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Abstract

A rapid and sensitive method to quantitatively assess N-acetylglucosaminidase (NAG) activity in cultured cells is highly
desirable for both basic research and clinical studies. NAG activity is deficient in cells from patients with
Mucopolysaccharidosis type IIIB (MPS IIIB) due to mutations in NAGLU, the gene that encodes NAG. Currently available
techniques for measuring NAG activity in patient-derived cell lines include chromogenic and fluorogenic assays and provide
a biochemical method for the diagnosis of MPS IIIB. However, standard protocols require large amounts of cells, cell
disruption by sonication or freeze-thawing, and normalization to the cellular protein content, resulting in an error-prone
procedure that is material- and time-consuming and that produces highly variable results. Here we report a new procedure
for measuring NAG activity in cultured cells. This procedure is based on the use of the fluorogenic NAG substrate, 4-
Methylumbelliferyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (MUG), in a one-step cell assay that does not require cell
disruption or post-assay normalization and that employs a low number of cells in 96-well plate format. We show that the
NAG one-step cell assay greatly discriminates between wild-type and MPS IIIB patient-derived fibroblasts, thus providing a
rapid method for the detection of deficiencies in NAG activity. We also show that the assay is sensitive to changes in NAG
activity due to increases in NAGLU expression achieved by either overexpressing the transcription factor EB (TFEB), a master
regulator of lysosomal function, or by inducing TFEB activation chemically. Because of its small format, rapidity, sensitivity
and reproducibility, the NAG one-step cell assay is suitable for multiple procedures, including the high-throughput
screening of chemical libraries to identify modulators of NAG expression, folding and activity, and the investigation of
candidate molecules and constructs for applications in enzyme replacement therapy, gene therapy, and combination
therapies.
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Introduction

Mucopolysaccharidosis type IIIB (MPS IIIB or Sanfilippo

syndrome B, OMIM #252920) is an autosomal recessive

lysosomal storage disorder (LSD) caused by mutations in the gene

encoding the lysosomal hydrolase, N-alpha-acetylglucosaminidase

(NAGLU or NAG; E.C. 3.2.1.50). NAG deficiency leads to

progressive intralysosomal accumulation of the glycosaminoglycan

(GAG) heparan sulfate, which, in turn, triggers a cascade of

pathological events that are not yet fully understood [1–4].

Patients typically present with severe signs of neurodegeneration

including behavioral changes and mental deterioration, which

eventually leads to severe dementia and early death. To date there

is no established therapeutic scheme for MPS IIIB and current

treatments are largely supportive [1].

Several therapeutic approaches are being tested in cell and

animal models of MPS, and a few are being translated into clinical

trials or clinical practice [5]. Enzyme replacement therapy (ERT)

consists of regular intravenous infusions of a recombinant enzyme

that replaces the deficient enzyme and typically targets visceral

organs [6–8]. Intrathecal injections or the use of modified

recombinant enzymes able to cross the blood-brain barrier

(BBB) are needed to address the neurological symptoms of MPS

[9–11]. Substrate reduction therapy (SRT) aims at reducing the

synthesis of the specific substrate that accumulates in the patient’s

cells due to the catabolic enzyme deficiency [12]. Because it is

based on the use of small molecules that can potentially cross the

BBB, SRT represents a promising strategy to address CNS

symptoms in neuropathic forms of LSDs [13]. Stop-codon read-

through (SCRT) takes advantage of drugs such as aminoglycosides

that are able to attenuate the termination of translation at the level

of a premature STOP codon in the case of non-sense mutations.

SCRT is an attractive strategy because premature STOP codons

typically lack an appropriate context for an efficient termination of

translation in the surrounding sequences, which enhances the

selective effects of SCRT drugs leading to little consequences on

normal translation while helping complete translation of the

mutated protein [14–16]. Gene therapy (GT) is also an attractive

option for MPS because it exploits the principle of cross-

corrections–enzymes produced by the transduced cells are secreted
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and taken up by surrounding cells, including non-transduced cells,

via the M6PR pathway, thus correcting cellular storage [17–19].

Lysosomal enhancement has been recently proposed as a general

means to treat storage disorders following the discovery of a master

regulator of lysosomal biogenesis and function, the transcription

factor EB (TFEB) [20–22]. By promoting lysosomal pathways,

TFEB can enhance the clearance of pathogenic storage material

and thus counteract disease progression, a principle that is being

demonstrated in multiple models of neurodegenerative diseases

including LSDs, Huntington disease, Alzheimer disease and

Parkinson disease [20,23–27].

In most MPS IIIB patients, causative genetic variations within

NAGLU are homozygous or heterozygous missense point muta-

tions [28–31]. Generally speaking, missense mutations are the

causative variations most frequently found in LSD patients with

deficiencies in lysosomal hydrolytic activities [32,33]. Most

missense mutations do not directly impair the enzymatic function

but destabilize the protein’s native structure [34]. As a result,

mutated enzymes are recognized by the ER quality control system

and rapidly degraded by the ER-associated degradation (ERAD)

pathway [35]. The extent of degradation of enzyme variants

containing misfolding, non-inactivating mutations depends on the

destabilizing effect of the specific substitution [36,37] and, in turn,

determines the residual enzymatic activity in the lysosome.

Interestingly, a number of mutated enzymes retain catalytic

activity if forced to fold into their native structure [38,39].

Significant effort has been recently devoted to the development of

strategies to rescue native folding of unstable mutated enzymes to

prevent degradation and enhance residual enzyme activity in the

lysosome. For instance, pharmacological chaperone therapy (PCT)

is based on the use of small molecules that bind to the enzyme’s

active site and favor native folding [37,40]. PCT can increase the

intracellular pool of active enzyme that escapes ERAD and

reaches the lysosome, where the pharmacological chaperone is

displaced from the enzyme’s active site due to the high

concentration of substrate. As a results, PCT can effectively

restore metabolic functions that are otherwise deficient in LSDs

[41].

PCT candidates for LSDs have been identified by performing

high-throughput screening of chemical libraries [42–46]. High-

throughput assay capability depends on the availability of a robust

and reliable assay that can be conducted in a miniaturized and

automated format. However, currently available assays for

measuring NAG activity in vitro are not suitable for high-

throughput screens, since they involve large amounts of cells and

several consequential steps of sample preparation. Chromogenic

and fluorogenic in vitro assays have been developed to measure

NAG activity in patient-derived fibroblasts and provide a

biochemical method for the diagnosis of MPS IIIB. In the

chromogenic assay, homogenates of fibroblast pellets obtained

after two weeks of subculture are incubated with the colorimetric

substrate p-nitrophenyl-a-D-N-acetylglucosaminide. At pH 10,

the product of hydrolysis, nitrophenyl, changes color and can be

quantified spectrophotometrically at 420 nm. The intensity of

absorbance, normalized to the total protein content, correlates

with the concentration of metabolized substrate and is thus an

indication of enzymatic activity [47]. The fluorogenic assays is

based on the use of 4-Methylumbelliferyl-2-acetamido-2-deoxy-

alpha-D-glucopyranoside (MUG), a substrate that releases fluo-

rescent 4-methylumbelliferone upon NAG-mediated cleavage of

glycoside 1 and that has advantages in sensitivity and ease of use

over the colorimetric substrate [48]. However, similar to the

chromogenic assay, this method requires large amounts of cells,

cell disruption by sonication or freeze-thawing, and normalization

to the cellular protein content [48,49]. Alternative and more

laborious assays to measure enzyme activities in cultured

fibroblasts from MPS III patients include affinity capture2release

purification of biotin-tagged products followed by electrospray

mass spectrometry [50–52] and the use of radiolabelled oligosac-

charides as substrate followed by the measure of the released

radioactivity to quantify NAG activity [53].

In an attempt to develop an assay amenable to high-throughput

applications we developed and validated a rapid and sensitive

method to quantify lysosomal NAG activity based on the use of

MUG. All steps–from cell treatment with a candidate therapeutic

agent to assessment of NAG activity–can be carried out in a 96-

well plate, making this assay suitable for screening applications,

including the identification and/or characterization of candidate

therapeutics for PCT, SCRT, ERT, GT and lysosomal enhance-

ment.

Methods

Cell Lines
Primary fibroblasts derived from MPS III patients were either

purchased from the Coriell Institute for Medical Research

(Catalog Nos. GM00156, GM00737, GM01426, GM02552 A,

GM02931) or obtained from the Telethon Genetic Biobank

Network, Italy (Catalog Nos. FFF0051996, FFF0071993,

FFF0242004, FFF0402004, FFF0502006, FFF0631986,

FFF0641986, FFF0821991). Control fibroblast cell lines from

healthy donors were purchased from the Coriell Institute for

Medical Research (Catalog Nos. GM03440, GM03651,

GM00498).

Reagents
All chemicals were of American Chemical Society reagent grade

and, unless otherwise stated, from Sigma Aldrich (St. Louis, MO,

USA). Methylumbelliferyl-2-acetamido-2-deoxy-alpha-D-gluco-

pyranoside (MUG) was purchased from Moscerdam Substrates

(Oegstgeest, Netherlands). Medium for cell culture consisted of

DMEM High Glucose (HyClone), supplemented with 20% fetal

bovine serum (HyClone), 2 mM L-Glutamin (Sigma) and 100 U/

ml penicillin/100 mg/ml streptomycin (Sigma).

N-acetylglucosaminidase (NAG) Activity Assay
Sample fibroblasts in culture plates were trypsinized, counted

with a Neubauer hemocytometer and diluted in their standard

medium to the required cell concentration. Then, 100 ml of this
suspension were plated in each well of a 96-well plate (56103 or

104 fibroblasts per well) and incubated at 37uC and 5% CO2

overnight to achieve cell attachment. Clear bottom plates

(Corning, Inc.) were used. Four wells (three test wells and one

background well) were plated for each condition to be tested. In

order to prevent edge effects, columns 1 and 12 were filled with

100 ml PBS. Rows A and H served as background noise control

to determine the extent of unspecific fluorescence and were used

to incubate cells with 50 ml buffer without substrate. The

medium was replaced the next day with fresh medium

(containing 25 mM to 125 mM sucrose in some experiments,

as indicated below) and plates were incubated at 37uC and 5%

CO2. After treatment the medium was removed and cells

washed three times with PBS. The assay reaction was started by

adding 50 ml of substrate solution to each well (2 mM MUG in

0.2 M Na-acetate buffer pH 4.5 with 0.5% Triton X-100 and

16 protease inhibitor). Plates were sealed with plastic wrap to

prevent evaporation, covered in aluminum foil in order to

protect them from light and incubated for 17 h at 37uC. Next,

NAG One-Step Cell Assay
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150 ml 0.2 M glycine buffer pH 10.8 were added to each well

and the released fluorescence was measured (excitation 360 nm,

emission 460 nm) with a Synergy 2 plate reader (BioTek). NAG

activity was expressed as a fluorescence ratio between treated

and untreated fibroblasts or as the percentage of wild-type

enzyme activity.

Quantitative RT-PCR
Total RNA was extracted from cells using the miRNeasy Mini

Kit (Qiagen). cDNA was synthesized from 100 ng of total RNA

using the QuantiTect Reverse Transcription Kit (Qiagen).

Quantitative PCR reactions were performed using cDNA,

PerfeCTa SYBR Green FastMix, ROX (Quanta BioSciences)

and corresponding oligos [20] with the 7300 Real Time PCR

System (Applied Biosystems). Samples were heated for 10 min at

95uC and amplified in 40 cycles of 1 s at 95uC and 15 s at 63uC.
Expression analysis was done using SDS v1.2 software (Applied

Biosystems). Threshold cycle (CT) was extracted from the PCR

amplification plot. The DCt value was used to describe the

difference between the Ct of a target gene and the Ct of the

housekeeping gene: DCt=Ct (target gene) 2 Ct (housekeeping

gene). Each data point was evaluated in triplicate.

Statistical Analysis
All data were expressed as mean 6 standard deviation.

Statistical analyses were conducted using unpaired Student’s t-

test. Differences were considered significant when p value was less

than 0.05. Z9 factors were calculated according to the following

equation: Z9=1– [36(SDtreated+SDuntreated)/(Meantreated – Mean-

untreated)], where SD is the standard deviation and Mean is the

average of data points [54].

Results

Experimental Set-up for NAG 96-well Plate Cell Activity
Assay
The objective of this study was to establish a fast, robust and

reliable assay for measuring NAG activity, which can accommo-

date analysis of multiple cell lines and/or conditions at once.

Towards this objective, we selected the 96-well plate as the format

of choice and tested the effects of cell density and substrate

concentrations on the readout of NAG activity by quantifying the

fluorescence after overnight incubation of wild-type fibroblasts

with the NAG-specific fluorescent substrate Methylumbelliferyl-2-

acetamido-2-deoxy-alpha-D-glucopyranoside (MUG) in an acidic

buffer (see Materials and Methods for details). The activity of

lysosomal enzymes in cultured fibroblasts correlates with time after

subculture and hence with the extent of confluency at the time of

assay [55]. At confluency, fibroblasts are in a metabolic state in

which highly differentiated cellular functions, including the

synthesis of lysosomal hydrolases, become more important than

cell division [55]. We therefore conducted our tests under

conditions of cell confluency (at least 56103 cells per well in the

96-well plate format). To investigate the effect of cell density on the

readout signal we compared NAG enzymatic activity of samples

obtained by seeding 56103 and 104 cells per well. To investigate

the effects of substrate concentration on the readout signal, we

tested NAG enzymatic activity by varying MUG concentration

from 1 to 2.5 mM for each cell density tested. After a 17-hour

incubation period, the reaction was stopped with a glycine buffer

at pH 10.8 and the released fluorescence was measured on a plate

reader using an excitation wavelength of 360 nm and measuring

the emission at 460 nm [30].

Incubating 56103 fibroblasts with MUG at a final concentra-

tion of 1, 2 and 2.5 mM resulted in 1051639, 1600659 and

1518665 absolute fluorescence intensity (FU), respectively.

Incubating 104 fibroblasts per well with MUG at a final

concentration of 1, 2 and 2.5 mM resulted in 17476172 FU,

29846137 FU and 29236136 FU, respectively (Fig. 1A). The

measured fluorescence was higher in cells incubated with 2 mM

substrate compared to cells incubated with 1 mM substrate, but

did not increase further when incubated with 2.5 mM substrate,

suggesting saturation of the enzymatic reaction. Hence, the

combination of 104 fibroblasts per well and MUG concentration

of 2 mM was selected as the standard condition for subsequent

experiments.

To assess whether the assay was conducted within a linear range

with respect to time, we incubated 104 fibroblasts with 2 mM

MUG for 5, 9, 13, 17 or 24 hrs and measured NAG activity as

described above. The results showed that the measured fluores-

cence increased linearly with time along the entire time interval

tested, with an average hourly increment of 176613 FU (Pearson

correlation coefficient = 0.998; P,0.001) (Fig. 1B). These data

indicate that the assay signal is far from reaching a plateau at the

selected incubation time of 17 hrs and also suggest that shorter

incubation times could be used if time is critical in the set up of the

experiment.

The NAG 96-well Plate Cell Assay Discriminates between
Wild-type and MPS IIIB Fibroblasts
To assess the ability of the one-step 96-well plate cell assay to

distinguish between wild-type cells and cells containing mutated

enzyme variants that result in deficiencies in enzymatic activity, we

measured NAG activities in fibroblast derived from 13 MPS IIIB

patients and three control donors. Most MPS IIIB fibroblast lines

carried NAGLU alleles with no residual NAG activity (L35F,

V77G, Y92H, Y140C, E153K, W156C, E336X, P358L, H414R,

V501G, R626X, W649C, L682R), as previously demonstrated

upon transfection of plasmids with the mutated NAGLU cDNAs in

COS-7 or CHO cells [28–30,56,57]. Another allele carried an

early truncating mutation (R297X) that is also expected to result in

a complete loss of NAG activity [58]. Finally, there is no published

evidence reporting measurements of residual activity of three of

the alleles tested (T81A, G292R, R643H).

The NAG cell activity assay resulted in average readouts of

24686342 FU for wild-type fibroblasts and 131628 FU for MPS

IIIB fibroblasts, which corresponds to a ,20-fold difference

between the two groups (P,0.002) (Fig. 2). Differences among

MPS IIIB lines or wild-type lines were not statistically significant,

demonstrating that the assay is highly reliable. As previously

mentioned, most of the MPS IIIB cell lines we tested carried

homozygous or compound heterozygous mutations that result in

no residual NAG activity. This suggests that the low signal

resulting from the analysis of these cells (corresponding to 4–7% of

the signal obtained from wild-type cells) represents the background

noise of the assay, which is comparable to, or lower than, the level

of noise from previously reported assays [28–30,47–

49,52,53,56,57,59]. Based on the results obtained with the NAG

cell activity assay, the non-characterized mutations (T81A,

G292R, and R643H) are likely to confer null or very low NAG

activity to the mutated NAG variants. In summary, we can

conclude that the 96-well plate cell assay presents a low inherent

noise content and is suitable for measuring differences in NAG

activity of wild-type and MPS IIIB fibroblasts.

NAG One-Step Cell Assay
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Assessment of Sensitivity: Lysosomal Enhancement by
Sucrose Treatment
An enzymatic assay amenable to high-throughput screening

applications should be characterized by low limit of detection to

reliably distinguish small differences in enzymatic activity between

different variants. To assess the sensitivity of the NAG one-step cell

assay, we stimulated NAGLU transcription via activation of the

transcription factor EB (TFEB), a master regulator of lysosomal

pathways [20] that directly targets NAGLU promoter to enhance

its expression [60]. We incubated wild-type fibroblasts with

sucrose, a known activator of TFEB [20], for four days at a final

medium concentration of 25 to 100 mM, and measured NAG

Figure 1. Set-up of conditions for NAG activity cell assay. A. Either 5 or 106103 cells were incubated for 17 hrs with different concentrations
of the NAG-specific substrate, 4MU-alpha-N-acetyl-D-glucosaminide (MUG), and NAG relative activities were measured by reading the fluorescence
emissions at 460 nm upon excitation at 360 nm. B. 104 cells were incubated with 2 mM MUG and NAG relative activities were measured at various
time points. FU, Fluorescence Units. Data are reported as the mean 6 SD (n = 3).
doi:10.1371/journal.pone.0068060.g001

Figure 2. The NAG one-step cell assay discriminates between wild-type and MPS IIIB fibroblasts. Analysis of thirteen patient-derived
fibroblast lines and three wild-type control lines with the NAG 96-well plate cell assay. Homozygous and compound heterozygous mutations
indentified in NAGLU genomic sequences are indicated. FU, Fluorescence Units. Data are reported as the mean 6 SD (n = 3).
doi:10.1371/journal.pone.0068060.g002

NAG One-Step Cell Assay
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activities with the one-step cell assay as described above. The

results showed a dose-dependent increase in NAG activity that

reached a plateau corresponding to a 1.85 fold increase in activity

at 75 mM sucrose compared to untreated cells (Fig. 3A). We also

monitored the mRNA levels of NAGLU and of an additional

lysosomal target of TFEB, namely GNS [20,60], by real-time

qPCR after cell treatment with sucrose under the same conditions.

We observed a parallel increase in NAGLU expression level that

reached 1.5-fold up to 75 mM sucrose compared to untreated cells

(Fig. 3B). The expression of the control gene, GNS, also increased

in a dose-dependent manner with the addition of sucrose,

indicating that sucrose promoted TFEB-mediated lysosomal

enhancement in these cells [20].

Assessment of Sensitivity: Lysosomal Enhancement by
TFEB Overexpression
To determine the sensitivity of the one-step cell assay in the

context of a greatly enhanced lysosomal system, we used HeLa

cells stably overexpressing TFEB, in which the lysosomal

compartment is significantly expanded [20]. The expression level

of TFEB was quantified by real-time qPCR and was found to be

62.5-fold higher than that of HeLa cells not overexpressing any

transgene (control cells). To confirm that the TFEB transgene

induced the expression of its target genes in the test conditions, we

quantified the mRNA levels of NAGLU and of other TFEB targets,

namely SGSH, GNS and GBA [20,60]. The expression of these four

lysosomal enzymes was on average 2.9-fold higher in HeLa cells

overexpressing TFEB than in control cells, with NAGLU present-

ing an expression 3.0 times higher than in control cells (Fig. 4A).

We measured NAG activities with the one-step cell assay and

found that TFEB cells displayed an activity 3.1-fold higher than

control cells (Fig. 4B), thus demonstrating a close correlation

between the expression of the NAGLU gene and NAG enzymatic

activity as measured by the cell assay.

Assessment of Reproducibility
To verify the signal reproducibility of the NAG one-step cell

assay we performed a Z9-score test in two independent experi-

ments using three 96-well plates per experiment. Intra-plate

replicates were organized following a simple scheme that included

untreated cells (U) and cells treated with either 100 mM sucrose

(high sucrose concentration, H) or 25 mM sucrose (low sucrose

concentration, L). Columns were organized in [H-L-U], [L-U-H],

and [U-H-L] schemes in plates 1, 2, and 3, respectively, to avoid

any biases in the distribution of treatments. The Z9 factors

generated in the two experiments were 0.73 and 0.63 in the

comparison of H vs. L signals (Fig. 5), indicating that the assay

presents high reproducibility of the signal and meets the

requirements for high-throughput screening applications (i.e., Z9

$0.5) [54]. The average fold change associated with the H vs. U

comparison was 1.760.04. The comparison of L vs. U signals

generated Z9 factors equal to 0.37 and 0.38 in the two

experiments, respectively, with an average fold change of

1.460.05. Together, these data indicate that an increase in

activity equal or greater than 1.7 would reliably define a hit in the

context of a high-throughput screen, whereas an increase equal or

lower than 1.4 could be associated with either a hit or a false

positive signal. We can take advantage of these data to provide an

estimation of the minimum increase in activity required to

generate a reliable hit. Our results are associated with a standard

deviation of ,5% for both untreated and treated samples. Based

on the definition of Z9 score (see Material and Methods for details),

we concluded that a 1.6-fold increase in NAG activity is necessary

to reliably define hit compounds in the context of a high-

throughput screen using the assay conditions reported in this

study. Notably, TFEB overexpression resulted in a 3-fold increase

in NAG activity–thus much above the threshold required to define

a reliable hit, which would make TFEB a strong candidate in a

genetic screen.

Based on the results obtained, we can conclude that the NAG

96-well plate assay has desirable characteristics of sensitivity and

reproducibility that make it suitable for high-throughput screening

applications.

Discussion

In this study, we present a rapid, reliable and robust assay to

measure NAG activity in a 96-well plate format that complements

existing methods and presents desirable characteristics that make it

particularly attractive for primary screening in high-throughput

applications. The NAG assay herein described, in fact: (i) involves

a reduced number of steps, resulting in a shorter protocol; (ii)

requires a reduced number of cells, enabling the use of the 96-well

plate format, which, in turn, allows testing multiple mutations,

culturing and treatment conditions simultaneously and with a

Figure 3. The NAG one-step cell assay detects NAG activity
changes upon sucrose-mediated lysosomal enhancement. A.
Relative NAG activity in HeLa cells treated with various concentrations
of sucrose as measured with the NAG cell assay. B. Relative expression
levels of NAGLU and GNS genes in HeLa cells treated with various
concentrations of sucrose. NAGLU and GNS mRNA expression levels
were obtained by real-time qRT-PCR, corrected by the expression of the
housekeeping gene GAPDH, and normalized to those of untreated cells
(red dotted line). All data are reported as the mean 6 SD (n = 3).
doi:10.1371/journal.pone.0068060.g003

NAG One-Step Cell Assay
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higher number of replicates; (iii) is performed in a single plate from

start to finish, with no requirement for transfer of samples or

material across plates; (iv) benefits from reduced protein inactiva-

tion due to denaturation or degradation, thus resulting in more

reproducible results. On the other hand, existing methods to

measure NAG activity require several steps of sample preparation

that include cell disruption by sonication or repeated cycles of

freeze-thawing–steps that are time consuming and difficult to

standardize because they may result in protein denaturation or

incomplete cell lysis, thus impacting the measured enzyme activity.

As a result, the amount of cells and time typically needed for each

sample–including normalization of the readout signal by DNA or

protein content–are hardly compatible with a systematic testing of

multiple cell lines or conditions.

In the NAG 96-well plate assay, the same number of cells is

plated in each well and the number of steps involved in the

experimental procedure is kept at a minimum to minimize

differences in readout values due to differential cell number or

growth rate. Assays conducted using 13 fibroblast lines derived

from MPS IIIB patients showed that the readouts were uniformly

,20-fold lower than control fibroblasts from healthy donors in all

cases, which supports the reliability of the assay to assess

deficiencies in NAG activity. In addition, upregulating NAG

synthesis in HeLa cells by inducing the activation of the master

lysosomal regulator, TFEB, via sucrose treatment or by direct

TFEB transfection allowed evaluating the assay sensitivity to

increases in NAG expression and activity. The readouts of the

assay showed that changes in NAG activities paralleled changes in

NAGLU mRNA expression as detected by real-time qPCR.

Together, these data support the notion that the assay is run in

conditions that are well above the background noise of the analysis

and in a range of values that is far from the saturation of the signal.

An assessment of reproducibility showed that the Z9 score

associated with the NAG 96-well plate assay was higher than 0.6

in experiments where sucrose-mediated increase in NAG activity

averaged 1.7-fold. Subsequent calculations that took into account

our observed standard deviation of ,5% showed that an increase

in NAG activity $1.6-fold would be sufficient to reliably define a

hit compound that enhances NAG activity [54]. This suggests that

the NAG 96-well plate assay can be used as a primary screen in

various applications to identify or investigate potential therapeutics

able to modulate NAGLU expression or function (GT, SCRT,

ERT), to rescue native folding of unstable NAG mutants (PCT), or

to enhance lysosomal function–using changes in NAG activity as a

sentinel readout. Hits resulting from the primary screen can be

Figure 4. The NAG one-step cell assay detects NAG activity changes upon TFEB-mediated lysosomal enhancement. A. Relative
expression levels of TFEB and four TFEB direct targets (NAGLU, SGSH, GNS, GBA) in HeLa cells upon transfection of a TFEB plasmid. TFEB, NAGLU, SGSH,
GNS and GBA expression levels were obtained by real-time qRT-PCR, corrected by the expression of the housekeeping gene GAPDH, and normalized
to those of untreated cells (red dotted line). B. Relative NAG activity in HeLa cells upon transfection of a TFEB plasmid as measured with the NAG cell
assay. All data are reported as the mean 6 SD (n = 3).
doi:10.1371/journal.pone.0068060.g004

Figure 5. Z9-factor tests to evaluate assay reproducibility.
Relative NAG activity in wild-type fibroblasts treated with 100 mM
sucrose (blue dots), 25 mM sucrose (red dots), or left untreated (great
dots). The graph reports the results from two independent experiments
(n = 3 plates per experiment). FU, Fluorescence Units.
doi:10.1371/journal.pone.0068060.g005

NAG One-Step Cell Assay
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subsequently counter-screened using more labor intensive and

time consuming secondary assays that take into account the effect

of parameters such as toxicity and cell growth that may result in

selection of false positive hits.

LSDs are perfect targets for PCT and SCRT because rescue of

up to as little as 10–20% of the corresponding wild-type activity

may ameliorate or even completely eliminate clinical symptoms

[37,61]. Pioneering studies that investigated SCRT in LSDs were

conducted using cultured fibroblasts from patients’ skin and

demonstrated that attenuating the premature termination of

translation increases the activity of mutant lysosomal enzymes

[14,62]. After similar proof-of-concept studies, PCT has been the

subject of intensive clinical research and it is now being translated

into clinical applications for several LSDs, including Gangliosido-

ses GM1 and GM2, Fabry disease, Gaucher disease, and Pompe

disease [42,63–68]. Recently, the use of pharmacological chaper-

ones has also been suggested as a treatment strategy for MPS IIIB

[69]. In general, the modulation of the proteostasis network is a

promising pharmacological strategy to promote folding of

unstable, degradation-prone enzymes containing missense muta-

tions [26,36,39,70–74]. Pharmacological chaperones, proteostasis

modulators and small molecules that induce the read-through of

premature stop codons have the potential to overcome several

limitations of enzyme replacement therapies (ERT): they can be

ingested orally and do not require life-long invasive infusions, thus

improving the patient’s quality of life at lower costs than ERT.

Moreover, they can potentially cross the blood-brain barrier and

thus improve the neurological phenotypes of LSDs, which are not

addressed with ERT [37]. These advantages pose an urgent need

to identify small molecule-based oral treatments for MPS IIIB.

Due to its rapidity, sensitivity and the small format required, the

NAG 96-well plate cell assay could be the method of election for

screening libraries of compounds using MPS IIIB cells that carry

missense or non-sense mutations. Moreover, because the stop-

codon reading-through and the rescue of folding and activity of

mutant proteins can be mutation-specific [14,37,62,75], a positive

hit that showed rescue of NAG activity with a specific mutation

may be subsequently counter-screened using MPS IIIB fibroblasts

carrying different mutations by cross-comparing multiple cell lines

in the same 96-well cell assay. The assay is also suitable for

applications aimed at investigating recombinant enzymes and

constructs for gene transfer using cells with a null background, i.e.

patient-derived fibroblasts. On the other hand, this assay can be

used with both wild-type cells (fibroblasts or standard laboratory

cells such as HeLa) and patient-derived fibroblasts to screen or

characterize candidate molecules for lysosomal enhancement

therapy. Importantly, combination therapies are being frequently

cited as an emerging strategy to exploit the synergistic effects of

multiple types of treatments [12,16,37,76–80]. We suggest the

NAG 96-well plate cell assay to be an ideal method to investigate

combination therapies in vitro, given that the number of samples to

be analyzed grows rapidly with the number of combinations

tested, and even exponentially when considering multiple muta-

tions or dosage regimens.

In summary, this assay has desirable characteristics of easy

performance, rapidity, reproducibility and sensitivity that make it

suitable for various applications, including the manual screening of

patient-derived cells to assess residual NAG activity for diagnostic

applications, the high-throughput screening of libraries of mole-

cules to identify modulators of NAG expression, folding and

activity, and the investigation of molecules and constructs to be

used in ERT, GT, and combination therapies.
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