactivated by the drug [8]. However, we have not

detected a significant alteration of tolerance to caffeine in any of

the mutants of this pathway that we have tested (Supplementary

Figure S4). Similarly, the TORC1 kinase has recently been

described as the growth-limiting target of caffeine [43,44], but the

homologous Tor2 kinase is essential and therefore its deletion

mutant was not present in the collection, and other components of

the pathway were not isolated in our screen. These results suggest,

but do not demonstrate, that S. pombe cAMP phosphodiesterase is

not an essential caffeine target while other signalling pathways

important to S. pombe survival are affected by this drug.

Materials and Methods

Yeast strains and growth conditions
We used the strains 972 (h2), JA364 (h+ ura4-D18), JA365 (h2

ura4-D18), AV18 (h2 sty1::kanMX6) [45], AV25 (h2 pap1::kanMX6)

[45], EHH14 (h+ his2 ura4-D18 pap1::ura4-D18 leu1–32 nmt::GFP-

pap1::leu1+) [46], KS2088 (h2 ura4-D18 wis1DD::12myc::ura4+ leu1–

32 sty1::HA6H::ura4+) [47], AV15 (h2 atf1::kanMX6) [45], EA38

(h2 leu1–32 srx1::kanMX6) [48] and EHH5 (h2 leu1–32 sty1::GFP::

kanMX6) [45]. To construct S. pombe strains with specific loci

deleted, we transformed wild-type strains (either 972 or JA364)

with linear fragments containing open reading frame (ORF)::

kanMX6 or ORF::natMX6, obtained by PCR amplification using

ORF-specific primers and plasmids pFA6a-kanMX6 [49] or

pFA6a-natMX6 [50] as templates, and we obtained strains

NG28 (h+ hba2::natMX6), NG29 (h2 caf5::kanMX6), MJ2 (h2

trx1::kanMX6 ura4-D18 leu1–32), NG35 (h+ hba2::natMX6 ura4-

D18), NG34 (h+ hba2::natMX6 caf5::kanMX6 ura4-D18) and NG41

(h2 caf5:: kanMX6 ura4-D18). NG24 (h2 caf4+::ura4+ ura4-D18 ) was

isolated after crossing Dcaf4 (h90 caf4+::ura4+ ura4-D18 ade6–704

leu1–32) [14] with JA365 (h2 ura4-D18). To obtain NG42 (h2

hba2::natMX6 caf4::ura4+ ura4-D18), we crossed NG35 with NG24.

NG37 (h+ hba2::natMX6 caf5::kanMX6 caf4+::ura4+ ura4-D18) was

isolated after crossing the double mutant NG34 with NG24. We

isolated NG25 (h+ caf4+::ura4+ ura4-D18) after crossing NG24 with

JA364. To obtain NG39 (h+ caf5:: kanMX6 caf4::ura4+ ura4-D18) we

crossed NG41 with NG25. Cells were grown in standard media

[minimal media or rich media (YE)] [51], with or without caffeine

or H2O2 at the indicated concentrations.

Growth curves
To measure cellular growth we used an assay based on automatic

measurements of optical densities (OD) of small (100 ml) liquid cell

cultures, which allowed us to plot comparable growth curves for

each treatment. Basically, we grew cells in YE media to an OD600 of

0.3 at 30uC under continuous shaking in Erlenmeyer flasks. Then,

we diluted the cultures in YE media to an OD600 of 0.025 and cells

continued growing in the same conditions till they reached an

Figure 7. Proposed model for the cellular targets and defense response mechanisms to caffeine in fission yeast. The main
detoxification mechanism for caffeine is extrusion by efflux pumps Hba2 and Caf5, which basal expression levels are dependent on the transcription
factor (TF) Pap1. Pap1 is not activated by caffeine, but it shuttles under basal conditions between the nucleus (in pale grey, dotted line) and the
cytosol, and regulates the basal expression of about 50 genes [20]. Caffeine interferes with cellular activities and induces a number of toxic effects (in
grey ovals): cell wall damage, protein traffic and general fitness impairment, cell cycle arrest and DNA damage. Most of the genes we have isolated in
our screen code for proteins which can combat each one of those deleterious effects of caffeine, and have been grouped accordingly. The Sty1
pathway is activated in response to caffeine through an unknown mechanism. Activated Sty1 is then essential to activate changes in gene expression
through the transcription factor Atf1, and these changes may modulate the cellular adaptation to caffeine. Chromatin remodelers and regulation of
mRNA homeostasis may help regulate gene induction in response to caffeine as well. Lastly, proteins such as Moe1 may be essential to wild-type
tolerance to caffeine due to its role in the regulation of Atf1 protein basal levels.
doi:10.1371/journal.pone.0006619.g007
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OD600 of 0.1. We treated the cultures with different agents (2, 5, 10

and 20 mM caffeine and 1 mM H2O2). Then, we placed 100-ml

samples into 96-well non-coated polystyrene microplates (in

triplicate) with an adhesive plate seal. We used Power Wave

microplate scanning spectrophotometer (Bio-Tek) to obtain the

growth curves. The OD600 was automatically recorded using Gen5

software. The software was set as follows: OD was measured at

600 nm, incubation temperature was kept at 30uC, the microplates

were subjected to continuous shaking and the readings were done

every 10 min during a 14 h period.

High-throughput sensitivity screen
Genome-wide S. pombe haploid deletion collection covers more

than 2,700 genes. S. pombe diploid deletion mutants were

systematically constructed with targeted mutagenesis at each ORF,

and haploid deletion strains for non-essential genes were isolated.

The wild-type strains of the collection are 666 (h+ ade6-M210 ura4-

D18 leu1–32) and 668 (h+ ade6-M216 ura4-D18 leu1–32). More

information is provided at the Bioneer web page (http://pombe.

bioneer.co.kr/introduction/ResearchPurpose.jsp). The haploid de-

letion collection was screened as described elsewhere [52]. Basically,

the collection was first grown in liquid YE media, and then spread

with a manual replicator on three types of solid agar plates: YE

media, YE media with 5 mM H2O2 and YE media with 10 mM

caffeine. The plates were incubated at 30uC for 3–4 days.

Caffeine and H2O2 sensitivity assay by sequential spots
In order to carefully analyze sensitivity to caffeine on plates, S.

pombe strains were grown in liquid YE media to an OD600 of 0.5.

Cells were then diluted in YE, and the indicated number of cells in

2 ml was spotted onto YE media agar plates, containing or not the

indicated concentrations of caffeine (10 or 15 mM) or H2O2 (1 or

2 mM). Plates were incubated at 30uC for 3–4 days.

Preparation of S. pombe TCA extracts and immunoblot
analysis

To analyze the in vivo redox state of Pap1, trichloroacetic acid

(TCA) extracts were prepared as described elsewhere [48].

Immunoblotting was performed as described [45]. Pap1 was

immunodetected using polyclonal anti-Pap1 antibody [13]. A

different protocol to obtained TCA extracts (without alkylation

nor phosphatase treatment) was followed to detect Atf1, and has

been described elsewhere [21]. Same extracts were prepared to

detect phosphorylated and non-phosphorylated Sty1. Immuno-

blotting was performed using a commercial anti-p38 MAP kinase

antibody (Cell Signalling), or polyclonal anti-Sty1 antibodies raised

against bacterial glutathione-S-transferase (GST)-Sty1 following

standard rabbit immunization procedures. As a loading control,

monoclonal anti-tubulin antibody (Tub2, Sigma) was used.

Fluorescence microscopy
Fluorescence microscopy and image capture was performed as

described before [13].

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0006619.s001 (0.16 MB

PDF)

Figure S1 Several proteins related to the Pap1 pathway are

required for normal tolerance to caffeine. We analyzed by

sequential spotting (as described in Fig. 2D) the survival to

caffeine or H2O2 exposure at the indicated concentrations of MJ2

(Dtrx1, coding for the cytosolic thioredoxin), EA38 (Dsrx1, coding

for the Tpx1 reductase Srx1); and the deletion collection strains

666 (WT), Dpap1, Dsty1 and Dtrx2 (coding for the mitochondrial

thioredoxin).

Found at: doi:10.1371/journal.pone.0006619.s002 (3.53 MB TIF)

Figure S2 Several regulators of cell polarity or cell wall

biosynthesis are required for normal tolerance to caffeine. We

analyzed by sequential spotting (as described in Fig. 2D) the

survival to caffeine or H2O2 exposure at the indicated concentra-

tions of the deletion collection strains 666 (WT), Dpap1, Dsty1,

Dmyo1, DC306.06c, Dpar1, DC23D3.09, Dkin1, Drho2, and Dcsh3.

Found at: doi:10.1371/journal.pone.0006619.s003 (6.71 MB TIF)

Figure S3 Several components of intracellular protein sorting

are required for normal tolerance to caffeine. We analyzed by

sequential spotting (as described in Fig. 2D) the survival to caffeine

or H2O2 exposure at the indicated concentrations of the deletion

collection strains 666 (WT), Dpap1, Dsty1, Dvps32, DC4B3.02C,

Ddid4, DC613.01, Dryh1, Derd2, Dsec28, and Dsft1.

Found at: doi:10.1371/journal.pone.0006619.s004 (6.59 MB TIF)

Figure S4 The protein kinase A pathway is not required for

normal tolerance to caffeine. We analyzed by sequential spotting

(as described in Fig. 2D) the survival to caffeine or H2O2 exposure

at the indicated concentrations of the deletion collection strains

666 (WT), Dpap1, Dsty1, Dcgs2, Dgit3, Dpka1, Dfbp1, Dcgs1, Dsck2

and Drsv1.

Found at: doi:10.1371/journal.pone.0006619.s005 (3.77 MB TIF)

Figure S5 Several genes coding for enzymes related to metabolic

pathways (A) and for mitochondrial components (B) are required

for normal tolerance to caffeine. We analyzed by sequential

spotting (as described in Fig. 2D) the survival to caffeine or H2O2

exposure at the indicated concentrations of the deletion collection

strains 666 (WT), Dpap1, Dtpp1, DC1778.03c, DC594.04c, Dsty1,

DC2G2.13c, Dsib1, Dsib2, Daps1, Derg5, Dcoq2, Detr1, DC20G8 and

Dcoq10.

Found at: doi:10.1371/journal.pone.0006619.s006 (6.58 MB TIF)

Figure S6 Several regulators of the mitotic or meiotic cell cycles

are required for normal tolerance to caffeine. We analyzed by

sequential spotting (as described in Fig. 2D) the survival to caffeine

or H2O2 exposure at the indicated concentrations of the deletion

collection strains 666 (WT), Dpap1, Dsty1, Dmfm2, Dcut8, Dspc34,

Dpic1, Dhos2, DC27.02c and Dmug24.

Found at: doi:10.1371/journal.pone.0006619.s007 (4.31 MB TIF)
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