
Editorial

Image guided ablation

Xinrui Zhang1 and Andreas Melzer2,3

Ablation refers to the local application of optical,
acoustic or electrical energy and cold as to induce irre-
versible cell injury, apoptosis and coagulative necrosis
of tissues. By contrast to surgical excision, ablation is a
minimally invasive treatment option, whereby the
scarified tissue remains in situ and is being absorbed
over several months and transformed to a scar.
Clinical use of ablation encompasses the treatment of
various tumors, including liver, lung, kidney, pancreat-
ic, head and neck cancer and bone metastasis.
Additionally, neurological disorders, particularly
essential tremor and Parkinson’s disease, can be treated
by ablation of brain tissue or neuronal structures.1

Relatively novel is the use electrical energy in a certain
pattern that induces cell apoptosis without coagulation,
referred to irreversible electroporation (IRE), see Rui
Chen et al. in this issue of SMJ. In order to decide
which kind of local cell destruction is useful and can
be applied safely a thorough understanding of the
underlying principles is essential. In addition, it is
required to use an appropriate imaging technology to
monitor and control the process of tissue destruction.

The process of energy-induced cell/tissue destruction
consists of two phases through direct and indirect
mechanisms. The direct damage of cells occurs rapidly
after exposure of the target tissue to high temperature,
alteration of the cell membrane, dysfunction of mito-
chondrial and inhibition of DNA replication. Changes
of cell membrane fluidity and permeability are consid-
ered as the major cause of cell injury, leading to dys-
function of actin filaments and microtubules and
impairment of facilitated diffusion across the cell mem-
brane.2 Mitochondria are affected by high temperature,
increasing leakage of protons through the inner mito-
chondrial membrane and changing the ultrastructure in
minutes.3 Besides the changes in cellular level, heat-
induced denaturation of key replication enzymes
DNA polymerase a and b, which is responsible for
semiconservative DNA replication and DNA repair
synthesis respectively, thereby inhibiting DNA replica-
tion.4 Denaturation of polymerase substrate chroma-
tin, abnormal condensation of non-histone nuclear
matrix proteins, disruption of RNA synthesis and the
release of lysosomal enzymes are believed the mecha-
nisms of heat-mediated reproductive cell death.

The indirect mechanism occurs via several mecha-

nisms, including induction of apoptosis, the release of

cytokines and stimulation of immune response.

Apoptosis is increased in the peripheral zone of the

central ablated lesion, which undergoes coagulative

necrosis. Expression of essential apoptotic protein

p53 was upregulated and bcl-2 was downregulated in

human liver cancer tissues after ablation treatment.5

Release of pro-inflammatory cytokines such as inter-

leukin-1b (IL-1b), IL-6, IL-8, IL-18 and tumor necrosis

factor-a (TNF-a) increase in several hours to days after

ablation maximize the anti-tumor response.6 Heat

shock proteins (HSPs) are a large family of stress-

induced proteins and play a key role in cell survival

and development. Recently, HSP70 attracts interest in

research and is concerned as a biomarker and potential

anti-tumor targets. Preclinical and clinical evidences

indicate that the upregulation of HSP70 expression

may stimulate anti-tumor immunity by inducing vari-

ous immunological processes and regulation of multi-

ple pathways including stress-activated kinases

pathway JNK, extracellular signal-regulated kinases

ERK and cell cycle inhibitor p21.7,8

Energy transmitted into target tumor lesion and

induces local tumor destruction. According to the

energy sources, the clinical techniques can be catego-

rized as radiofrequency ablation (RFA), microwave

ablation (MWA), laser ablation (LA), irreversible elec-

troporation (IRE) and high-intensity focused ultra-

sound (HIFU/FUS). Each of the technologies shows

strengths and weaknesses in the ablation of various

tissues and organs.
Radiofrequency ablation (RFA) is the most accept-

ed modality for tumor ablation using an electromag-

netic energy source with frequencies at 200–1200Hz
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1000-5000 Volt for generation of heat.9 One or more
radiofrequency electrodes can be placed by open sur-
gery, laparoscopic surgery or percutaneously, under the
guidance of ultrasound, computed tomography (CT) or
magnetic resonance imaging (MRI). RFA is considered
a feasible option for treatment of unresectable tumors
like primary hepato-cellular carcinoma other malig-
nancies and metastatic lesions. RFA has proven to
show a lower complication rate compared to surgical
excision.10 However, due to the delivery of heat, the
heating zone is limited to a few millimeters surrounding
the active electrode with the risk that tissue may
become dehydrated and dessicated during treatment.
The heat-sink effect is a well-known limitation of
RFA, describes the phenomena when heat is absorbed
by blood flow, dissipating the thermal effect and reduce
treatment efficiency.11 Immune responses is induced
after RFA, increasing tumor cell recognition and
tumor-specific T cells, thereby supporting tumor-free
survival of the patients.

The mechanism of MWA is similar to RFA, cause
rotation of water molecules in cells, induce frictional
heating and consequently cause coagulative necrosis.
MWA applicator (antenna) delivers electromagnetic
microwaves above 900MHz and has emerged as an
alternative method to RFA.9 In comparison to RFA,
MWA generates a larger heating area (up to 2 cm away
from antenna) and higher temperatures with shorter
treatment duration, the tissue penetration is more uni-
form and heat-sink effect is less relevant.12 From the
biological perspective, WMA stimulates local inflam-
mation and anti-tumor immunity to a lesser extend
compared to other ablation techniques.13

LASER is another option for thermal ablation. It
transports high energy light through a small flexible
optical fiber (diameter 0.2–0.8mm) into organs. The
light absorbed by tissue is converted into heat. LA is
superior to RFA and WMA in precision and treatment
efficiency. Laser probes have the advantages of MR-
compatibility, allowing for non-invasive MR-imaging
guidance and temperature monitoring via MR-ther-
mometry.14 Nevertheless, the limited ablation area (1–
2 cm2) and accurate placement of laser applicators in
tumor are the main challenges.

The term irreversible electroporation (IRE) describes
the permeabilization of the lipid plasma membrane
with high external direct and alternate current (DC/
AC) pulsed electric fields.15 The initial formation of
pore on cell membrane reversible, increasing the
uptake of drug or plasmid DNA when sufficient level
of energy is applied, the changes of membrane perme-
ability are permanent and irreversible.16 Different from
the other ablative techniques, IRE is a relatively new
technique with non-thermal cell destruction mecha-
nism, regards as an alternative for the tissues which

are not suitable for thermal ablation, especially in car-
diology. Only cell membrane is affected by IRE, regen-

eration of blood vessels and bile ducts post-treatment is
possible. The first study of IRE on human was pub-

lished in 2011 for ablation of liver tumor, clinical trials
of IRE ablation for treatment of prostate and pancreas
cancer are undergoing.17 IRE also demonstrates good

potential to overcome the thermal-related limitations
and can be used to support chemotherapy, but the opti-
mal physical parameters to obtain tissue-specific death

remain unclear.
HIFU/FUS is an access free ablation technique and

has got regulatory approval for ablation of uterine fib-
roids, prostate cancer, bone metastasis and treatment

of essential tremor. Single or multi-element ultrasound
transducer are positioned outside the body, ultrasound
beams travel to the focus zone and generate heat in

the target region. The temperature in the target can
be elevated to 60–85�C in seconds, the tumor with

large volume is treated by scanning the focal zone
through the entire tumor in clinic.18 Treatment plan-
ning and real-time visualization can be realized with

ultrasound-imaging or MRI. HIFU/FUS is feasible
for both thermal and mechanical ablation because the
application of acoustic waves at high energy can cause

acoustic cavitation and temporarily generate pore on
cell membrane (so-called sonoporation).19 The air or

bones in the acoustic field may lead to scatter or
absorption of acoustic interface and consequently
result in incomplete destruction.

Image guidance and imaging follow-up post-ablation is
essential for assessment of treatment outcomes. Various

imaging modalities like B-mode sonography, contrast-
enhanced US, MRI, PET-CT are available for rapid visu-
alization and calculation of ablated area.20,21 The stiffness

of ablated tissue is crucial and correlated with pathologic
changes. Shear-wave elastography (SWE) is a reliable

solution to display the stiffness of tissue after ablation
with RFA,22 MWA, LA,23 IRE21 and HIFU ablation24

qualitatively and quantitatively. Sailev et al. reported the

potential of targeted manipulation of apoptotic pathways
by using high Intensity focused ultrasound for cancer
treatment.25 Cheng et al. describe in this issues of SJM

the use of SWE to visualize IRE generated lesions in an
VX2 tumour animal model. According to their findings

SWEprovides tissue stiffness information of different IRE
ablation satges as a non-invasive method. SWE has
already shown a great potential for detection prostatic

lesion (Nabi et al.)26 In combination with energetic tissue
destruction itmay allow to combine diagnosis and therapy
in a “one stop shop”.
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