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Summary 
Signaling through the B cell antigen receptor (BCR) results in rapid increases in tyrosine 
phosphorylation on a number of proteins. The BCR associates with two classes of tyrosine kinase: 
Src-family kinase (Src-protein-tyrosine kinase [PTK]; Lyn, Fyn, Blk, or Lck) and Syk kinase. 
We have investigated the interaction between the Src-PTK and the Syk kinase in the BCR signaling. 
In contrast to wild-type B cells, BCR-mediated tyrosine phosphorylation of Syk and activation 
of its in vitro kinase activity were profoundly reduced in lyn-negative cells. The requirement 
of the Src-PTK to induce tyrosine phosphorylation and activation of Syk was also demonstrated 
by cotransfection ofsyk and src-PTK cDNAs into COS cells. These results suggest that the Src- 
PTK associated with BCR phosphorylates the tyrosine residue(s) of Syk upon receptor stimulation, 
enhancing the activity of Syk. 

T he antigen receptor on B lymphocytes (BCR) is a sur- 
face immunoglobulin that associates with additional mol- 

ecules involved in receptor transport and signal transduction 
(1-5). Stimulation of the BCR initiates a biochemical cas- 
cade in which protein-tyrosine kinase (PTK) activity is the 
earliest known event (6, 7). This PTK activation results in 
the tyrosine phosphorylation of several proteins, including 
the BCR Ig-ot, Ig-/3 chains (8), phosphatidylinositol (PI)-3 
kinase (9, 10), guanosine triphosphate-activating protein 
(GAP) (11), protooncogene vav (12-14), and phospholipase 
c--r2 (15). 

Since the BCR complex does not have any intrinsic kinase 
activity, it is implicated that cytoplasmic PTK(s) is involved 
in initiating BCR signaling. One of the BCR-associated ki- 
nases is Src-PTK including Lyn, Fyn, Lck, and Blk (16-18). 
Recent evidence indicates that the activity of each of these 
enzymes is increased after cross-linking of the BCR (16). In 
addition to Src-PTK, BCR associates with the recently charac- 
terized Syk tyrosine kinase (19-21). Unlike the Src-PTK, Syk 
bears two SH2 domains and no NH2-terminal myristoyla- 
tion site (20). Syk has been shown to be tyrosine phos- 
phorylated and activated upon cross-linking of the BCR (21, 
22). At present, it is not clear whether Syk activates the Src- 
PTK and/or vice versa, nor which of these two types of ki- 
nase plays a more important role through the BCR signaling. 
In this study, we focus upon how Src-PTK affects the ac- 
tivity of Syk through BCR signaling. 

Materials and Methods 
Cell Culture and DNA Transfection. COS-7 cells were cultured 

in DME containing 10% FCS. Wild-type and lyn-negative DT40 
cells were cultured in RPMI 1640 supplemented with 10% FCS. 
Methods to establish lyn-negative DT40 cells were described in de- 
tail (23). Briefly, using gene targeting constructs including chicken 
genomic lyn and drug selection markers such as Neo, we created 
the lyn-negative cells by homologous recombination. Three alleles 
of lyn locus were sequentially disrupted and after isolating the three 
alleles targeted clone, we confirmed that this clone has incorpo- 
rated a single copy of each construct. Transfection of lyn cDNA 
into the lyn-negative cells restored the normal BCR-mediated func- 
tions such as Ca 2+ mobilization or overall tyrosine phosphoryla- 
tion pattern (23). Mousefyn cDNA (from R. Perlmutter, Univer- 
sity of Washington, Seattle, WA) (24), human lyn cDNA (American 
Type Culture Collection, Ikockville, MD) (25) were cloned into 
the pcEXV-3 vector. A point mutation in the ATP binding site 
of porcine syk cDNA (20) and fyn cDNA was created by poly- 
merase chain reaction. Wild-type and kinase-negative syk cDNAs 
were cloned into the pcDL-SRc~296 vector (26). DNA (15/~g each 
DNA/60-mm dish) was transfected into COS-7 cells using the cal- 
cium-phosphate method. For DNA transfection into DT40 cells, 
syk cDNA was cloned into the pApuro vector (23). DNA was lin- 
earized, transfected into wild-type and lyn-negative DT40 cells (23) 
by electroporation, and selected in the presence of puromycin (0.5 
/~g/ml). The expression of Syk in drug-resistant clones was ana- 
lyzed by Western blotting. 

Immunoprecipitation Analysis. DT40 cells were stimulated by a 
mAb, M4 (27), that recognizes chicken IgM (from C. Chen, Univer- 
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sity of Alabama, Birmingham, AL). Cells were solubilized in NP-40 
lysis buffer (1% NP-40, 150 mM NaC1, 20 mM Tris, pH 7.5, 1 
mM EDTA) containing 50 mM NaF, 10 #M molibrate, and 0.2 
mM sodium vanadate (28) supplemented with protease inhibitors 
as described in (20). Cell lysates were sequentially incubated (1 h 
at 4~ for each incubation) with antibodies and protein A-Sepha- 
rose. Polyclonal rabbit antisera to Fyn and Lyn were purchased from 
Oncogene Science Inc. (Manhasset, NY) and Santa Cruz Biotech- 
nology Inc. (Santa Cruz, CA), respectively. Antibody against por- 
cine Syk was already described (20). For immunoblotting, samples 
were separated on SDS-polyacrylamide gels and transferred to 
nitrocellulose membranes (Amersham Corp., Arlington Heights, 
IL). Filters were incubated with a monoclonal antibody 4G10 (an- 
tiphosphotyrosine antibody; Upstate Biotechnology Inc., Lake 
Placid, NY), anti-Syk, or anti-Lyn antibody. After washing, filters 
were developed using a sheep anti-mouse or a donkey anti-rabbit 
IgG antibody conjugated to horseradish peroxidase and enhanced 
chemiluminescence (ECL) (Amersham Corp.). 

In Vitro Kinase Assay. Cells were lysed in modified radio- 
immunoprecipitation assay (RIPA) buffer (1% NP-40, 0.25% so- 
dium deoxycholate, 150 mM NaC1, 20 mM "Iris, pH 7.5, 1 mM 
EDTA) supplemented with phosphatase inhibitors and protease in- 
hibitors described above. Cell lysates were immunoprecipitated with 
anti-Syk antibody and protein A-Sepharose. The immunoprecipi- 
rates were washed four times with lysis buffer followed by a final 
wash with 20 mM Hepes, pH 8, and 150 mM NaC1. Added to 
each sample was 50 #1 of kinase buffer (20 mM Hepes, pH 8, 150 
mM NaC1, 10 mM magnesium acetate) containing 10 #Ci of 
"y-[32p]ATP (>3000 Ci/mmol). The reactions were allowed to in- 
cubate at 30~ for 10 min and terminated by the addition of sample 
loading buffer. 

Results and Discussion 

Since Syk is drastically tyrosine phosphorylated upon cross- 
linking of the BCR (21, 22), we examined the possibility 
that Src-PTK phosphorylates Syk through the BCR signal 
transduction. To address this issue, wild-type and lyn-negative 
DT40 chicken B cell lines were used. RNA blot analysis of 
DT40 cells revealed that lyn and ~yk are expressed in this cell 
line. Transcripts of the src, kk, jyn, blk, yes, hck, or zap-70 
could not be detected, showing that lyn and syk are expressed 
dominantly. Stimulation of BCR evoked a drastic change in 

tyrosine phosphorylation on a number of proteins, whereas 
the induction of phosphorylation on many of these substrates 
was abolished in lyn-negative cells (23). Although endoge- 
nous Syk is expressed in DT40 cells, we transfected porcine 
syk cDNA into wild-type and lyn-negative cells in order to 
easily detect the expression of Syk. Wild-type and/),n-negative 
DT40 cells transfected with syk cDNA were stimulated with 
anti-BCR mAb M4, and immunoprecipitated with anti-Syk 
antibody which recognizes only porcine Syk. These im- 
munoprecipitates were analyzed by antiphosphotyrosine mAb 
4G10 and anti-Syk Ab (Fig. 1 A). Syk was tyrosine phos- 
phorylated upon BCR stimulation in wild-type DT40 cells, 
with very rapid kinetics. In contrast, the induction of tyro- 
sine phosphorylation on Syk in lyn-negative cells was barely 
detected; overexposure of this blot showed the weak 4G10 
reactive species of Syk by 3 rain stimulation of BCR. These 
results showed that Lyn is primarily involved in the induc- 
tion of tyrosine phosphorylation of Syk through BCR sig- 
naling in DT40 cells. The antiphosphotyrosine mAb reac- 
tive species of Syk migrated a little more slowly than anti-Syk 
Ab reactive one. This difference probably reflects the tyro- 
sine phosphorylation of Syk. 

Syk has been already shown to be activated by cross-linking 
of the BCR (21, 22). To examine whether this activation is 
dependent on Src-PTK, we carried out in vitro kinase assay 
of Syk in wild-type and lyn-negative DT40 cells after BCR 
stimulation. As shown in Fig. 1 B, cross-linking of BCR 
stimulated autophosphorylation activity of Syk in wild type 
cells, consistent with previous reports (21, 22). This rapid 
activation of Syk was not observed in lyn-negative cells. How- 
ever, a 5-min stimulation of BCR on/),n-negative cells resulted 
in about a twofold increase of autophosphorylation activity 
of Syk. In wild-type DT40 cells, the dominant autophosphory- 
lated Syk after BCR stimulation migrated a little more slowly 
than the major Syk molecule, suggesting that the an- 
tiphosphotyrosine mAb reactive Syk corresponds to this ac- 
tivated autophosphorylated molecule. These results suggest 
that Lyn-dependent phosphorylation increases the autophos- 
phorylation activity of Syk through BCR stimulation in DT40 
cells. 

Figure 1. Stimulation of tyrosine~phosphorylation 
on Syk (A) and autophosphorylation activity of Syk 
(B) in wild-type and lyn-negative DT40 cells. (A) Cells 
(2 x 106/ml) were stimulated by mAb M4 (4 #g/ml) 
for indicated time, lysed by NP-40 buffer, and immu- 
noprecipitated with anti-Syk Ab. Immunoprecipitates 
were dectrophoresed on an 8% SDS-PAGE gel, trans- 
ferred, and incubated with antiphosphotyrosine mAb 
4G10 (top). After the filter was stripped, the same blot 
was reprobed with anti-Syk Ab (bottom). (/3) CeUs (2 x 
106/ml) were stimulated by mAb M4 for indicated 
time, lysed by modified RIPA buffer, and immuno- 
precipitated with anti-Syk Ab. Immunoprecipitates 
were divided, and half of them were used for in vitro 
kinase assay (top). The remaining half were used for 
Western blotting with anti-Syk Ab (bottom). Samples 
were electrophoresed on 8% SDS-PAGE gels. 
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To provide more insights into the interaction between Src- 
PTK and Syk, we cotransfected the src-PTK and syk cDNAs 
into COS cells (Fig. 2). Tyrosine phosphorylation of Syk was 
only observed in the presence of Lyn, as judged by an- 
tiphosphotyrosine mAb reactivity. In contrast, the tyrosine 
phosphorylation of Lyn was not drastically changed by the 
presence of Syk; the increased tyrosine phosphorylation of 
Lyn in the presence of Syk is accounted for by the expression 
extent of Lyn (data not shown). Comparison of anti-Syk and 
antiphosphotyrosine blotting showed that the antiphospho- 
tyrosine mAb reactive molecule is corresponding to the upper 
band of the anti-Syk Ab reactive species. To examine the 
specificity of each Src-PTK member in its capability of phos- 
phorylation on Syk, cotransfection offyn or Ick with syk 
cDNAs was carried out. Similar to cotransfection with lyn 
and syk cDNAs, Syk was tyrosine phosphorylated in the pres- 
ence of Fyn (Fig. 2) or Lck (data not shown), indicating no 
strict specificity for Src-PTK members. 

To exclude the possibility that the observed tyrosine 
phosphorylation of Syk is due to the enhanced autophos- 
phorylation activity induced by Src-PTK, cotransfection of 
kinase-negative syle and lyn cDNAs was carried out. The Syk 
kinase-negative mutant was also tyrosine phosphorylated in 
the presence of Lyn, suggesting that Lyn phosphorylates Syk 
directly, rather than affects the autophosphorylation activity 
of Syk. However, in the presence of Lyn, the extent of tyro- 
sine phosphorylation of the wild-type Syk was about three- 
fold higher than that of the kinase-negative one (Fig. 3, left). 
Thus, this observation suggests that tyrosine phosphoryla- 
tion of Syk by Lyn may enhance Syk autophosphorylation 
or that Lyn may not only phosphorylate Syk, but also en- 

Figure 2. Tyrosine phosphorylation of Syk induced by Src-PTK in COS 
cells. COS cells were transfected with indicated combinations of cDNAs. 
Cells were lysed by NP-40 buffer, and immunoprecipitated with anti-Lyn 
(L), anti-Syk (S), or anti-Fyn (F) Ab. Immunoprecipitates were electro- 
phoresed on 8% SDS-PAGE gels, transferred, and incubated with an- 
tiphosphotyrosine mAb 4G10 (top). After filters were stripped, the same 
blots were reprobed with anti-Syk Ab (bottom). 

Figure 3. Effect of kinase activity (Syk or Src-PTK) on tyrosine phos- 
phorylation of Syk in COS cells. COS cells were transfected with indi- 
cated combinations of cDNAs. Kinase-negative syk orfyn eDNA is shown 
by syk(K-) or fyn(K-), respectively. Translated c o s  cells were lysed 
by NP-40 buffer, and immunoprecipitated with anti-Syk Ab. The im- 
munoprecipitates were electrophoresed on 8% SDS-PAGE gels, transferred, 
and incubated with antiphosphotyrosine mAb 4G10 (top). Lysates were 
blotted, and incubated with anti-Lyn or anti-Fyn Ab (bottom). 

hance Syk autophosphorylation activity through a phos- 
phorylation-independent mechanism. Cotransfection experi- 
ments with kinase-negativefyn and syk cDNAs showed that 
kinase activity of Fyn is essential for phosphorylation of Syk 
(Fig. 3, right). 

To determine the change in Syk activity induced by Src- 
PTK in COS cells, we compared the autophosphorylation 
activity of Syk in the absence or presence of Src-PTKs. Fig. 
4 shows that the autophosphorylation activity of Syk is in- 
creased by Lyn, or Fyn, and that most of this enhanced ac- 
tivity corresponds to the antiphosphotyrosine mAb reactive 
species of Syk (Fig. 4, upper band in anti-Syk blotting; bottom 
left). Under these conditions, the association of Lyn or Fyn 
with Syk could not be detected, as judged by the appearance 
of phosphate-labeled Lyn or Fyn. Autophosphorylation ac- 
tivity of Lyn or Fyn was not changed by the presence of Syk 
(data not shown). The overall tyrosine phospho proteins of 
the COS cell extract transfected with syk alone or cotrans- 
fected with syk and lyn cDNAs, was also analyzed with an 
antiphosphotyrosine mAb. The tyrosine phospho proteins 
of the COS cell extract cotransfected with syk and lyn cDNAs 
was significantly increased, compared with either alone. This 
induction of tyrosine phosphorylation of cellular proteins is 
attributed to the enhanced kinase activity of Syk induced by 
Lyn, since the tyrosine phospho proteins of the COS cell ex- 
tract cotransfected with lyn and kinase-negative syk cDNAs 
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Figure 4. Stimulation of phosphorylation activity of Syk by Src-PTK 
in COS cells. COS cells were transfected with indicated combinations of 
cDNAs. Transfected COS cells were lysed by modified RIPA buffer, and 
immunoprecipitated by anti-Syk Ab. Immunoprecipitates were divided, 
and half of them were used for in vitro kinase assay (top left). The remaining 
half were used for Western blotting with anti-Syk Ab (bottom left). Tram- 
fected cells were dissolved in NP-40 buffer, electrophoresed on an 8% SDS- 
PAGE gel (same amount of protein content per lane), blotted, and in- 
cubated with antiphosphotyrosine mAb 4G10 (right). 

was similar to that transfected with lyn cDNA alone (Fig. 
4, right). 

Analysis of wild-type and lyn-negative DT40 B cells re- 
vealed that the tyrosine phosphorylation of Syk through BCR 
stimulation requires Lyn in DT40 cells. However, these data 
do not distinguish the possibility that Syk is phosphorylated 
directly or indirectly by Lyn through BCR signaling. Kinase- 
negative Syk was tyrosine phosphorylated only in the presence 
of Lyn and kinase-negative Fyn was unable to phosphorylate 
Syk in COS cells, suggesting that Syk is directly phos- 
phorylated by Src-PTK. 

Even in the lyn-negative DT40 cells, autophosphorylation 
activity of Syk is about twofold stimulated by cross-linking 
of BCR, indicating that Syk is activated by receptor aggre- 
gation in the absence of Lyn to some extent. This result is 
consistent with the previous report that stimulation of the 
Syk chimera bearing a CD16 extracellular domain and a Syk 
kinase intracellular domain, induced protein tyrosine phos- 
phorylation (29). However, in the wild-type DT40 cells, BCR- 
mediated autophosphorylation activity of Syk was more rapid 
and drastic. These results demonstrate that Lyn enhances the 
phosphorylation activity of Syk through BCR signaling in 
DT40 cells. The tyrosine phosphorylated species of Syk seems 
to have an activated autophosphorylation activity, judged by 
the gel mobility shift, implicating the correlation between 
phosphorylation of Syk and its activity. This is also supported 
by the observation that in COS cells, the tyrosine phosphory- 
lated species of Syk induced by Lyn or Fyn has an increased 
autophosphorylation activity. In TCR signaling, it was al- 
ready proposed that ZAP-70, which is a homologue of Syk, 
requires Lck or Fyn for synergistic induction of PTK activity 
(30). Our data using COS cells are consistent with the previous 
report that coexpression of Src-PTK with ZAP-70 leads to 
a remarkable increase in tyrosine phosphorylation (31, 32). 

Although our results suggest that the phosphorylation of 
Syk by Src-PTK activates its kinase activity, it is still possible 
that Syk may be activated through another mechanism by 
Src-PTK. For example, the association of Src-PTK with Syk 
may enhance Syk activity. Thus, our observations provide 
the possibility that the activation of Syk through phosphory- 
lation by Src-PTK is one of the mechanisms accounting for 
vast tyrosine phosphorylation through BCR stimulation. 
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