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Abstract. Epilepsy affects 1 in 150 children under the age 
of 10 and is the most common chronic pediatric neurological 
condition; poor seizure control can irreversibly disrupt 
normal brain development. The present study compared the 
ability of different machine learning algorithms trained with 
resting‑state functional MRI (rfMRI) latency data to detect 
epilepsy. Preoperative rfMRI and anatomical MRI scans 
were obtained for 63 patients with epilepsy and 259 healthy 
controls. The normal distribution of latency z‑scores from 
the epilepsy and healthy control cohorts were analyzed for 
overlap in 36 seed regions. In these seed regions, overlap 
between the study cohorts ranged from 0.44‑0.58. Machine 
learning features were extracted from latency z‑score maps 
using principal component analysis. Extreme Gradient 
Boosting (XGBoost), Support Vector Machines (SVM), 
and Random Forest algorithms were trained with these 
features. Area under the receiver operating characteristics 
curve (AUC), accuracy, sensitivity, specificity and F1‑scores 

were used to evaluate model performance. The XGBoost 
model outperformed all other models with a test AUC of 
0.79, accuracy of 74%, specificity of 73%, and a sensitivity 
of 77%. The Random Forest model performed comparably to 
XGBoost across multiple metrics, but it had a test sensitivity 
of 31%. The SVM model did not perform >70% in any of the 
test metrics. The XGBoost model had the highest sensitivity 
and accuracy for the detection of epilepsy. Development of 
machine learning algorithms trained with rfMRI latency 
data could provide an adjunctive method for the diagnosis 
and evaluation of epilepsy with the goal of enabling timely 
and appropriate care for patients.

Introduction

Epilepsy affects 1 in 150 children under the age of 10 and is 
the most common chronic pediatric neurological condition (1). 
Unfortunately, antiepileptic drugs alone fail in 1/3 of these 
children (2,3). Severe developmental delay from alterations 
in brain network development results from poorly controlled 
epilepsy (4,5). Early, accurate diagnosis of epilepsy to address 
these irreversible developmental impacts is a top research 
priority for two large international forums (6,7). Current 
paradigms suggest referral to university centers if the epilepsy 
becomes drug resistant, that is continued seizures despite a 
trial of two medications (2). Unfortunately, there is a mean 
19‑20 year time from seizure onset to epilepsy surgery referral 
for eligible patients to these centers, partly due to a difficulty 
in accurate identification of epilepsy, especially without an 
obvious lesion or generalized motor component (7‑9). Both 
international forums proposed referral paradigm changes 
either at initial diagnosis or after the first anti‑epileptic drug 
fails (6,7). If adopted, this paradigm change could be quite 
costly as several children will achieve seizure freedom with 
one medication (10). Therefore, early and accurate diagnosis 
is absolutely necessary to prevent over or underdiagnosis of 
epilepsy, particularly in non‑lesional or partial seizure cases.
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Resting‑state functional MRI (rfMRI) has been evaluated 
as a potential non‑invasive method to aid in the diagnosis of 
epilepsy (11). RfMRI sequences are obtained concurrently 
with anatomic MRI, as part of the standard epilepsy workup 
at certain centers. Consequently, there is no increased cost or 
need for additional procedures. However, concurrent rfMRI 
acquisition is currently not part of the standard of care (12,13). 
The blood‑oxygen‑level dependent (BOLD) signal acquired at 
rest in rfMRI is associated with resting metabolic neuronal 
activity (14). As such, resting‑state networks (RSNs) can be 
constructed from the rfMRI signal using temporal latency 
analysis (15,16). Disturbances in RSNs are thought to be 
associated with epilepsy (17‑19).

Several other techniques can also be used to construct 
RSNs. Broadly, they can be divided into two categories: 
Hypothesis‑driven and data‑driven methods. Hypothesis‑driven 
methods, such as seed‑based functional connectivity, correlate 
the BOLD signal obtained from the region of interest (ROI) 
with voxels throughout the brain to construct the RSN (14). 
Alternatively, data‑driven methods, such as independent 
component analysis (ICA), do not require ROIs to construct 
RSNs (20). Previous studies have shown that ICA‑generated 
RSNs can be used to analyze epilepsy networks (21‑23). 
However, ICA is extremely time consuming, as each compo‑
nent map must be individually inspected and categorized, thus 
decreasing the potential ease and utility of this method.

As a result, rfMRI latency analysis, a novel data‑driven 
method of RSN construction, has continued to gain popularity 
in the field. RfMRI latency analysis correlates the timing of 
the global mean BOLD signal with the BOLD signal in voxels 
throughout the brain. This allows for the characterization of 
multiple brain networks by linking areas based on differences 
in their BOLD signal timing relative to the global mean BOLD 
signal (15,16). In our previous studies it has been shown that 
areas with significantly early or late BOLD signal timing 
compared to the global mean BOLD signal correlate with 
epilepsy lateralization, and this can be used to accurately 
lateralize temporal lobe and extratemporal lobe pediatric 
epilepsy (11,24). However, this method of thresholding rfMRI 
latency z‑scores was unable to explain laterality in every case.

Machine learning has become a popular technique to 
explore complex relationships in data (25‑27). Supervised 
machine learning algorithms, such as Support Vector 
Machines (SVM), Random Forest and Extreme Gradient 
Boosting (XGBoost), use inputs (x) to define the relationship 
[f(x)] between said input and an output (y) (28,29). Algorithms 
then apply the learned relationship to predict outputs from 
new inputs. For example, SVM creates linear hyperplanes, 
or the most optimal decision boundary, in feature space to 
separate class categories of interest. SVM utilizes kernels to 
transform a non‑linearly separable input feature space into 
higher dimensions enabling the linear separation of the input 
data (22). On the other hand, Random Forest and XGBoost 
are ensemble algorithms that classify examples by voting on 
multiple decision trees created by bagging or boosting, respec‑
tively (30,31). Boosting is a method where later iterations of 
the machine learning model improve upon errors made in 
prior models. Bagging combines predictions from several 
machine learning models to increase model accuracy. In both 
cases, weak learners, or decision trees that correctly predict 

an average of 50% of cases, are combined. The majority deci‑
sion from the combined decision trees is then used to make 
the final prediction. Models generated from multiple weak 
learners as described, create stronger learners that can make 
more accurate predictions from complex datasets (32).

The aim of the present study was to compare the perfor‑
mance of SVM, Random Forest, and XGBoost machine 
learning classifier algorithms trained with novel rfMRI 
latency data to distinguish children with epilepsy from healthy 
controls.

Materials and methods

Data source and study population. RfMRI and anatomical 
MRI were obtained following University of Texas at 
Houston Institutional Review Board (IRB) approval for an 
anonymized retrospective review of 78 patients with refrac‑
tory extratemporal epilepsy from a prospectively registered 
clinical database from the Washington University School of 
Medicine/St. Louis Children's Hospital (SLCH, n=73) and 
McGovern Medical School at UTHealth/Children's Memorial 
Hermann Hospital (CMHH, n=5) between September 2006 
and September 2018. RfMRI and anatomical MRI were 
obtained for 585 healthy control patients with IRB approval 
from the multi‑institutional ADHD 200 dataset of the 1000 
Functional Connectomes Project, International Neuroimaging 
Data‑Sharing Initiative hosted by the Neuroimaging Tools and 
Resources Collaboratory (33).

Informed consent was obtained as required by each data‑
base and institution for each subject. Informed consent was 
provided by the patients' caregivers or by capable patients aged 
>18 years old for the 78 prospectively registered patients with 
refractory epilepsy at SLCH and CMHH. Informed consent 
for healthy control patients were obtained by each study site 
in the ADHD dataset (34). The imaging parameters for each 
scanner used to obtain rfMRI data at each of the participating 
institutions are shown in Table SI.

Patients with refractory epilepsy analyzed in the present 
study were referred to SLCH or CMHH for evaluation of 
surgical management. Inclusion criteria required a diagnosis 
of refractory epilepsy as determined by multidisciplinary 
epilepsy conference at either SLCH or CMHH and available 
structural and rfMRI. Patients who did not meet these require‑
ments or whose rfMRI data did not pass quality control were 
excluded. Quality control consisted of visual inspection of 
pre‑processed rfMRI data. Poorly registered rfMRI to stan‑
dard atlas volumetric sequences were excluded. In the rfMRI 
processing section below, further explanations are provided. 
After application of these criteria, the final study population 
included 322 subjects. A total of 63 patients with refractory 
epilepsy were included (age range, 4‑25 years; median age, 
17 years old; 41 males and 22 females). A total of 259 healthy 
controls were included in this study (age range, 7‑26 years; 
median age, 10 years old; 25 males and 134 females). Analysis 
of baseline characteristics of each cohort was performed. A 
two‑tailed Mann‑Whitney U test was used to compare the 
mean age of subjects within each cohort (epilepsy, n=63; 
healthy controls, n=259; α=0.05). A χ2 test of independence 
was used to evaluate for an association between sex and 
epilepsy (epilepsy, n=63; healthy control, n=259; α=0.05).
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RfMRI processing. MRI data was processed using the 
Washington University in St. Louis (Wustl) 4dfpSuite Linux 
scripts developed by the Washington University School of 
Medicine Neuroimaging Laboratory, as described previ‑
ously (11). Briefly, the BOLD signal sequences of the healthy 
controls and patients with epilepsy were registered to standard 
atlas volumetric sequences. Images were processed with 
spatial smoothing using a Gaussian kernel of 6 mm full 
width half‑maximum, temporal low‑pass filtering >0.1 Hz, 
regression of nuisance waveforms and zero‑meaning of 
each voxel time course. Frames with excessive motion were 
excluded from analysis (16). Latency maps for patients in both 
the healthy control and epilepsy groups were generated by 
computing a voxel‑wise lagged cross‑covariance function. Lag 
or latency, is the value at which the absolute cross‑covariance 
function displays extremum between the processed rfMRI 
BOLD signal and the whole‑brain mean signal from parabolic 
interpolation (16). The normal distributions of the epilepsy 
and healthy control average latency maps were analyzed for 
overlap in 36 seed regions (35,36).

Feature engineering. Healthy control and epilepsy latency 
z‑score maps were created by voxel‑wise z‑score calcula‑
tion using whole‑brain healthy control mean and standard 
deviation latency maps as well as Fslmaths in the FSL suite 
version 6.0 (11,37). Principal component analysis (PCA) 
was performed to create features to train the machine 
learning algorithms. Observations or features in PCA were 
orthogonally transformed into linearly uncorrelated prin‑
cipal components (PCs) that represented the variability of 
the training dataset. PCA was performed in order to reduce 
the dimensions of the original feature space, in an attempt 
to mitigate ‘the curse of dimensionality’, which states that 
the predictive power of a classifier initially increases with 
the use of more dimensions, but at some point, it begins to 
decrease (38). In the PCA transformations used in the present 
study, the original 47,950 non‑zero voxel high‑dimensional 
feature space was reduced to 118 PCs, which explained 80% 
of the variance, and 80% explanation of the variance was 
chosen, with 118 principal components (PCs), to balance 
adequately reducing the dimensions of the feature space, 
whilst also maintaining enough features to allow for effec‑
tive model classification of epilepsy from healthy controls. 
The high‑dimensional voxel feature space for the training 
dataset containing both epilepsy and healthy controls was 
transformed with PCA using the parameters stated above. 
The same transformation was then also applied to the valida‑
tion and test datasets to generate comparable datasets with 
118 PCs for the models to evaluate.

XGBoost training, validation and testing data partitioning. 
All epilepsy patient disease labels were defined by a 
consensus at multidisciplinary pediatric epilepsy confer‑
ences. Healthy individuals' labels were determined by each 
participating institution in the ADHD 200 dataset (34). 
The data was randomized and stratified using a random 
seed to create a reproducible pseudorandomized dataset 
with a constant ratio of patients with epilepsy and control 
individuals. The data was partitioned into train, validation 
and test datasets at a standard ratio of 60:20:20 with Python 

3.6.3 sklearn.model_selection (version 0.20.3, scikit‑learn.
org/stable/modules/cross_validation.html#cross‑validation) 
train_test_split function. R (version 3.5.0), e1071 (version 1.6‑8), 
randomForest (version 4.6‑14) and xgboost (version 0.71.2) 
libraries were used for SVM, Random Forest, and XGBoost 
algorithms, respectively (30,31,39‑41). The training data 
features and labels were used to train SVM, Random Forest 
and XGBoost algorithms.

Hyperparameter optimization. Hyperparameters for SVM, 
Random Forest and XGBoost were optimized to increase 
performance accuracy, area under the receiver operating char‑
acteristics (ROC) curve (AUC), specificity and F1‑score. Grid 
searching was used to minimize overfitting of  the models. 
Hyperparameters affected training, model creation, model 
performance and generalizability. Each hyperparameter was 
explored at a range and step size to assess model performance 
in a grid‑wise manner within a multidimensional hyperparam‑
eter space as shown in Tables I‑III for SVM, Random Forest 
and XGBoost algorithms, respectively. Optimal hyperparam‑
eters were chosen based on overall model performance using 
validation data. Then, SVM, Random Forest and XGBoost 
models with optimal hyperparameters were evaluated with 
unseen test data to assess model generalizability.

Performance metrics. In the present study, the positive class 
represents subjects with epilepsy and the negative class repre‑
sents the healthy controls. Mean accuracy, AUC, specificity 
and F1‑score were used to evaluate models and each metric 
carried equal weight. F1‑score was the harmonic mean 
between precision and recall (sensitivity). A model with a high 
F1‑score has both good positive predictive power (precision) 
and good true positive rate (sensitivity or recall) (42). The 
F1 score was calculated as follows: F1 score=2x[(precision x 
recall)/precision + recall)]. The model with the highest mean 
value was then used to decide the optimal model overall, after 
evaluation with the validation dataset.

Model selection. Algorithm hyperparameters were tuned 
by evaluating trained models with validation data. For each 
algorithm (SVM, Random Forest and XGBoost), the model 
with the highest accuracy, AUC, specificity and F1‑score 
determined by the mean was then evaluated with unseen test 
data. Models with a specificity or sensitivity of zero were 
eliminated. In addition to performance, the generalizability of 
each model was evaluated with the final unseen test data by 
taking the absolute value of the difference between test and 
validation accuracy, AUC, sensitivity, specificity and F1‑score. 
After evaluating models with validation data, the following 
SVM, Random Forest and XGBoost model hyperparameter 
settings were selected for evaluation with test data: SVM: 
γ=1, Cost=0.01, Kernel=Sigmoid; Random Forest: Mtry=12, 
Ntree=5.0; XGBoost: ETA=0.61, Max Depth=2.0, γ=1.0, 
Minimum Child Weight=4.0, Nround=11.0.

Results

The final study population (n=322) included 63 patients with 
epilepsy and 259 healthy controls. Baseline characteristics and 
cohort analysis are shown in Table IV. Briefly, the epilepsy 
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cohort (n=63; age range, 4‑25 years; 41 males and 22 females) 
consisted of significantly more males than females (P=0.017) 
with a sex ratio of 1.86 males‑to‑females. The epilepsy cohort 
was also significantly older  than  the healthy controls with 
a mean age of 14.5 years with a standard deviation of 6.0 
(P<0.00001). The healthy control cohort (n=259; age range, 
7‑26 years; 125 males and 134 females) included slightly more 
females than males with a sex ratio of 0.93 males‑to‑females. 
The healthy control cohort was significantly younger than the 
epilepsy cohort with a mean age of 10.7 years and a standard 
deviation of 2.6 (P<0.00001).

Explained variance for PCs ranged from 4.18% (PC no. 1) 
to 0.32% (PC no. 118) with a mean and median explained 
variance of 0.69 and 0.52% as shown in Fig. 1.

Validation results for each model are presented in Table V. 
Final test performance and generalizability analyses of the 
best model from each algorithm are presented in Table VI. 
The absolute difference between the test‑validation results for 
each model are also presented in Table VI. Lower absolute 
difference values are desired as they represent less variation 
between model test and validation results and thus, less over‑
fitting and improved model generalizability. ROC curves were 

created for each algorithm using test data, and AUC values 
were calculated as shown in Fig. 2.

XGBoost demonstrated superior performance compared to 
all the other models tested. XGBoost correctly classified 74% 
of patients with epilepsy and healthy controls. Importantly, 
the XGBoost model was sensitive (77%) with a good AUC 
(0.79), which are both desired characteristics of a screening 
diagnostic method. XGBoost also outperformed all other tested 
models in three of the five performance metrics (AUC, sensi‑
tivity and F1‑score), whereas the Random Forest algorithm 
performed the best in the remaining two performance metrics 
(accuracy and specificity). Furthermore, XGBoost‑PCA had 
the greatest generalizability, as demonstrated by the smallest 
absolute test‑validation performance difference for both 
AUC and F1‑score. Random Forest performed well, correctly 
predicting 77% of patients with a good AUC (0.73). However, 
the model's performance may be primarily attributed to the 
correct prediction of control individuals (specificity=88%) 
as the model poorly predicted patients with epilepsy (sensi‑
tivity=31%), which was reflected in a poor mean score of all 
five metrics. Whilst SVM and Random Forest models were 
both specific, they were not sensitive, and thus are less effective 

Table I. Description of the Support Vector Machine algorithm hyperparameters and ranges.

Hyperparameter  Definition  Significance/usefulness  Grid search range

Kernel Computes the dot product in Kernel function allows low‑cost Linear, radial basis function,
 the feature space using vectors operations in the original feature polynomial, and sigmoid
 from the original space. space without computing the
  coordinates of the data in a higher
  dimension space.
γ  Distance of influence a single   For high or low γ, training points 0.1, 1, 10 and 100
 training point has on a kernel. closer or further from the decision
  boundary are weighted, respectively.
    Improved fitting of the decision
  boundary to training cases increases
  model generalizability.
Cost ‘C’‑constant of regularization  Controls the trade‑off between 0.1, 1, 10, 100 and 1,000
  term from the Lagrange  misclassifications and margin width. 
  formulation (53).  Simplified decision boundary for
  low or high cost to improve point
    classification.

Table II. Description of the Random Forest algorithm hyperparameters and ranges.

Hyperparameter  Definition  Significance/usefulness  Grid search range

Mtry Number of variables available The predictor variable/feature 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
 for splitting at each tree node importance estimates are and 15
  affected by mtry.
Ntree Number of trees to be grown Number of trees affects model 1, 5, 10, 100, 500, 1,000, 1,500, 2,000
 in the model variance. Increasing ntree and 2,500
  increases performance and
  computation cost.
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diagnostic screening tools. The XGBoost model was both sensi‑
tive and specific making it the best model for this application.

Discussion

At present, ~1 in 150 children under the age of 10 will be diag‑
nosed with epilepsy (1). One‑third of pediatric patients with 
epilepsy are refractory to treatment with anticonvulsant therapy 
alone (2). Several of these patients may benefit from additional 
evaluation at comprehensive epilepsy centers where appro‑
priate treatments can be further explored. Specifically, surgical 
intervention has demonstrated higher rates of seizure freedom 
and improved cognitive and developmental outcomes when 
performed early in appropriate patients (8,43,44). Unfortunately, 
patients experience a two‑decade delay between seizure onset 
and surgical intervention on average, underlining the need for 
earlier comprehensive epilepsy evaluation for patients with 
epilepsy (45,46). Delays in diagnosis and effective treatment of 
epilepsy place patients at risk of poor development and sudden 
death from uncontrolled epilepsy (47,48). Whilst several factors 

may contribute to the referral delay for specialized epilepsy 
care, the lack of diagnostic methods for early, accurate iden‑
tification of any kind of epilepsy is a major contributor (6,7). 
This is especially true in nonconvulsive epilepsy. In the present 
study, the performance of SVM, Random Forest and XGBoost 
machine learning algorithms trained with novel rfMRI latency 
data were evaluated as a classifier to distinguish children with 
epilepsy from healthy controls.

Previous studies have shown that rfMRI data is correlated 
with seizure foci laterality and localization (11,21,23,24). 
Recent machine learning studies demonstrated successful 
classification of patients with  temporal  lobe epilepsy from 
healthy controls, that rfMRI data could be used to improve 
preoperative planning prior to surgical intervention (21,22). 
The present study used rfMRI latency analysis, a novel method 
for RSN construction and analysis, and machine learning to 
create models that can differentiate children with epilepsy 
from healthy controls. RfMRI latency analysis has been shown 
to be correlate with seizure foci laterality, and rfMRI latency 
analysis has been used to classify epilepsy (11,49).

Table III. Description of the Extreme Gradient Boosting algorithm hyperparameters and ranges.

Hyperparameter  Definition  Significance/usefulness  Grid search range

ETA ETA is the shrinkage of the ETA prevents the model from From 0.01 to 1 at a step
  learning rate at each step  overfitting by scaling contribution  size of 0.01
  of each tree.
Max Depth Maximum depth of each tree Max depth affects the complexity 1, 2, 3, 4 and 5
    of each tree and the overfitting of
    the model. Deeper trees can overfit
  the data.
Minimum Child The minimum weight required Adjusting the value can prevent 1, 2, 3, 4 and 5
Weight  in order to create a new node  overfitting and reduce the model
 in each tree complexity.
γ Minimum loss reduction required  Increasing γ causes the model to be 1, 2, 3, 4 and 5
 to create a further partition on a more conservative.
 tree's leaf node
Nround The number of training rounds Increasing Nrounds can reduce Varies depending on
 within the model biases and variance in a model. model error/loss and
   200 Nround early
   stopping

ETA, estimated time of arrival (also known as the learning rate in R user documentation for XGBoost).

Table IV. Baseline characteristics of the study population and cohort analysis.

 Refractory epilepsy cohort Healthy control cohort P‑value

Cohort size, n (%) 63 (19.6) 259 (80.4)
Males, n (%) 41 (65.1) 125 (48.3) 0.017a

Female, n (%) 22 (34.9) 134 (51.7)
Median age (interquartile range) 17 (8) 10 (3) <0.00001b

aP≤0.05, bP<0.0001.
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Recently, an SVM model trained with RSN data obtained 
from ICA of rfMRI data was able to accurately (97.52%) clas‑
sify temporal lobe epilepsy with high sensitivity (100%) and 
specificity (94.4%), but extratemporal epilepsy  is  far more 
challenging to classify and treat (11,21). This study also used 
visual inspection and selection of independent components 
for RSN construction, which differs from the novel method 
of constructing RSNs with rfMRI latency analysis used in 
the present study. The present study demonstrated that RSN 
trained machine learning algorithms can be used to classify 
epilepsy in an automated manner using a novel, objective and 
efficient method of RSN construction that has not yet been 
demonstrated in the literature to the best of our knowledge.

One aspect of the present study that limited further analysis 
was the method of feature engineering. PCA transformed the 
rfMRI latency z‑score data into 118 PCs that represent the 
variance in the training data. However, the use of PC features 
also prevented analysis of specific pathologies for relevant 
image features. It was unable to reconstruct the original 
rfMRI latency z‑score spatial data and assign weighting for 
PC features from the trained XGBoost model. In previous 
attempts, models trained with the original rfMRI latency voxel 
z‑scores as features did not achieve >50% sensitivity (data not 

shown). Therefore, PCA was chosen to create a reduced dimen‑
sion feature space for model training despite these drawbacks. 
It is hypothesized that the poor performance of the original 
feature space vs. the PC feature space was due to the relatively 
small dataset (n=322) compared to the large input features for 
training the machine learning algorithms (n=47,950).

The primary limitation of the present study was the small 
amount of training data available at the time of analysis. In 
future studies, the use of larger training datasets will improve 
model performance and decrease overfitting, thereby increasing 
model generalizability (50). The rfMRI data used for analysis 
was obtained from multiple institutions, using different 
imaging protocols. However, other publicly accessible healthy 
rfMRI datasets (ABIDE I and II) could potentially be used to 
increase the size of the dataset (51,52). Specifics of the imaging 
parameters used by each scanner to obtain data in the present 
study are listed in Table SI. The use of different scanner 
parameters in rfMRI latency data collection could affect 
model performance, but this also accounts for normal variance 
present at each institution if this method were to be used to 
assist in the identification of pediatric epilepsy. Nevertheless, 
to attempt to mitigate these biases, similar imaging parameters 
will be used in future studies for all subjects, and the total 

Figure 1. Explained variance of principal component analysis on the training datasets in both patients with epilepsy and healthy controls.
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study population will be increased. In addition, the limitation 
of the size of the training data affected our ability to age and 
sex match epilepsy and healthy control cohorts. Additional 
patients in the healthy control cohort were not eliminated, as 
it was theorized that it could affect the ability of the models 
to train when based on a limited dataset. This could affect 
the features the models use to classify images (such as subtle 
age and sex brain image differences vs. epilepsy specific 
image differences). Additionally, the relatively small sample of 
patients with epilepsy compared with the control individuals 
could affect how PCA captured the variance in the epilepsy 

group. However, in the present study PCA was able to capture 
the variance in the epilepsy cases as both sensitivity and 
specificity were comparable in the XGBoost model's perfor‑
mance on the test data. However, this was not the case in both 
Random Forest and SVM, possibly indicating the superiority 
of XGBoost at detecting more subtle differences in the vari‑
ance of the PC features between epilepsy and control groups. 
The potential effects of age, sex and the previously discussed 
scanner parameters is difficult to assess, and with additional 
epilepsy and healthy control individuals these potential affects 
will be mitigated in future studies.

The present study is also limited to binary classification 
(healthy vs. epilepsy) due to the small sample size and limited 
representation of rare classification groups in multi‑class appli‑
cations. With additional varied epilepsy rfMRI data, these 
data distribution effects can be mitigated, and models can 
be developed to predict epilepsy subgroups (such as surgical 
outcome and pathological etiology, amongst others), seizure 
foci lateralization and, ultimately, seizure foci localization.

Refractory epilepsy patient and healthy individuals' data 
were included in the present study. It was possible to classify 
these two groups using the Random Forest, SVM and XGBoost 
models, but it is difficult to assess the ability of these models to 
classify the diverse spectrum of epilepsy conditions (including 
non‑refractory and temporal epilepsy) from healthy individuals.

In future studies, the use of other machine learning 
algorithms that will allow for further examination of rfMRI 
latency, such as semantic segmentation with CNNs will be 
assessed, which could allow for voxel‑wise classification and 
epileptogenic seizure foci localization. In addition, additional 
epilepsy data are being collected to expand classification to 
subgroup analysis and to include non‑refractory and temporal 
epilepsy, with the aim of improving generalizability of the 
constructed models.

In conclusion, in the present study it was demonstrated 
that rfMRI latency analysis and machine learning algorithms 

Figure 2. Receiver operating characteristic curves for the best SVM, Random 
Forest and XGBoost models obtained using test data. XGBoost models are 
shown in red. SVM models are shown in blue. Random Forest models are shown 
in green. ROC, receiver operating characteristic; AUC, area under the ROC 
curve SVM, Support Vector Machine; XGBoost, Extreme Gradient Boosting.

Table V. Validation results from the best SVM, Random Forest and XGBoost models.

Model  AUC  Accuracy  Sensitivity  Specificity  F1‑Score

SVM 0.72 0.75 0.58 0.79 0.46
Random Forest 0.86 0.84 0.33 0.96 0.44
XGBoost 0.81 0.84 0.67 0.88 0.62

SVM, Support Vector Machine; XGBoost, Extreme Gradient Boosting; AUC, area under the receiver operating characteristics curve.

Table VI. Test results for the best SVM, Random Forest and XGBoost modelsa.

Model  AUC  Accuracy  Sensitivity  Specificity  F1‑Score

SVM 0.66 (0.06) 0.62 (0.13) 0.38 (0.20) 0.67 (0.12) 0.23 (0.18)
Random Forest 0.73 (0.13) 0.77 (0.07) 0.31 (0.03) 0.88 (0.08) 0.34 (0.10)
XGBoost 0.79 (0.02) 0.74 (0.11) 0.77 (0.10) 0.73 (0.15) 0.54 (0.07)

aThe absolute difference of test‑validation results for each metric are shown in parentheses. SVM, Support Vector Machine; XGBoost, Extreme 
Gradient Boosting; AUC, area under the receiver operating characteristics curve.
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could be used to identify patients with epilepsy. The XGBoost 
machine learning model trained with rfMRI latency z‑score 
PC features was better able to distinguish pediatric patients 
with epilepsy from healthy controls compared with identically 
trained Random Forest and SVM models. The high sensitivity 
of the XGBoost test model presented in this study is encour‑
aging. Additional studies with multi‑institutional neurological 
imaging datasets are required to further clarify the value of 
the machine learning and rfMRI latency in the diagnosis 
and evaluation of pediatric epilepsy as well as its potential to 
decrease morbidity and improve prognostication within this 
patient population.
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