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Abstract

Deficiency of the human short stature homeobox-containing gene (SHOX) has been identified in several disorders
characterized by reduced height and skeletal anomalies such as Turner syndrome, Léri-Weill dyschondrosteosis and Langer
mesomelic dysplasia as well as isolated short stature. SHOX acts as a transcription factor during limb development and is
expressed in chondrocytes of the growth plates. Although highly conserved in vertebrates, rodents lack a SHOX orthologue.
This offers the unique opportunity to analyze the effects of human SHOX expression in transgenic mice. We have generated
a mouse expressing the human SHOXa cDNA under the control of a murine Col2a1 promoter and enhancer (Tg(Col2a1-
SHOX)). SHOX and marker gene expression as well as skeletal phenotypes were characterized in two transgenic lines. No
significant skeletal anomalies were found in transgenic compared to wildtype mice. Quantitative and in situ hybridization
analyses revealed that Tg(Col2a1-SHOX), however, affected extracellular matrix gene expression during early limb
development, suggesting a role for SHOX in growth plate assembly and extracellular matrix composition during long bone
development. For instance, we could show that the connective tissue growth factor gene Ctgf, a gene involved in
chondrogenic and angiogenic differentiation, is transcriptionally regulated by SHOX in transgenic mice. This finding was
confirmed in human NHDF and U2OS cells and chicken micromass culture, demonstrating the value of the SHOX-transgenic
mouse for the characterization of SHOX-dependent genes and pathways in early limb development.
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Introduction

Height is a complex trait defined by multiple biological and

environmental factors that are involved in bone formation and

growth. The development of the long bones is characterized by

coordinated gene expression from early embryonic stages until

adulthood. Disturbances in bone development can affect growth

and lead to clinical consequences. The homeodomain transcrip-

tion factor SHOX is involved in different human short stature

syndromes (Turner syndrome, Léri-Weill dyschondrosteosis LWD

[MIM 127300] and Langer mesomelic dysplasia [MIM 249700])

and isolated (idiopathic) short stature [MIM 300582]

[1,2,3,4,5,6,7]. Mutations and deletions of the SHOX gene and

its enhancers have been identified as etiologic for the short stature

and skeletal anomalies in these disorders [8,9,10,11,12,13].

Comprehensive case studies have shown that SHOX defects have

also been identified in the more common nonsyndromic (isolated)

forms of short stature with a prevalence of 5–17% in geograph-

ically different populations [6,12,14]. An overdosage of SHOX as

in patients with Triple-X or Klinefelter syndrome results in tall

stature [15].

Phenotypic characteristics are variable in SHOX-deficient

patients and include disproportional (mesomelic) short stature,

shortening of the forearms as well as Madelung deformity, a

skeletal abnormality of the wrist characteristic for LWD [4,16].

Histopathological evaluation of LWD growth plates revealed a

variable disruption of the architecture and an irregular chondro-

cyte stacking [17], and the SHOX protein was mainly detected in

prehypertrophic and hypertrophic chondrocytes of fetal and

childhood growth plates by immunohistochemistry [18,19,20].

Since clinical studies have demonstrated that growth hormone

(somatropin) therapy before the onset of puberty effectively

ameliorates the short stature in SHOX-deficient patients [21], a

somatropin-based therapy is proposed in affected individuals.

Despite the high clinical relevance of SHOX mutations,

surprisingly little is known about the molecular mechanisms that

are governed by SHOX deficiency. This is mainly due to the

limited availability of patient tissue samples (growth plate material)

and the lack of cellular systems that reliably express SHOX

endogenously at sufficiently high levels [22]. Mice do not have a

SHOX orthologue, thus a knock-out model cannot be generated.

Since the vast majority of genes that govern early developmental
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processes are highly conserved between human and mouse [23],

characterization of genes that are divergent between the two

species has not attracted much attention. SHOX has been shown

to act as both a transcriptional activator and repressor of target

genes [8,20,24,25,26]. Functional studies have also shown that

overexpression of the SHOX protein can induce growth arrest and

apoptosis, suggesting that SHOX may regulate chondrocyte

hypertrophy by inducing apoptosis [19].

The clinical relevance of SHOX in short stature prompted us to

generate a transgenic mouse to study the effect of the human

SHOX gene during early chondrogenesis. While the phenotypic

features are sparse in these animals, we demonstrate that Ctgf,

among other genes, is regulated by SHOX in transgenic mice as

well as in human and chicken cell cultures. In addition, microarray

and molecular analyses revealed that the SHOX-transgene can

effectively regulate genes important in early processes during limb

formation.

Materials and Methods

Animals and genotyping
All animal experiments were conducted according to German

animal protection laws and approved by the regional board of

Baden Württemberg (permission No. 35–9185.81/G–64/05 and

A-30/09). To express SHOX (genomic coordinates according to

GRCh37: X:585,078-620,145) in mouse limbs, the SHOXa cDNA

(CCDS14107.1) was cloned into the murine expression vector

p1757 including the rat Col2a1 promoter (1 kb), a Globin splicing

sequence (640 bp) and the Col2a1 enhancer (1.4 kb) [27,28,29]

and a SV40 polyadenylation signal from pGL3 Basic (Promega).

The construct (p1757 SHOX) was linearized with AgeI and

microinjected into pronuclei of fertilized C57BL/6 x DBA/2

hybrid eggs to generated transgenic mice. Founders were

identified by extraction of genomic DNA from tails followed by

PCR using primers SHOX1 and XHO_REV (1-409 of the

SHOXa cDNA) and SHOX_ECORI_FOR and LUMI-

OSHOXCTER_REV (242-TGA of the SHOXa cDNA). Southern

Blot was carried out according to standard procedures with a

probe spanning nucleotides 1-409 to confirm the integration of the

transgene at a single locus. Primer sequences are included in the

Table S2 in File S1.

Limb preparation and RNA samples
Limbs of wildtype and transgenic littermates at E10.5-E14.5

were dissected and frozen in liquid nitrogen. RNA was isolated

using the RNeasy Kit (Qiagen), following homogenization using a

PT1300 D polytron (Kinematica). DNA was hydrolyzed using the

RNAse-free DNAse Kit (Qiagen). RNA yield was measured using

a NanoDrop 2000 spectrophotometer (Nanodrop technologies)

and quality-checked on agarose gels. For microarray analysis,

RNA from 2-4 E12.5 wildtype and transgenic littermates was

pooled and the quality-checked on a 2100 Bioanalyzer (Agilent).

In vitro transcription and quantitative RT-PCR
In vitro transcription of 1 mg RNA was performed using the

Superscript II First Strand Synthesis System for RT-PCR

(Invitrogen). qRT-PCR was carried out using the Applied

Biosystems 7500 Real-Time PCR System and Absolute SYBR

Green ROX Mix (Abgene). Each sample and the housekeeping

genes were run in duplicates. Relative mRNA levels were

calculated according to the delta-delta Ct method [30] by

normalization to mRNA expression of the housekeeping genes

Sdha and Adam9. Primer sequences are included in Table S2 in File

S1.

mCT imaging and analysis
Transgenic and wildtype littermates were anesthetized by i.p.

injection of Ketamin (75 mg/kg) and Domitor (1 mg/kg) at the

age of 4 (P28–30), 12 (P84–86) and 24 weeks (P168–170).

Microcomputed tomography analyses on tibiae and femora of

narcotized mice was performed using a Skyscan 1076 in vivo

scanner (Skyscan, Antwerp, Belgium) at a resolution of 17.7 mm/

pixel with an 0.5 mm aluminium filter. A source voltage of 48 kV,

current of 200 mA, exposure time of 320 ms and a rotation step of

0.6 degree were used. Reconstructions (NRecon, Skyscan,

Antwerp, Belgium) were made using an under-sampling factor of

1, a threshold for defect pixel mask of 30%, a beam hardening

correction factor of 100%, minimum of 0.0061 and maximum of

0.0674 for CS to image conversion. Length of long bones and

cortical thickness were measured manually using ruler tool

function (CTAn, Skyscan, Antwerp, Belgium). Equal anatomical

bone markers were used for reproducibility. For quantitative

analysis of bone volume (BV) and bone mineral density (BMD) a

region of interest was chosen that included the total bone and

thresholds of 68-255 were used for binarisation. For BMD

measurement mice were euthanized at the age of 24 weeks, legs

were prepared and scanned again in water. Phantoms with known

densities of 0.25 and 0.75 g/cm3 and water were scanned for

houndsfield unit calibration. Statistical analyses were carried out

using Student’s t-test and GraphPad Prism 5 software.

Microarray analysis
Gene expression profiling was performed using GeneChip Mouse

Genome 430.2 from Affymetrix (Santa Clara, CA, USA). Duplicate

Arrays were done for each genotype (transgene or wildtype). cDNA,

cRNA synthesis and hybridization to arrays were performed

according to the recommendations of the manufacturer. Microarray

data were submitted to NCBI GEO, sample number GSE47902.

Microarray data was analyzed based on ANOVA using the software

package JMP Genomics, version 4.0 (SAS Institute, Cary, NC,

USA). Values of perfect-matches were log transformed, quantile

normalized and fitted with log-linear mixed models, with probe_ID

and genotype considered to be constant and the sample ID random.

Custom CDF version 13 with Entrez gene based gene/transcript

definitions (http://brainarray.mbni.med.umich.edu/Brainarray/

Database/CustomCDF/genomic_curated_CDF.asp) different from

the original Affymetrix probe set definitions were used to annotate

the arrays. Gene Set Enrichment analysis (GSEA 2.0) was applied to

reveal biological pathways modulated between sample groups.

Genes were ranked according to the expression change between

genotypes. All Gene Ontology terms were examined using 1000

rounds of permutation of gene sets. Pathways with absolute NES

(normalized enrichment score) more than 1.7 and NP (normalized p-

value) ,0.02 were considered to be differentially modulated.

The nCounter system assay
Assays were performed using 100 ng of total RNA plus reporter

and capture probes for 10 genes (nanostring codeset). After over-

night hybridization, sample purification and nCounter digital

reading, counts for each RNA species were extracted and analyzed

using a home-made Excel macro. Codesets include positive

controls (spiked RNA at various concentrations) as well as negative

controls (alien probes for background calculation). Background

correction consisted of the subtraction of negative control average

plus two SD from the raw counts. To avoid negative values, signals

lower than one after correction were thresholded to one. The

positive controls were used as a quality assessment. For each

sample, the ratio between sample-related positive control average

and the smallest positive control average was accepted when lower
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than 3. To select adequate normalization genes from series of

candidates included in the CodeSet, the geNorm method (5) was

implemented. Therefore, the geometric mean of the selected

normalization genes according to geNorm was calculated and used

as normalization factor. Normalized values were then compared

between samples. Probe sequences are included in Table S2 in File

S1.

In situ hybridization
Whole-mount in situ hybridization using embryos fixed in 4%

paraformaldehyde was performed according to standard proce-

dures. Section in situ hybridisation was performed on 12 mm

paraffin sections using standard protocols. Antisense riboprobe for

Ctgf was cloned using the pSTBlue-1 AccepTor vector Kit

(Novagen) with the primers Ctgf_ISH_FOR: AAA TGC TGC

GAG GAG TGG GTG and Ctgf_ISH_REV: GTG CGT TCT

GGC ACT GTG CGC. Antisense riboprobe for SHOX was

generated from a Bam/XhoI fragment of pBSK SHOX, Shox2

riboprobe was used as reported [31]. Templates for antisense in

vitro transcription were digested and digoxigenin-labelled antisense

RNA was synthesized using MEGAscript H Kit (Ambion) as

follows: SHOX: KpnI/Sp6; Ctgf: BamHI/Sp6; Ihh: XbaI/T7;

Col10a1: XhoI/T3; Col2a1: EcoRI/T7; Fgfr3: NdeI,/T7; Shh:

HindIII/T3; Runx2: SpeI/T7; Shox2: SacI/T7; Ogn: XhoI/T7.

Cell culture, transfections and luciferase assays
Cells were cultivated and transfections as well as reporter gene

assays were carried out as reported before [26]. Primers used for

the cloning of the reporter construct are included in Table S2 in

File S1.

Electrophoretic Mobility Shift Assays (EMSA)
EMSA were carried out as described [10] using the probes

sequences included in the Table S2 in File S1.

Immunohistochemistry
Immunohistochemistry was performed on growth plate sections

from a pubertal 12 years old boy (tibial growth plate) as described

[19] using anti SHOX- and anti-CTGF (clone L20, Santa Cruz)

antibodies at the dilution of 1:25 and 1:100, respectively.

Figure 1. Generation and expression analysis of SHOX-trans-
genic mice. (A): The SHOXa cDNA was tagged with a Lumio and SV40
Poly(A) sequence and cloned under the control of a murine Col2a1
promotor/enhancer expression cassette. (B): Genotyping was performed
using specific primers spanning the first 409 nucleotides of the SHOXa
cDNA. No PCR product was detected in wildtype animals. (C):-Southern
Blot analysis of the two transgenic lines (1 and 2) used for our
investigations. Genomic DNA was digested with BamHI, EcoRV and Hind
III. BamHI digestion results in a 1.3 kb fragment that corresponds to the
Lumio/SV40-tagged SHOX cDNA, which was flanked by BamHI sites. The
presence of only one signal per lane indicates a single integration site of
the transgene. (D): Relative quantitative expression of Col2a1 and
SHOXa transcripts in limbs of wildtype and transgenic littermates
(N = 5–8 per litter) at E12.5, E13.5 and E14.5. The expression of the
transgene corresponds to the expression dynamics of Col2a1. SHOX
levels are generally low with highest expression at E12.5. Values are
variable among individual animals as indicated by the standard
deviation (SD). (E): WISH of wildtype (Wt) and transgenic (Tg) embryonic
limbs from E11.5-E14.5 (N = 20 for each stage). The transgene is weakly
expressed in the developing limb at E11.5 and becomes defined around
the cartilaginous anlagen at E12.5. From E13.5 onwards, the expression
is mainly seen in the mesenchyme around the developing cartilage and
in the perichondrium and decreases during later stages.
doi:10.1371/journal.pone.0098543.g001
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Histology
For histological examination of growth plates, femora and tibiae

of wildtype and transgenic mice (24 weeks of age) were fixed in 4%

formalin and decalcified in 10% EDTA. The femora and tibiae

were then bisected in the middle, and paraffin embedded.

Subsequently, paraffin sections were cut at 4 mm intervals in the

plane of the physis. The sections were stained with hematoxylin

and eosin (H&E), periodic acid-Schiff (PAS) and Masson’s

trichrome (MT) by standard protocols.

Results

Generation and expression studies of Col2a1-SHOX-
transgenic mice

To generate transgenic mice expressing the human SHOX gene,

the SHOXa coding sequence was cloned into a murine transgene

expression vector harbouring the rat Collagen type II (Col2a1)

promoter and enhancer sequence (Fig. 1A). This system was

previously used to drive the expression of transgenic constructs in

proliferating chondrocytes [27,28,29]. Transgenic founders were

identified by the presence of the construct Tg(Col2a1-SHOX) using

Figure 2. Analysis of postnatal bone parameters of Col2a1-SHOX-transgenic mice. (A): Alcian Blue/Alizarin Red S staining at different
developmental (E14.5, E18.5) and postnatal (P28) stages does not reveal apparent differences between transgenic and wildtype skeletal elements. (B):
Postnatal in vivo time-course analysis of bone growth in 65 animals of two transgenic lines by m-CT analysis. Tibiae and femora of wildtype and
Tg(Col2a1-SHOX) littermates at the age of 4, 12 and 24 weeks were scanned, female and male individuals were evaluated separately. Total bone
length, cortical bone thickness and bone volume do not show significant differences between wildtype and transgenic females or males. Some
transgenic animals presented longer bones and weaker structures of the cortical bone in the subcartilaginous region (indicated in the m-CT images).
Other micromorphological parameters (bone mineral density (BMD), trabecular volume and thickness) showed no significant differences. Statistical
analyses were performed using student’s t-test. (C): hematoxilin and eosin (H&E) stainings of the growth plate in wildtype and transgenic tibiae.
Consistent differences between wildtype and Tg(Col2a1-SHOX) adult growth plates (24 weeks of age) did not exist (N = 8), but some transgenic tibiae
showed a buckling, and the columns of chondrocytes became shorter and were not strictly oriented in a parallel assembly compared to the wildtype
(right image).
doi:10.1371/journal.pone.0098543.g002

SHOX Target Genes in Transgenic Mice

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e98543



PCR and were mated with C57Bl/6 mice (Fig. 1B). Two

independent heterozygous transgenic lines were investigated in

more detail. Southern blot analysis using genomic DNA from

animals of the two transgenic lines showed a single integration

locus of the transgenic DNA (Fig. 1C). All transgenic animals were

viable and fertile, and the Tg(Col2a1-SHOX) allele was transmitted

according to Mendelian ratios.

Transgenic expression was analyzed by quantitative RT-PCR

and whole mount in situ hybridization (WISH), demonstrating that

Tg(Col2a1-SHOX) was expressed in the developing limbs (Fig. 1D–

E). The expression started from E11.5 onwards (Fig. 1E) with a

variable expression level among different transgenic mice.

Following the expression dynamics of the endogenous Col2a1,

Tg(Col2a1-SHOX) quantities were highest at around E12.5 and

gradually decreased during later stages of embryonic development

(Fig. 1D). The expression pattern of Tg(Col2a1-SHOX) at E12.5

resembled Col2a1 expression which is transcribed at high levels in

chondrogenic tissues [32] (Fig. 1E). During later embryonic stages

(e.g. E14.5), transgenic expression was confined to the region

around the developing cartilage including the perichondrium

(Fig. 1E). Thus, the detected expression pattern of the SHOX-

transgene was comparable to the endogenous SHOX expression

domains reported in the developing limbs of human and chick

embryos [33,34].

Analysis of skeletal parameters in Col2a1-SHOX-
transgenic mice

Transgenic animals showed no obvious difference compared to

their wildtype littermates. To investigate whether the Col2a1-

SHOX-transgene has an effect on embryonic cartilage and bone

development, E14.5 and E18.5 embryos were stained with Alcian

Blue/Alizarin Red S (Fig. 2A). The transgenic embryos were

indistinguishable from wildtype littermates at these stages,

indicating that bone formation was grossly normal. As some

phenotypic features in patients with SHOX deficiency (e.g.

Madelung deformity) are sometimes not detectable before the

onset of puberty [4], we also investigated the skeletal elements at

postnatal stage P28. Again, no striking phenotype was detected in

the transgenic animals (Fig. 2A).

To determine if bone length is increased in transgenic animals,

we measured the postnatal bone length in 65 animals of two

transgenic lines in vivo using micro-computed tomography (m-CT),

which enabled the analysis of different bone-specific parameters

simultaneously (Fig. 2B). Tibiae and femora of anaesthetized

wildtype and SHOX-transgenic mice were scanned in vivo in a time-

Figure 3. Regulated genes in transgenic mice and validation of
Ctgf as a target. (A): qRT-PCR using limb RNA (E12.5-E14.5) from
wildtype (Wt) and transgenic littermates (Tg) (N = 8–10 for each stage).
Measurements were carried out individually, in duplicates, and
normalized to Adam9 and Sdha. Relative normalized values are
presented on the y-axis. Significances are indicated in each diagram
by asterisks (*: p#0.05, **: p#0.01, ***: p#0.001). Variations are
indicated by the standard deviation (SD). In 7/8 candidates an
upregulation was confirmed as significant in at least one embryonic
stage. (B): nCounter analysis of CTGF and SHOX expression in NHDF and
U2OS cells after transient transfections of SHOX and p.Y141D. CTGF is
significantly downregulated in NHDF cells, whereas it is significantly
upregulated in U2OS cells. Values on y-axis represent absolute counts of
mRNA, normalized to ADAM9, HPRT1 and SDHA. Significancies are
indicated by asterisks. (C): In situ hybridization using a Ctgf antisense
riboprobe on embryonic limbs from wildtype and SHOX-transgenic
littermates (N = 8) at stage E12.5. In transgenic embryos, enhanced and
distalized expression of Ctgf was detected in the middle part of the
developing limbs.
doi:10.1371/journal.pone.0098543.g003
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course until 24 weeks of age. Data from female and male mice

were analyzed separately to eliminate gender-specific effects. Even

though we observed increases in bone length in some transgenic

animals, these were not significant (Student’s t-test). Significant

differences in bone volume and bone mineral density were not

found either, indicating that long bone development was largely

normal upon Tg(Col2a1-SHOX) expression. A statistically signifi-

cant decrease of the cortical bone thickness (CTh) was identified in

12 weeks old female transgenic mice, but not in males or at any

other time points. Since the assessment of the growth plate in

patients with LWD previously demonstrated a normal to

disorganized morphology including abnormal chondrocyte stack-

ing [17], we analyzed the femoral and tibial growth plate

morphology of transgenic and wildtype mice (24 weeks of age)

using hematoxylin and eosin (H&E), periodic acid-Schiff (PAS)

and Masson’s trichrome (MT) stainings. In some cases, a buckling

of the growth plate was observed, and the columns of chondro-

cytes became shorter and were not strictly oriented in a parallel

assembly (Fig 2C). However, these alterations were not consis-

tently found in all transgenic samples.

Target gene expression and microarray analyses in
Col2a1-SHOX-transgenic mice

We performed expression analysis of cartilage- and bone-

specific markers from E11.5 to E14.5 using whole mount in situ

hybridization (WISH) to identify whether limb specific markers

show aberrant expression in the Tg(Col2-SHOX) embryos (Fig.

S1A). We found that early genes such as Shh were not altered in

the transgenic embryos, indicating that limb initiation and limb

bud outgrowth were grossly normal. The expression of Col2a1,

Shox2, Runx2, Ihh as well as Col10a1 was similar in transgenic and

wildtype embryos, suggesting that chondrocyte proliferation and

maturation were largely unaffected. The expression levels of these

marker genes were also quantified by qRT-PCR, but no significant

differences in the amount of the respective transcripts could be

detected.

A regulatory effect of SHOX on FGFR3, AGC1 and NPPB (BNP)

was recently reported using human cell lines [20,24,26]. We

therefore analyzed whether the SHOX-transgene was able to alter

the expression of the mouse Fgfr3, Agc1 and Nppb genes. By using

reversely transcribed RNA from E12.5-E14.5 wildtype and

transgenic limbs, we detected no effect on Fgfr3, but an increasing

effect on Agc1 (in all three tested stages) and Nppb (at E13.5) (Fig.

S1B). The finding that Fgfr3 did not respond to SHOX-transgenic

expression in mouse is consistent with the fact that the relevant

SHOX-regulatory elements in the human FGFR3 promoter do not

exist in mouse, while they are present in Agc1 and Nppb.

The altered expression of two known SHOX target genes in

transgenic mice prompted us to perform microarray analyses of

wildtype and transgenic limb RNA. Prior to hybridization,

Tg(Col2a1-SHOX) expression was confirmed by qRT-PCR and

pooled whole limb RNA of either E12.5 wildtype or transgenic

littermates were hybridized to microarrays. Selection of differen-

tially regulated genes was carried out using a significant change of

expression in both experiments (log2f.0.2 or ,-0.2 and p,0.05).

According to these criteria, 189 genes (83%) were upregulated and

40 genes (17%) were downregulated, suggesting that the Col2a1-

driven SHOX-transgene mainly exerted activating effects. A

categorization of differentially expressed genes was performed by

gene ontology-based pathway analysis and the most significantly

regulated genes were identified in biological pathways associated

with either the extracellular matrix or skeletal muscle. The eight

most significantly upregulated candidate genes (Postn, Aspn, Ogn,

Isl1, Ctgf, Efemp1, Matn4, Mef2c) that were either known to be

involved in limb development, extracellular matrix or skeletal

muscle pathways are summarized on Table S1 in File S1. qRT-

PCR of the candidate genes was carried out using RNA from

wildtype and transgenic limbs of stages E12.5-E14.5. An increase

in expression of all candidate target genes including CTGF was

detected in the transgenic embryos (Fig. 3A).

To further confirm the regulatory effects of SHOX on these

genes, we carried out transient transfections of wildtype SHOX and

a SHOX mutant (Y141D) in human U2OS and NHDF cell lines

which have been previously used for the characterization of target

genes [20,24,26]. The p.Y141D variant was identified in two short

stature patients and functionally characterized as a defective

SHOX protein [10]. For subsequent expression analysis, we

applied the nCounter technology that allows direct RNA

quantification without reverse transcription into cDNA, resulting

in sensitive and reliable detection of mRNA expressed at low

abundance. Since the effect of SHOX on validated genes differed

between U2OS and NHDF cells, we concluded that the SHOX

transcriptional regulation is strongly cell type-dependent (Fig. S2).

Most strongly and significantly regulated was the chondrogenic

matrix gene CTGF, which showed a reduced expression upon

SHOX-transfections in NHDF and an increased expression in

U2OS cells (Fig. 3B). In situ hybridization of Ctgf on wildtype and

Tg(Col2a1-SHOX) embryonic limbs showed an increased and a

more distal expression in the transgenic limbs (Fig. 3C).

The connective tissue growth factor gene CTGF
represents a target of SHOX transactivating functions

Analyses of the SHOX-transgenic mouse and human cell lines

overexpressing SHOX have demonstrated a regulatory effect of

SHOX on Ctgf/CTGF expression. In addition, previous ChIP-Seq

Figure 4. Analysis of CTGF as a direct transcriptional target of SHOX. (A): Genomic structure of the human CTGF region. ChIP-Seq analysis in
ChMM cultures revealed an accumulation of Shox binding in the Ctgf promoter region (grey peaks), especially in a region 3–4 kb from the
transcriptional start site (TSS) where an evolutionary conserved sequence (ECR) of 597 bp (human chr6:132317086-132318077) was identified (green
bar). (B): Location of the pGL3 ECR and pGL3 ECR+ reporter constructs (grey bars) within the CTGF upstream region. The ECR+ construct encompasses
the ECR and an upstream region including ATTA/TAAT motifs and palindromes. SHOX binding motifs (ATTA/TAAT sites and palindromes) in the CTGF
59 region around the ECR are indicated by asterisks. Red bars represent the location of the generated oligonucleotides for EMSA. (C): Luciferase
reporter gene assays in NHDF and U2OS cells. pcDNA4/TO SHOX was cotransfected with a luciferase reporter vector harbouring either the ECR or the
ECR+ sequence. Transfections and measurements were carried out in triplicates. A significant activation in the luciferase activity was observed 24 h
after SHOX transfection in NHDF cells using both reporter constructs (1.7-fold/2.5-fold with p = 0.02/0.007 for ECR/ECR+). In U2OS cells, an alteration
was not observed for the ECR reporter, but a significant reduction was demonstrated for the ECR+ reporter construct (1.0-fold/2.8-fold with p = 0.1/
0.003 for ECR/ECR+). (D): EMSA. The SHOX wildtype (Wt) and the mutant p.R153L proteins bind to oligonucleotides 1 and 2, whereas the defective
proteins p.Y141D and p.A170P cannot. All fragments of oligonucleotides 1 and 2 containing an ATTA/TAAT site are sensitive to SHOX binding (1a–c,
2a–b). The fragment lacking this motif does not bind (oligonucleotide 2c). Using the SHOX-3 antibody (Ab), we demonstrate that the binding is
SHOX-specific. (E): Immunohistochemistry performed on pubertal tibial growth plates. Staining was performed using preimmune serum as a negative
control, SHOX antibody [19] and a CTGF-specific antibody. Both the SHOX and CTGF proteins were detected in growth plate chondrocytes.
doi:10.1371/journal.pone.0098543.g004
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data on chicken micromass cultures transduced with RCAS-Shox

[26] suggest Ctgf as a putative cell target of SHOX with several

binding sites identified within the 59 region of the gene.

Computational analyses of the human CTGF upstream region

(5 kb) identified more than 40 binding motifs of the ATTA/TAAT

type which have been reported to be the target sites of SHOX

[8,26]. Of these, eight motifs were arranged as palindromes.

Furthermore, the region with the highest ChIP-Seq reads in the

chicken Ctgf locus includes an ECR (evolutionary conserved

region) that is also present in the human CTGF upstream sequence

(Fig. 4A). To demonstrate that CTGF could be directly targeted by

SHOX, we performed luciferase reporter gene assays in NHDF

and U2OS cells. We used two constructs: the smaller one included

the human ECR sequence (ECR) and the larger construct

included the ECR as well as putative SHOX binding sites

(ECR+) (Fig. 4B). As shown in Fig. 4C, significant regulatory

effects of SHOX on the ECR+ reporter constructs were observed

in both NHDF and U2OS cell lines, whereas for the ECR reporter

construct a significant regulation could only be demonstrated in

NHDF cells. To confirm a direct binding of SHOX to the CTGF

upstream region, electrophoretic mobility shift assays (EMSA)

were carried out using two oligonucleotide sequences of the ECR+
construct (Oligo 1 and Oligo 2) encompassing the ATTA/TAAT

motifs (Fig. 4B). As controls, mutant SHOX proteins (p.Y141D,

p.R153L and p.A170P; previously detected in patients with short

stature) were used [10]. While the wildtype SHOX and p.R153L

proteins bound to the tested sequences, p.Y141D and p.A170P did

not (Fig. 4D). Further subdivision of oligonucleotides 1 and 2

narrowed down SHOX binding to all fragments where ATTA/

TAAT sites were present (Fig. 4B and 4D). To demonstrate

physiological relevance of these data, immunohistological staining

on sections from human pubertal growth plate specimen were

carried out. Using CTGF and SHOX specific antibodies,

coexpression was detected in hypertrophic chondrocytes (Fig. 4E).

Discussion

Generation and expression studies of Col2a1-SHOX-
transgenic mice

For a small number of human protein-coding genes, a mouse

ortholog does not exist [35]. One approach to learn more about

the biology of these human genes is to introduce them into mice.

We have generated transgenic mice that express the human SHOX

cDNA in embryonic limbs under the control of the murine Col2a1

promoter/enhancer. Expression of the SHOX-transgene was

detected between E12.5 and E14.5. Compared to Col2a1, a highly

abundant major structural component of the extracellular matrix,

the expression of the transcription factor SHOX was very weak and

differed between animals. The generation of a transgenic mouse

using a different promoter and/or enhancer may eventually yield

in higher SHOX expression levels. However, low expression levels

are characteristic for SHOX and have been found in all tissues and

cell lines tested [22], suggesting that SHOX functions do not rely

on high mRNA or protein abundance in the cell.

Analysis of skeletal parameters
Phenotypic analyses of the developing limbs in transgenic mice

did not reveal significant differences compared to wildtype (with

the exception of cortical thickness in female tibiae at 12 weeks and

almost significant differences in female femora). Thus, there may

be gender-specific effects in the transgenic mice during postnatal

growth, however, to address this question, more detailed

experiments would be necessary. Phenotypic clinical features have

been previously assessed in patients with isolated SHOX

deficiency and LWD [6], but not much data on cortical bone

structures, bone volume or mineral density is available. Patients

with Turner syndrome (45,X) suffer from a high fracture risk and

have reduced cortical bone structures and bone mineral density

[36], but whether this is due to reduced SHOX expression is not

known. Disorganization of the growth plate has been noted in

some of our SHOX-transgenic mice, but is not a consistent feature.

Disturbed growth plate morphology has been described in patients

with LWD [17], but no data is available on patients with

additional SHOX copies.

Gene expression and microarray analyses
To determine if the critical stages in endochondral ossification

were altered in the transgenic mice, we carried out expression

analysis of embryonic limb marker genes and could demonstrate

that expression of these genes remained intact. A key question also

concerned the extent to which the human gene is correctly read by

the mouse transcriptional machinery. We therefore tested

expression of all three known SHOX target genes [20,24,26]

and obtained elevated mean expression levels for Agc1 and Nbbp as

expected, probably due to the conserved SHOX-sensitive binding

sites in the Agc1 and Nppb enhancer and promoter regions, while

the human SHOX-sensitive binding sites in the Fgfr3 promoter do

not exist in mouse.

To further search for effects of the SHOX-transgene, we carried

out microarray analysis and identified many regulated genes

belonging to the extracellular matrix and skeletal muscle

pathways. It is interesting that several of these genes, including

Postn and Matn4, have been previously also identified as targets in

Shox2-deficient mice and thus may represent targets for both

SHOX and Shox2 [37]. The mouse Shox2 protein is 79%

identical to human SHOX and their 60 amino acid binding

domains (the homeodomain) are identical [33]. In situ analysis

have demonstrated a more proximal expression domain of the

SHOX paralog SHOX2 in human and also in chick embryonic

limbs [33,34], and conditional deletion of Shox2 in the developing

mouse limbs dramatically impairs the formation of the proximal

limb elements [38,39]. A substitution of the Shox2 locus by human

SHOX in mouse has demonstrated that SHOX is able to ameliorate

but not to fully rescue Shox2-deficient limb anomalies, suggesting

only partial functional redundancy [25].

We have selected eight putatively regulated genes (Postn, Aspn,

Ogn, Isl1, Ctgf, Efemp1, Matn4, Mef2c) for further analysis and could

demonstrate a significant deregulation in E12.5-E14.5 SHOX-

transgenic limbs compared to wildtype in seven of the eight genes.

To further validate these candidates, we also tested them in NHDF

and U2OS cells and 5/8 (NHDF) and 4/8 (U2OS) were shown to

be significantly regulated in these human cells. Taken together,

our data demonstrate that the identified target genes of Tg(Col2a1-

SHOX) are SHOX-specific and do not represent transgenic

artifacts. It is also reassuring that the human SHOX is expressed

in the appropriate stage- and cell-type specific manner in mouse

and we confirm previous data that SHOX can act both as an

activator and repressor of target genes in a cell-type specific

fashion [25,26].

CTGF represents a direct SHOX target gene
Quantitative analyses in mouse and human cells identified

CTGF/Ctgf as the most consistently regulated candidate target

gene. Enhanced and slightly distalized expression of Ctgf was also

seen at E12.5 (the stage of highest SHOX expression) in transgenic

mouse limbs using WISH. Further evidence for Ctgf as a target of

Shox was derived from ChIP-Seq data in chicken which identified

several Shox binding sites in the Ctgf upstream region. Multiple

SHOX Target Genes in Transgenic Mice
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SHOX binding motifs and an ECR were identified, and by

luciferase and EMSA experiments, we could show that the

extended ECR region (ECR+) is responsive to SHOX in human

cells. The finding that the CTGF mRNA was either down- (NHDF)

or upregulated (U2OS) indicates a complex transcriptional

regulation. The remarkable accumulation of Shox-mediated reads

(respective binding sites) identified in the chicken Ctgf upstream

region using ChIP-Seq (Fig. 4A) suggests that additional response

elements outside the ECR may also be sensitive to SHOX, and

these, together with a spatio-temporal composition of cofactors,

may contribute to the fine regulation of CTGF expression in a

given cellular environment. Physiological relevance of the SHOX-

Ctgf/CTGF relationship is suggested by the coexpression of both,

SHOX and CTGF proteins in hypertrophic chondrocytes of the

human growth plates.

According to its expression pattern, SHOX deficiency results in

shortening and deformation of radii/ulnae and tibiae/fibulae.

Comparable to SHOX deficiency, the skeletal defects in Ctgf null

mice are also specific for radii/ulnae and tibiae/fibulae and not for

the proximal elements of the limbs [40]. Interestingly, the

phenotypes of SHOX- as well as Ctgf-transgenic mice [41] are less

severe than the loss-of-function phenotypes and strongly depen-

dent on the expression level of the transgenes. Even though Ctgf-

transgenic mice show more stigmata than SHOX-transgenic

individuals, phenotypic differences were reported only at postnatal

stages and also include cortical thickness and Agc1 expression [41].

Since Agc1 has been found to be reduced in Ctgf mutant mice [40]

and to be regulated by SHOX in human cells [20], the

demonstrated regulation may be indirect and mediated through

Ctgf. This is also supported by our finding that the response of

CTGF is an immediate consequence following SHOX overexpres-

sion, whereas the regulation of AGC1 occurs at a later time point

(Fig. S2). Ctgf null mice suffer from multiple defects, such as failure

in growth plate chondrogenesis, angiogenesis, extracellular matrix

production and bone formation/mineralization [40]. A role of

SHOX during angiogenesis has been speculated, since Shox

expression was detected in the vasculature of the developing

chicken limbs [34]. However, a contribution of SHOX in other

CTGF-associated conditions such as fibrotic disease, inflammation

and cancer [42,43,44] is not known.

In summary, we have established a transgenic mouse model

expressing SHOX under the control of the Col2a1 promoter and

enhancer. By combining data from mouse and chicken micromass

cultures and human cell culture experiments, we could identify

activating or repressing effects of SHOX on target genes,

depending on spatio-temporal conditions and cell types. We have

also demonstrated a direct regulatory effect on CTGF which may

take place in the hypertrophic zone of the human growth plate.

We have shown a direct binding of the SHOX protein to a highly

conserved upstream region of the CTGF gene, identified by ChIP-

Seq, resulting in regulatory effects in reporter gene assays in

human cell lines. Since CTGF is involved in various biological

processes, the effect of SHOX on CTGF expression in these

different processes can now be investigated.

Supporting Information

Figure S1 Marker and target gene analysis during embryonic

development. (A): WISH of limb marker genes from E11.5 to

E14.5. At E11.5, when Tg(Col2a1-SHOX) expression was first

detected in the developing limb, limb buds in transgenic animals

were indistinguishable from the wildtype. Expression of the Shh

morphogen as a marker gene during limb initiation and outgrowth

was normal. Also at E12.5 when Tg(Col2a1-SHOX) is most

prominently expressed, chondrocyte proliferation in the transgenic

animals appeared normal, as represented by Col2a1 expression

comparable to the wildtype. Also, the SHOX-homologue Shox2 and

its downstream gene Runx2 were normally expressed in SHOX-

transgenic animals at E12.5. Runx2 is known to regulate

chondrocyte maturation and Ihh expression, which was also

unaffected in Tg(Col2a1-SHOX) limbs at E13.5. Following

chondrocyte proliferation at E14.5 in both wildtype and transgenic

embryos, a specific Col10a1 pattern is detected which defines

chondrocyte hypertrophy. (B): Quantitative RT-PCR on embry-

onic limb RNA of stages E12.5–E14.5 using primers for the

SHOX target genes Fgfr3, Agc1 and Nppb. cDNA of wildtype and

transgenic littermates of each stage (N = 8–12) were measured

individually and in duplicates. Measurements were normalized to

Adam9 and Sdha; values on y-axis represent relative normalized

expression. The expression of Fgfr3 was unaltered in transgenic

limbs. Mean Agc1 expression was increased during E12.5 and

E13.5, a trend which did, however not reach significance (E12.5:

2.0-fold, p = 0.068; E13.5: 2.6-fold, p = 0.092; E14.5: 1.3-fold,

p = 0.377). Nppb expression levels were weakly increased at E13.5

(1.7-fold, p = 0.104).

(TIF)

Figure S2 nCounter analysis of eight selected candidate genes in

NHDF and U2OS cells. RNA was isolated 6 h, 12 h and 24 h

after transfection of expression constructs for SHOX, SHOX

Y141D (a defective SHOX variant (1)) and a control (pCDNA4).

Measurements were carried out in triplicates and normalized to

ADAM9, HPRT1 and SDHA. As a control, SHOX expression upon

its target gene AGC1 was analyzed. Upon strong increase of SHOX,

AGC1 was significantly activated 12 hours after SHOX-tranfection.

Values on y-axis represent absolute counts of mRNA. Significan-

cies of the SHOX-transfected samples are indicated in each

diagram by asterisks. *: p#0.05, **: p#0.01, ***: p#0.001.

(TIF)

File S1 Contains Table S1, Genes, gene characterization, fold

regulation and p-values of eight selected upregulated genes in the

microarray. Table S2, Primers, Probes and Oligonucleotides.

(DOC)
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