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Abstract

Gene regulatory circuits drive the development, physiology, and behavior of organisms from bacteria to humans. The
phenotypes or functions of such circuits are embodied in the gene expression patterns they form. Regulatory circuits are
typically multifunctional, forming distinct gene expression patterns in different embryonic stages, tissues, or physiological
states. Any one circuit with a single function can be realized by many different regulatory genotypes. Multifunctionality
presumably constrains this number, but we do not know to what extent. We here exhaustively characterize a genotype
space harboring millions of model regulatory circuits and all their possible functions. As a circuit’s number of functions
increases, the number of genotypes with a given number of functions decreases exponentially but can remain very large for
a modest number of functions. However, the sets of circuits that can form any one set of functions becomes increasingly
fragmented. As a result, historical contingency becomes widespread in circuits with many functions. Whether a circuit can
acquire an additional function in the course of its evolution becomes increasingly dependent on the function it already has.
Circuits with many functions also become increasingly brittle and sensitive to mutation. These observations are generic
properties of a broad class of circuits and independent of any one circuit genotype or phenotype.
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Editor: Réka Albert, Pennsylvania State University, United States of America

Received December 14, 2012; Accepted April 9, 2013; Published June 6, 2013

Copyright: � 2013 Payne, Wagner. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Burroughs Wellcome Fund, the National Science Foundation, the Swiss National Science Foundation, the YeastX project of
SystemsX.ch, and the University Priority Research Program in Systems Biology at the University of Zurich. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: andreas.wagner@ieu.uzh.ch

Introduction

Gene regulatory circuits are at the heart of many fundamental

biological processes, ranging from developmental patterning in

multicellular organisms [1] to chemotaxis in bacteria [2].

Regulatory circuits are usually multifunctional. This means that

they can form different metastable gene expression states under

different physiological conditions, in different tissues, or in

different stages of embryonic development. The segment polarity

network of Drosophila melanogaster offers an example, where the

same regulatory circuit affects several developmental processes,

including embryonic segmentation and the development of the

fly’s wing [3]. Similarly, in the vertebrate neural tube, a single

circuit is responsible for interpreting a morphogen gradient to

produce three spatially distinct ventral progenitor domains [4].

Other notable examples include the bistable competence control

circuit of Bacillus subtilis [5] and the lysis-lysogeny switch of

bacteriophage lambda [6]. Multifunctional regulatory circuits are

also relevant to synthetic biology, where artificial oscillators [7],

toggle switches [8], and logic gates [9] are engineered to control

biological processes.

The functions of gene regulatory circuits are embodied in their

gene expression patterns. An important property of natural

circuits, and a design goal of synthetic circuits, is that these

patterns should be robust to perturbations. Such perturbations

include nongenetic perturbations, such as stochastic fluctuations in

protein concentrations and environmental change. Much attention

has focused on understanding [1,2,4,10,11] and engineering [12–

14] circuits that are robust to nongenetic perturbations. Equally

important is the robustness of circuit functions to genetic

perturbations, such as those caused by point mutation or

recombination. Multiple studies have asked what renders biolog-

ical circuitry robust to such genetic changes [15–20]. With few

exceptions [21,22], these studies have focused on circuits with one

function, embodied in their gene expression pattern. Such

monofunctional circuits tend to have several properties. First,

many circuits exist that have the same gene expression pattern

[17–19,23–28]. Second, these circuits can vary greatly in their

robustness [16,18,29]. And third, they can often be reached from

one another via a series of function-preserving mutational events

[18,19,30]. Taken together, these observations suggest that the

robustness of the many circuits with a given regulatory function

can be tuned via incremental mutational change.

Most circuits have multiple functions, but how these observa-

tions translate to such multifunctional circuits is largely unknown.

In a given space of possible circuits, how many circuits exist that

have a given number of k specific functions (expression patterns)?

What is the relationship between this number of functions and the

robustness of each function? Do circuits with any combination of

functions exist, or are some combinations ‘‘prohibited?’’ Pertinent

earlier work showed that there are indeed fewer multifunctional

circuits than monofunctional circuits [21], but this investigation
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had two main limitations. First, it considered circuits so large that

the space of circuits and their functions could not be exhaustively

explored, and restricted itself to mostly bifunctional circuits.

Second, it included only topological circuit variants (i.e., who

interacts with whom), and ignored variations in the signal-

integration logic of cis-regulatory regions. These regions encode

regulatory programs, which specify the input-output mapping of

regulatory signals (input) to gene expression pattern (output) [31–

33]. Variations in cis-regulatory regions [34], such as mutations

that change the spacing between transcription factor binding sites

[35], are known to impact circuit function [36,37], and their

inclusion in a computational model of regulatory circuits is thus

important.

Here, we overcome these limitations by focusing on regulatory

circuits that are sufficiently small that an entire space of circuits

can be exhaustively explored. Specifically, we focus on circuits that

comprise only three genes and all possible regulatory interactions

between them. Small circuits like this play an important role in

some biological processes. Examples include the kaiABC gene

cluster in Cyanobacteria, which is responsible for circadian

oscillations [38], the gap gene system in Dropsophila, which is

responsible for the interpretation of morphogen gradients during

embryogenesis [19], and the krox-otx-gatae feedback loop in starfish,

which is necessary for endoderm specification [39]. Additionally,

theoretical studies of small regulatory circuits have provided

several general insights into the features of circuit design and

function. Examples include biochemical adaptation in feedback

loops [40] and response delays in feed-forward loops [41], among

others [16,19,23,42–45]. Lastly, there is a substantial body of

evidence suggesting that small regulatory circuits form the building

blocks of larger regulatory networks [34,46–48], further warrant-

ing their study.

For two reasons, we chose Boolean logic circuits [49] as our

modeling framework. First, they allow us not only to vary circuit

topology [45], but also a circuit’s all-important signal-integration

logic [44]. Second, Boolean circuits have been successful in

explaining properties of biological circuits. For example, they have

been used to explain the dynamics of gene expression in the

segment polarity genes of Drosophila melanogaster [50], the develop-

ment of primordial floral organ cells of Arabidopsis thaliana [51],

gene expression cascades after gene knockout in Saccharomyces

cerevisiae [52], and the temporal and spatial expression dynamics of

the genes responsible for endomesoderm specification in the sea

urchin embryo [53]. We consider a specific gene expression

pattern as the function of a circuit like this, because it is this

pattern that ultimately drives embryonic pattern formation and

physiological processes. Multifunctional circuits are circuits with

multiple gene expression patterns, and here we study the

constraints that multifunctionality imposes on the robustness and

other properties of regulatory circuits. The questions we ask

include the following: (i) How many circuits have a given number k

of functions? (ii) What is the relationship between multifunction-

ality and robustness to genetic perturbation? (iii) Are some

multifunctional circuits more robust than others? (iv) Is it possible

to change one multifunctional circuit into another through a series

of small genetic changes that do not jeopardize circuit function?

Results

The model
We consider circuits of N~3 genes (Fig. 1A). We choose a

compact representation of a circuit’s genotype G that allows us to

represent both a circuit’s signal-integration logic and its architec-

ture by a single binary vector of length L~N|2N (Fig. 1B).

Changes to this vector can be caused by mutations in the cis-

regulatory regions of DNA. Such mutations may alter the binding

affinity of a transcription factor to its binding site, thereby creating

or removing a regulatory interaction [34]. Alternatively, they may

affect the distance of a transcription factor binding site from the

transcription start site, changing its rotational position on the DNA

helix. In turn, this may alter the regulatory effect of the

transcription factor [54], and change the downstream gene’s

signal-integration logic. Lastly, such mutations may change the

distance between adjacent transcription factor binding sites,

enabling or disabling a functional interaction between proximally

bound transcription factors [35]. We note that mutations in G

could also be conceptualized as changes in the DNA binding

domain of a transcription factor. However, evolutionary evidence

from microbes suggest that alterations in the structure and logic of

regulatory circuits occurs preferentially via changes in cis-

regulatory regions, rather than via changes in the transcription

factors that bind these regions [55].

The dynamics of the expression states of a circuit’s N genes

begin with a prespecified initial state S0, which represents

regulatory influences outside or upstream of the circuit, such as

transcription factors that are not part of the circuit but can

influence its expression state. The initial state reflects the fact that

small circuits are typically embedded in larger regulatory networks

[34,46–48], which provide the circuit with different regulatory

inputs under different environmental or tissue-specific conditions.

Through the regulatory interactions specified in the circuit’s

genotype, the circuit’s gene expression state changes from this

initial state, until it may reach a stable (i.e., fixed-point) equilibrium

state S?. We consider a circuit’s function to be a mapping from an

initial expression state to an equilibrium expression state

F~(S0,S?) (Fig. 1C). In the main text, we consider only circuit

functions that involve fixed point equilibria, but we consider

periodic equilibrium states in the Supporting Online Material. A

circuit could in principle have as many as 2N functions

F (1) . . . F (k), as long as the initial expression states are all different

from one another, and the equilibrium expression states are all

different from one another (Material and Methods). The circuits

we study may map multiple initial states to the same equilibrium

state, but our definition of function ignores all but one of these

Author Summary

Many essential biological processes, ranging from embry-
onic patterning to circadian rhythms, are driven by gene
regulatory circuits, which comprise small sets of genes that
turn each other on or off to form a distinct pattern of gene
expression. Gene regulatory circuits often have multiple
functions. This means that they can form different gene
expression patterns at different times or in different
tissues. We know little about multifunctional gene regu-
latory circuits. For example, we do not know how
multifunctionality constrains the evolution of such circuits,
how many circuits exist that have a given number of
functions, and whether tradeoffs exist between multi-
functionality and the robustness of a circuit to mutation.
Because it is not currently possible to answer these
questions experimentally, we use a computational model
to exhaustively enumerate millions of regulatory circuits
and all their possible functions, thereby providing the first
comprehensive study of multifunctionality in model
regulatory circuits. Our results highlight limits of circuit
designability that are relevant to both systems biologists
and synthetic biologists.
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initial states. While a definition of function that includes many-to-

one mappings between initial and equilibrium states can be

biologically sensible, our intent is to investigate specific pairs of

inputs (i.e., S0) and outputs (i.e., S?), as is typical for circuits in

development and physiology [56–58]. We emphasize that a circuit

can express its k functions individually, or in various combinations,

such that the same circuit could be said to have between one and k

functions. For brevity, we refer to a specific set of k functions as a

multifunction or a k-function and to circuits that have at least one

function as viable.

The space of circuits we explore here contains

2L~224~16,777,216 possible genotypes. We exhaustively deter-

mine the equilibrium expression states of each genotype for all 23

initial states, thereby providing a complete genotype-to-phenoty-

pe(function) map. We use this map to partition the space of

genotypes into genotype networks [17–19,21]. A genotype

network consists of a single connected set of genotypes (circuits)

that have identical functions F (1) . . . F (k), and where two circuits

are connected neighbors if their corresponding genotypes differ by

a single element (Fig. 1D). Note that such single mutations may

correspond to larger mutational changes in the cis-regulatory

regions of DNA. For example, mutations that change the distance

between binding sites, or between a binding site and a

transcription start site, may involve the addition or deletion of

large segments of DNA [26,59–62].

Multifunctionality constrains the number of viable
circuits

We first asked how the number of genotypes that have k

functions depends on k. Fig. 2 shows that this number decreases

exponentially, implying that multifunctionality constrains the

number of viable genotypes severely. For instance, increasing k

from 1 to 2 decreases the number of viable genotypes by 34%;

further increasing k from 2 to 3 leads to an additional 39%

decrease. However, there is always at least one genotype with a

given number k of functions, for any kƒ2N . In other words, even

in these small circuits, multiple genotypes exist that have many

functions.

Thus far, we have determined the number of genotypes with a

given number k of functions, but we did not distinguish between

the actual functions that these genotypes can have. For example,

there are 64 variants of k~1 function, since there are 23 potential

initial states and 23 potential equilibrium states (23|23~64).

Analogously, simple combinatorics (Text S1) shows that there are

1204 variants of k~2 functions, and the number of variants

increases dramatically with greater k, up to a maximum of 14,630
variants of k~4 functions. This is possible because individual

functions can occur in different possible combinations in

multifunctional circuits (Material and Methods). The solid line in

the inset of Fig. 2 indicates how this number of possible different

functions scales with k. We next asked whether there exist circuits

Figure 1. Schematic illustration of the Boolean model of gene regulatory circuits. (A) A Boolean circuit with N~3 genes (a,b,c), which are
represented as open circles. Two genes are connected by a directed edge a?b if the expression of gene b is regulated by the product of gene a.
Gene expression is binary, such that genes are either expressed (1) or not (0). The signal-integration logic of each gene is shown as a lookup table that
explicitly maps all 2N possible input expression states to an output expression state, implicitly determining the circuit’s topology. In the hypothetical
circuit shown, the expression state of gene a is independent of the expression state of gene b, so b?a is a non-existing regulatory interaction (gray
arrow), whereas c?a and a?a are both existing regulatory interactions (black arrows). (B) The wiring diagram and signal-integration logic of the
entire circuit can be represented by a single vector G that is constructed by concatenating the rightmost columns of the lookup tables of the
individual genes in panel (A). The vector G corresponds to the circuit’s genotype. (C) The circuit in (A) maps all of the 23~8 possible initial states S0

(gray brackets) onto two distinct stable equilibrium expression states S? (black brackets). This circuit therefore can have up to k~2 functions, and
can express such a ‘‘bifunction’’ in 6|2~12 different ways, since 6 initial states map to one equilibrium expression state and the other 2 initial states
map to another equilibrium expression state. (D) In a genotype network, vertices represent circuits and two vertices share an edge if the genotypes G
differ by a single element, yet have the same functions. Here, the genotype network corresponds to circuits with the bifunction
F (1) : (S0,0,0T.S0,1,0T), F (2) : (S0,1,1T.S0,0,1T). For visual clarity, each circle only shows the first 8 binary digits of G, which represent the
signal-integration logic of gene a. Note how changes in G may implicitly translate to changes in circuit topology.
doi:10.1371/journal.pcbi.1003071.g001
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(genotypes) for each of these possible combinations of functions, or

whether some multifunctions are prohibited. The open circles in

the inset of Fig. 2 show the answer: These circles lie exactly on the

solid line that indicates the number of possible combinations of

functions for each value of k (Text S1). This means that no

multifunction is prohibited. In other words, even though multi-

functionality constrains the number of viable genotypes, there is

always at least one genotype with k functions, and in any possible

combination.

A trade-off between multifunctionality and robustness
As gene regulatory circuits are often involved in crucial

biological processes, their functions should be robust to perturba-

tion. We therefore asked whether the constraints imposed by

multifunctionality also impact the robustness of circuits and their

functions. In studying robustness, we differentiate between the

robustness of a genotype (circuit) and the robustness of a k-

function. We assess the robustness of a genotype as the proportion

of all possible single-mutants that have the same k-function, and

the robustness of a k-function as the average robustness of all

genotypes with that k-function [17,18,51,63] (Material and

Methods). We refer to the collection of genotypes with a given k-

function as a genotype set, which may comprise one or more

genotype networks. We emphasize that a genotype may be part of

several different genotype sets, because genotypes typically have

more than one k-function.

Fig. 3A shows that the robustness of a k-function decreases

approximately linearly as k increases, indicating a trade-off

between multifunctionality and robustness. However, some degree

of robustness is maintained so long as kv4. For larger k, some

functions exist that have zero robustness (Text S1), that is, none of

the circuits with these functions can tolerate a change in their

regulatory genotype. The inset of Fig. 3A reveals a similar inverse

relationship between the size of a genotype set and the number of

functions k, implying that multifunctions become increasingly less

‘‘designable’’ [64] — fewer circuits have them — as k increases

(Text S1). For example, for as few as k~4 functions, the genotype

set may comprise a single genotype, reducing the corresponding

robustness of the k-function to zero. For each value of k, the

maximum proportion of genotypes with a given k-function is equal

to the square of the maximum proportion of genotypes with a

(k{1) function, explaining the triangular shape of the data in the

inset. This triangular shape indicates that the genotype set of a

given k-function is always smaller than the union of the k

constituent genotypes sets. Additionally, we find that the

robustness of a k-function and the size of its genotype set are

strongly correlated (Fig. S1), indicating that the genotypes of larger

genotype sets are, on average, more robust than those of smaller

genotype sets. This result is not trivial because the structure of a

genotype set may change with its size. For example, large genotype

sets may comprise many isolated genotypes, or their genotype

networks might be structured as long linear chains. In either case,

the robustness of a k-function would decrease as the size of its

genotype set increased.

We have so far focused on the properties of the genotype sets of

k-functions, but have not considered the properties of the genotype

networks that make up these sets. Therefore, we next asked how

genotypic robustness varies across the genotype networks of k-

functions. In Figs. 3B–D, we show the distributions of genotypic

robustness for representative genotype networks with 2ƒkƒ4
functions. These distributions highlight the inherent variability in

genotypic robustness that is present in the genotype networks of

multifunctions, indicating that genotypic robustness is an evolvable

property of multifunctional circuits. Indeed, in Fig. S2, we show

the results of random walks on these genotype networks, which

confirm that it is almost always possible to increase genotypic

robustness through a series of mutational steps that preserve the k-

function. In Fig. S3, we show in which dynamic regimes (Material

and Methods) the circuits in these same genotype networks lie.

Multifunctionality leads to genotype set fragmentation
We have shown that the genotype set of any k-function is non-

empty (Fig. 2), meaning that there are no ‘‘prohibited’’ k-functions.

We now ask how the genotypes with a given k-function are

organized in genotype space. More specifically, is it possible to

connect any two circuits with the same k-function through a

sequence of small genotypic changes where each change in the

sequence preserves this k-function? In other words, are all

genotypes with a given k-function part of the same genotype

network, or do such genotypes occur on multiple disconnected

genotype networks?

Fig. 4 shows the relationship between the number of genotype

networks in a genotype set and the number of circuit functions k.

For monofunctional circuits (k~1), the genotype set always

consists of a single, connected genotype network. This implies that

any genotype in the genotype set can be reached from any other

via a series of function-preserving mutational events. In contrast,

for circuits with 2ƒkƒ6 functions, the genotype set often

fragments into several isolated genotype networks, indicating that

some regions of the genotype set cannot be reached from some

others without jeopardizing circuit function. The most extreme

fragmentation occurs for k~3 functions, where some genotype

sets break up into more than 20 isolated genotype networks. Fig.

S4 provides a schematic illustration of how fragmentation can

occur in a k-function’s genotype set, despite the fact that the

genotype sets of the k constituent monofunctions consist of

genotype networks that are themselves connected. Fig. S5 provides

a concrete example of fragmentation, depicting one genotype from

each of the several genotype networks of a bifunction’s genotype

set.

Figure 2. Multifunctional regulatory circuits. Each data point
depicts the proportion and number of genotypes with k functions. The
data include all k-functions. The line is provided as a visual guide. Note
that there are more circuits with k~1 function than with k~0
functions, implying that a randomly selected circuit is more likely to be
viable than not. Also note that any circuit with k functions will be
included in the count of the number of circuits with between 1 and
k{1 functions. The inset shows the number of observed combinations
of functions (open circles) and the total number of possible
combinations (solid line) of k functions. Note the logarithmic scale of
all y-axes.
doi:10.1371/journal.pcbi.1003071.g002
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The proportion of k-functions with genotype sets that comprise

a single genotype network is shown in the inset of Fig. 4. This

proportion decreases dramatically as the number of functions

increases from k~1 to k~3, such that only 16% of genotype sets

comprise a single genotype network when k~3. Figs. 4B–D show

that the distributions of the number of genotype networks per

genotype set are typically left-skewed. This implies that when

fragmentation occurs, the genotype set usually fragments into only

a few genotype networks. However, the distribution of genotype

network sizes across all genotype sets is heavy-tailed and often

spans several orders of magnitude (Fig. S6). This means that the

number of genotypes per genotype network is highly variable.

We next ask whether the number of genotypes in the genotype

set of a k-function can be predicted from the number of genotypes

in the genotype sets of the k constituent monofunctions. To address

this question, we define the fractional size of a genotype set as the

number of genotypes in the set, divided by the number of

genotypes in genotype space. We first observe that the maximum

fractional size of a genotype set of a k-function is equal to 2{kN

(Fig. S6), which is the maximum fractional size of a genotype set

for monofunctional circuits [44] raised to the kth power. In

general, we find that the fractional size of a genotype set of a k-

function can be approximated with reasonable accuracy by the

product of the fractional sizes of the genotype sets of the k

constituent monofunctions, but that the accuracy of this approx-

imation decreases as k increases (Fig. S7). While these fractional

genotype set sizes may be quite small, we note that their absolute

sizes are still fairly large, even in the tiny circuits considered here.

For example, for k~2 functions the maximum genotype set size is

262,144. For k~3 functions, the maximum is 32,768.

Genotype set fragmentation may lead to historical
contingency

In evolution, a circuit may acquire a new regulatory function

while preserving its pre-existing functions. An example is the

highly-conserved hedgehog regulatory circuit, which patterns the

insect wing blade. In butterflies, this regulatory circuit has

acquired a new function. It helps form the wing’s eyespots, an

antipredatory adaptation that arose after the insect body plan [65].

This example illustrates that a regulatory circuit may acquire

additional functions incrementally via gradual genetic change. The

order in which the mutations leading to a new function arise and

go to fixation can have a profound impact upon the evolution of

such phenotypes [66]. In particular, early mutations have the

potential to influence the phenotypic effects of later mutations,

which can lead to a phenomenon known as historical contingency.

We next ask whether it is possible for a circuit to incrementally

evolve regulatory functions in any order, or whether this

evolutionary process is susceptible to historical contingency. In

other words, is it possible that some sequence of genetic changes

that lead a circuit to have k functions also preclude it from gaining

an additional function? The genotype space framework allows us

to address this question in a systematic way, because it permits us

to see contingency as a result of genotype set fragmentation.

Specifically, contingency means that, as a result of fragmentation,

the genotype network of a new function may become inaccessible

Figure 3. Robustness and multifunctionality. (A) The robustness of a k-function is shown in relation to the number of functions k. Each data
point corresponds to the genotype set of a specific combination of k functions. The data include all k-functions. The solid line depicts the average
robustness of a k-function. The inset shows the proportion and number of genotypes in the genotype set of a k-function, as a function of k. Note the
logarithmic scale of the y-axes. (B–D) Distributions of genotypic robustness for (B) k~2, (C) k~3, and (D) k~4. For each k, we show data for a single
genotype network.
doi:10.1371/journal.pcbi.1003071.g003
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from at least one of the genotype networks of a k-function’s

genotype set. To ask whether this occurs in our model regulatory

circuits, we considered all k! permutations of every k-function.

These permutations reflect every possible order in which a circuit

may acquire a specific combination of k functions through a

sequence of genetic changes. To determine the frequency with

which historical contingency occurs, we calculate the number of

genotype networks per genotype set, as the k functions are

incrementally added. This procedure is outlined in Fig. S4 and

detailed in the Material and Methods section. We note that

historical contingency is not possible when k~2 because all

monofunctions comprise genotype sets with a single connected

genotype network. Historical contingency is also not possible when

k~8, because there is only one genotype that yields this

combination (Fig. 2).

In Fig. 5, we show the relationship between the proportion of k-

functions that exhibit historical contingency and the number of

functions k. For as few as k~3 functions, 43% of all k-functions

exhibit historical contingency. This percentage is highest for k~6,

where 94% of combinations are contingent. The inset of Fig. 5

shows the proportion of the k! permutations of a k-function in

which genotype set fragmentation may preclude the evolution of

the k-function. Again, this proportion is highest for k~6 functions.

These results highlight an additional constraint of multifunction-

ality. Not only does the number of genotypes with k functions

decrease as k increases, but the dependence upon the temporal

order in which these functions evolve tends to increase.

In the Supporting Online Material, we repeat the above

calculations to show how our results scale to equilibrium

expression states with period Pw1 (For the sake of computational

tractability, we restrict our attention to the case where all

equilibrium expression states have the same period P). We show

Figure 4. Genotype set fragmentation. (A) Each data point shows the number of genotype networks in the genotype set of a specific k-function.
The data include all k-functions. The solid line depicts the average number of genotype networks per k-function. The inset shows the proportion of
genotype sets that comprise a single genotype network, as a function of k. (B–D) The distributions of the number of genotype networks per
genotype set for (B) k~2, (C) k~3, and (D) k~4.
doi:10.1371/journal.pcbi.1003071.g004

Figure 5. Historical contingency in multifunctional regulatory
circuits. Each data point shows the proportion of combinations of k
functions that exhibit contingency, as a function of k. The line is
provided as a visual guide. The inset shows the average proportion of
the k! permutations of each combination of k functions that exhibit
contingency. Error bars denote one standard deviation.
doi:10.1371/journal.pcbi.1003071.g005
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that the exponential decrease in the number of circuits with k

functions also holds for periodic equilibrium expression states, but

that the maximum number of functions per circuit decreases with

increasing P (Fig. S8). So long as Pƒ4, it is possible for a circuit to

have more than one function. In this case, the inverse relationship

between robustness to genetic perturbation and the number of

functions k also holds (Fig. S9). Similarly, the results pertaining to

genotype set fragmentation hold so long as Pv4 (Fig. S10). Lastly,

the results pertaining to historical contingency only hold when

Pƒ2. This is because it is not possible for a circuit with an

equilibrium expression pattern of period Pw2 to have more than

k~2 functions, which is a prerequisite for historical contingency

(Material and Methods). Taken together, these additional obser-

vations show that the results obtained for fixed-point equilibrium

expression states can also apply to periodic equilibrium expression

states, so long as P is not too large.

Discussion

We have used a Boolean model of gene regulatory circuits to

exhaustively characterize the functions of all possible combinations

of circuit topologies and signal-integration functions in three-gene

circuits. The most basic question we have addressed is whether

multifunctionality is easy or difficult to attain in regulatory circuits.

Our results show that while the number of circuits with k functions

decreases sharply as k increases, there are generally thousands of

circuits with k functions, so long as k is not exceedingly large. Thus,

multifunctionality is relatively easy to attain, even in the tiny

circuits examined here.

It is worth considering how this result might translate to larger

circuits. In a related model of gene regulatory circuits with N~6
genes, the genotype sets of bifunctions comprised an average of

1:96|107 circuits [21], which is over an order of magnitude more

circuits per bifunction than observed here (Fig. 3, inset). For a

greater number of functions k, we expect the number of circuits

per k-function to increase as the number of genes N in the

regulatory circuit increases. This is because the maximum number

of circuits with a given k-function is 2N2N

=2kN , which is the total

number of circuits with N genes (2N2N

) multiplied by the maximum

proportion of circuits per multifunction (2{kN ). For a given

number of functions k, this quotient will increase hyper-exponen-

tially as N increases, indicating a dramatic increase in the

maximum number of circuits per k-function. More generally,

because the fractional size of a k-function’s genotype set can be

approximated as the product of the fractional sizes of the genotype

sets of its k constituent monofunctions (Fig. S7) and because the

total number of circuits increases exponentially with N, our

observation that there are many circuits with k functions is

expected to scale to larger circuits.

The next question we asked is whether there is a tradeoff

between the robustness of a k-function and the number of

functions k. We found that the robustness of a k-function decreases

as k increases. However, some degree of robustness is generally

maintained, so long as k is not too large. These observations

suggest that the number of circuit functions generally does not

impose severe constraints on the evolution of circuit genotypes,

unless the number of functions is very large. Our current

knowledge of biological circuits is too limited to allow us to count

the number of functions per circuit. However, we can ask whether

the functional ‘‘burden’’ on biological circuits is very high. If so, we

would expect that the genes that form these circuits and their

regulatory regions cannot tolerate genetic perturbations, and that

they have thus accumulated few or no genetic changes in their

evolutionary history. However, this is not the case. The

biochemical activities and regulatory regions of circuit genes can

diverge extensively without affecting circuit function

[55,59,61,67], and the very different circuit architectures of

distantly related species can have identical function [24,28].

Further, circuits are highly robust to the experimental perturba-

tion of their architecture, such as the rewiring of regulatory

interactions [20]. More indirect evidence comes from the study of

genes with multiple functions, identified through gene ontology

annotations. The rate of evolution of these genes is significantly

but only weakly correlated with the number of known functions

[68]. Thus, the functional burden on biological genes and circuits

is not sufficiently high to preclude evolutionary change.

Previous studies of monofunctional regulatory circuits have

revealed broad distributions of circuit robustness to genetic

perturbation [16,18,29]. We therefore asked if this is also the case

for multifunctional circuits. We found that circuit robustness was

indeed variable, but that the mean and variance of the

distributions of circuit robustness decreased as the number of

functions k increased. Thus, variation in circuit robustness persists

in multifunctional circuits, so long as k is not too large. This

provides further evidence that robustness to mutational change

may be considered the rule, rather than the exception, in

biological networks [1,18,20,29]. However, to make the claim

that robustness to genetic perturbation is an evolvable property in

multifunctional regulatory circuits requires not only variability in

circuit robustness, but also the ability to change one circuit into

another via a series of mutations that do not affect any of the

circuit’s functions.

We therefore asked whether it is possible to interconvert any

two circuits with the same function via a series of function-

preserving mutational changes. We showed that this is always

possible for monofunctions, but not necessarily for multifunctions,

because these often comprise fragmented genotype sets. Genotype

set fragmentation has also been observed at lower levels of

biological organization, such as the mapping from RNA sequence

to secondary structure [69]. Such fragmentation has two

evolutionary implications, as has recently been discussed for

RNA phenotypes [70]. First, the mutational robustness of a

phenotype (function) depends upon which genotype network its

sequences inhabit, as we have also shown for regulatory circuits

(Fig. S11). Second, it can lead to historical contingency, where the

phenotypic effects of future mutations depend upon the current

genetic background. Such contingency indeed occurs in our

circuits, because the specific genotype network that a circuit

(genotype) occupies may be influenced by the temporal order in

which a circuit’s functions (phenotypes) have evolved. This order

in turn may affect a circuit’s ability to evolve new functions.

These observations hinge on the assumption that the space

between two (disconnected) parts of a fragmented genotype set is

not easily traversed. For example, in RNA it is well known that

pairs of so-called compensatory mutations can allow transitions

between genotype networks [71], thus alleviating the historical

contingency caused by fragmentation. To assess whether an

analogous phenomenon might exist for regulatory circuits, we

calculated the average distance between all pairs of genotypes on

distinct genotype networks for circuits with the same k-function.

We found that this distance decreases as the number of functions k

increases, indicating an increased proximity between genotype

networks (Fig. S12). However, those pairs of genotypes in any two

different genotype networks that had the minimal distance of two

mutations never exceeded 1% of all pairs of genotypes on these

networks, and was as low as 0.03% for k~2 functions (Fig. S12A,

inset). This means that transitions between genotype networks

through few mutations are not usually possible in these model
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regulatory circuits. Thus, the multiple genotype networks of a

genotype set can indeed be considered separate from one another.

Using a Boolean model of gene regulatory circuits comes with

several caveats that are worth highlighting. First, the mutational

distance between certain logical functions may not correspond to

their distance in a biological context. For example, the signal-

integration logic of a gene can mutate from an OR function to an

XOR function by changing only a single bit. In contrast, research

in synthetic biology suggests that these logical functions are

separated by greater mutational distances. While the OR

function can be encoded as a simple two-input circuit [37], the

XOR function has necessitated cascading signals between distinct

circuits [37] or cells [72,73], or chemically-induced DNA

inversions [74]. In some biological circuits, such as the lac operon

in E. coli, it may not be possible to transform an OR function into

an XOR function at all [32]. However, experimental investiga-

tions of the cis-regulatory codes of synthetic and natural circuits

are far from exhaustive, and it is therefore possible that there exist

alternative implementations of these logical functions that more

closely resemble their Boolean representations [31]. Second, the

model makes the simplifying assumptions that gene expression

states are binary and that regulatory interactions are static. In

biological circuits, gene expression is continuous and regulatory

interactions are dynamic, varying in both time and space. Despite

these limitations, the assumption of binary expression often

provides a reasonable approximation [32] and numerous studies

have demonstrated the model’s ability to precisely replicate the

expression dynamics of biological circuits, even under the

assumption of static regulatory interactions [50–53]. Third, we

assume that gene states are updated synchronously [49], which is

clearly not the case in biological circuitry. Asynchronous

updating can affect the transient dynamics of a circuit [75] and

its equilibrium expression patterns [76], and may therefore

impact circuit function. This becomes especially problematic

when the equilibrium expression pattern is periodic [77].

However, the fixed-point equilibrium expression states of

Boolean circuits do not vary between asynchronous and

synchronous updating schemes [78], so we did not consider

asynchronous updating. While it is possible that some of our

results depend upon this assumption, we stress that this study

could not have been performed without it. The exhaustive

enumeration of genotype space is not computationally feasible

under asynchronous updating because all possible orderings of

updates have to be considered for each genotype. Fourth, we did

not explicitly consider gene expression noise. While this is an

important aspect of genetic regulation [79], robustness to gene

expression noise is correlated with robustness to genetic

perturbation in model regulatory circuits [18]. Thus, we used

the latter as a proxy for the former. Lastly, we only considered

small, three-gene circuits. This allows for the exhaustive

enumeration of all possible circuit topologies and signal-integra-

tion functions, but limits the direct applicability of our results to

similarly sized circuits. However, we expect our results to also

apply to larger circuits, as we have discussed. We emphasize that

our observations are not derived from one circuit and its

functions, but from an enormous circuit space, comprising a class

of circuits that capture biological phenomena in diverse

organisms.

Materials and Methods

Model details
We consider fully connected Boolean circuits with N~3 genes.

The binary state si(t) of a gene i at time t is a function fi of the

states of all N~3 genes at time t{1:

si(t)~fi(si(t{1),sj(t{1),sk(t{1)) ð1Þ

The function fi maps all of the 2N possible combinations of input

expression states to an output expression state. This function

represents the gene’s signal-integration logic and can be repre-

sented as a look-up table (Fig. 1A). The circuit is initialized with an

initial expression state S0 and all genes are updated synchronously

according to their individual functions f until a steady-state

expression pattern S? is reached. The expression pattern S? can

be a fixed-point (P~1) or a cycle (1vPƒ2N ).

The update functions f of all N genes can be represented as a

single vector of length L~N2N (Fig. 1B). We measure the

equilibrium expression states S? for all 2L possible vectors for

each of the 2N possible initial expression states S0. In doing so, we

not only enumerate all signal-integration functions, but also all

circuit topologies. This is because some functions f make a gene

independent of one or more of its N regulatory inputs. For

example, in Fig. 1A, the regulatory interaction b?a is inactive

because for any combination of regulatory inputs, the expression

state of gene a is unaffected by the expression state of gene b.

Dynamic regimes of Boolean circuits
Boolean circuits exhibit three dynamic regimes that have been

called ordered, critical, and chaotic [49]. The ordered regime is

characterized by a general insensitivity to perturbation that results

from having few equilibrium states, each with large basins of

attraction, whereas the chaotic regime is characterized by extreme

sensitivity to perturbation that results from having many

equilibrium states with small basins of attraction. The critical

regime lies at the interface of these two extremes. Several studies

have focused on characterizing the dynamic regimes of biological

circuits [80–83] and on understanding how these regimes

influence circuit dynamics in silico [49,84].

The dynamic regime of a circuit can be determined by

calculating its sensitivity s~r(1{r)z, where z is the average

number of regulators per gene and r is the average probability of

gene expression per gene (i.e., the proportion of the genotype G

that is nonzero) [85,86]. The ordered regime corresponds to sv1,

the critical regime to s~1, and the chaotic regime to sw1. Since

z~3 for all circuits considered here, the dynamic regime is

determined solely by r.

Multifunctions and their combinations
The maximum number of functions a circuit can produce is 2N

because we require the equilibrium expression states of any

multifunction F (1) . . . F (k) to be unique (i.e., S(1)
?=S(2)

?= . . .=S(k)
? ).

We also require that the initial expression states are unique (i.e.,

S
(1)
0 =S

(2)
0 = . . .=S

(k)
0 ). While the deterministic nature of the model

makes this latter requirement superfluous — different equilibrium

states require different initial states — we specify it to highlight the fact

that each function pertains to a specific input signal, which may differ

between environments or tissue-specific conditions.

A circuit may produce various combinations of k functions, as shown

in Fig. 1. We note that some combinations of functions are not feasible.

As an example, consider a hypothetical combination F (1),F (2) where

F (1)~S0,0,0T.S0,0,1T, F (2)~S0,0,1T.S1,1,1T. This combina-

tion is not feasible because the equilibrium expression state of F (1) is a

transient state of F (2).

Our usage of the word function differs from existing terminology

for describing the mapping of initial to equilibrium states in
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Boolean circuits. For a given circuit, an attractor is an equilibrium

state (fixed-point or periodic) that can be reached from at least one

initial state. An attractor’s basin of attraction is the set of initial states

that lead to that attractor. The attractor landscape is the set of all

attractors and their basins of attraction. These terms are distinct

from our use of the words function and k-function, which are

concerned with specific pairs of initial and equilibrium states,

because specific initial states provide key inputs to most biological

circuits in development and physiology. The only equivalence

between terms occurs when k~2N . Such a k-function is equivalent

to the circuit’s attractor landscape, because each of the 2N initial

states map onto themselves. In this case, the entire attractor

landscape is embodied in the function.

Robustness
We measure the robustness of circuits and of k-functions. The

robustness of a circuit is calculated as the proportion of its

mutational neighbors that have the same k-function, as follows.

First, we remove the entries in the circuit’s genotype G that

correspond to inactive regulatory interactions. This results in a

new vector G’ that may differ from G. Second, we determine the

fraction of single mutants of G’ that produce the same

multifunction. This is achieved by flipping each bit in G’, one at

a time, and determining whether the resulting genotype has the

same k-function. We refer to this measure of circuit robustness as

R1, which is the measure that is used throughout the main body of

the text. The robustness of a k-function is calculated as the average

robustness of all circuits with that k-function.

Alternatively, the robustness of a circuit can be calculated as the

connectivity of its genotype G in a genotype network of a k-

function, divided by the maximum possible connectivity L. We

refer to this measure of circuit robustness as R2. In Fig. S13, we

show that these two calculations result in measures of k-function

robustness that are highly correlated (Spearmans r~0:99). The

fact that the data are always below the identity line indicates that

R1 is a more conservative measure of robustness than R2.

Historical contingency
To detect whether a combination of k functions may exhibit

historical contingency, we consider all k! permutations of those

functions. We define a combination of k functions to be contingent

if there exists at least one permutation that violates, and at least

one other permutation that satisfies, the following condition: For

the functions F (1),F (2) . . . F (k) in the permutation, there exists a

jvk such that the number of genotype networks in the genotype

set of function F (1) . . . F (j) is greater than the number of genotype

networks in the genotype set of function F (1) . . . F (j),F (jz1). For

example, in Fig. S4, the permutation F (1),F (2),F (3) satisfies this

condition because the genotype set of F (1),F (2) comprises two

genotype networks while the genotype set of F (1),F (2),F (3)

comprises only one genotype network. All other permutations

violate this condition. Therefore this combination of k-functions

exhibits historical contingency. Since all monofunctions comprise

a single, connected genotype network, it is impossible for any

bifunction to satisfy the condition above. Thus, in these model

regulatory circuits, historical contingency can only occur for

kw2.

Supporting Information

Figure S1 Robustness and genotype set size. Each data

point shows the size of a specific k-function’s genotype set as a

function of its robustness. Symbol types correspond to the number

of functions k in the k-function. Note the logarithmic scale of the y-

axes.

(EPS)

Figure S2 Genotypic robustness is an evolvable prop-
erty of multifunctional circuits. Each data point shows

genotypic robustness before and after 1000 steps of a random

walk. In each step of the random walk, robustness is not allowed to

decrease. Each panel shows data for 1000 separate random walks

on genotype networks of multifunctions for (A) k~2, (B) k~3, and

(C) k~4 functions. These are the same genotype networks used in

Fig. 3B–D, respectively. Since all points lie on or above the

identity line, it is always possible to increase robustness via a series

of mutations that preserve the k-function, unless the initial

genotype already resides atop a local robustness peak. The y-axis

label of (A) applies to all panels.

(EPS)

Figure S3 Most circuits are chaotic, regardless of
dynamic regime. Each panel shows the number of circuits

with sensitivity s for (A) k~2, (B) k~3, and (C) k~4 functions.

Circuit sensitivity is used to determine a circuit’s dynamic regime,

as indicated by the white and shaded regions. The line separating

these regions corresponds to the so-called critical regime. For each

k, we show data for the same genotype networks shown in Fig. 3B–

D.

(EPS)

Figure S4 Schematic illustration of genotype set frag-
mentation and historical contingency. In each panel, the

open circles represent circuits and the shading represents circuit

function. Three functions are shown, as indicated by the legend.

Two circuits are neighbors (connected by a solid line) if they have

the same k-function and their genotypes G differ by a single

regulatory element (Fig. 1D). Each panel corresponds to a different

k-function, and k increases as the three columns of the figure are

read from left to right (A: k~1, B,C: k~2, D: k~3). (A) The

genotype set of the monofunction F (1) comprises a single

connected genotype network, meaning that any genotype can be

reached from any other via a series of small genetic changes that

do not alter circuit function. (B) The bifunction F (1),F (2) shows an

example of fragmentation, where the genotype set comprises two

isolated genotype networks, despite the fact that the genotype sets

of the two constituent monofunctions comprise single, connected

genotype networks. This means that some genotypes with this

bifunction cannot be reached from some others via a series of

function-preserving genetic changes. (C) In contrast, the genotype

set of the bifunction F (1),F (3) comprises a single, connected

genotype network. (D) This example shows one possible

multifunction with all k~3 functions. Its genotype set is also

made up of a single, connected genotype network. However, there

are six possible orderings in which this multifunction could evolve

and two of these are shown in panels A, B, and D (upper sequence

of arrows F (1),F (2),F (3)), as well as in panels A, C, and D (lower

sequence of arrows, F (1),F (3),F (2)). This provides an illustration of

historical contingency because the order in which the functions

evolve dictates whether or not it is possible to evolve all functions.

Specifically, the genotype set fragmentation shown in (B) may

confine a population to the upper right genotype network,

precluding navigation to the region in genotype space where all

k~3 functions can be satisfied.

(EPS)

Figure S5 An example of genotype set fragmentation.
The genotype set of the bifunction shown in (A) is fragmented into

five genotype networks. Specifically, this genotype set consists of
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one large genotype network with 11,380 genotypes and four small

genotype networks that each comprise a single genotype. In (B–F),

we show genotypes from these five genotype networks and their

corresponding ‘‘trajectories’’ from initial to equilibrium states. The

genotype in (B) is part of the large genotype network and was

chosen because it has the same ‘‘trajectory length’’ as those

genotypes in (C–F), which come from the four small genotype

networks. Note that any mutations to the genotypes in (C–F) will

destroy the bifunction, and it is therefore not possible to reach the

large genotype network via a series of function-preserving

mutations. We note that at present, we do not have an analytical

explanation for the phenomenon of genotype set fragmentation.

This presents an exciting direction for future research.

(EPS)

Figure S6 Cumulative distributions of the fractional
sizes of the genotype networks of k-functions. Distribu-

tions are shown for k~2, k~4, and k~6 functions. The vertical

dashed lines indicate the maximum fractional size of a genotype

network for monofunctions S~2{N [44], raised to the kth power.

Note the logarithmic scale of the x-axis.

(EPS)

Figure S7 Approximating the fractional size of a
genotype set. The product of the fractional sizes DGi D of the

genotype sets Gi of monofunctions can serve as an order-of-

magnitude approximation for the fractional sizes of the genotype

sets of multifunctions. Here we show all 2k possible arrangements

of genotype set sizes for (A) k~2 and (B) k~3 functions.

(EPS)

Figure S8 Multifunctional regulatory circuits with
multi-state equilibria S? of period P. Each data point

shows the proportion and number of genotypes with k functions.

The lines are provided as a visual guide. The period P of S?

increases as the lines are read from right to left. The maximum

number of functions per circuit is dictated by P. For example, if

P~2 then a circuit can have at most k~4 functions as this

accounts for all possible 2|4~8 expression states. Note the

logarithmic scale of the y-axes.

(EPS)

Figure S9 Robustness of k-functions with multi-state
equilibria S? of period P. Each data point corresponds to the

genotype set of a specific k-function with equilibrium states of

period (A), P~1, (B), P~2, (C), P~3, (D), P~4, (E), P~5, (F),

P~6, (G), P~7, (H), P~8. For Pw4, it is not possible for a

circuit to have more than one function because we require that the

states in S? are all unique (Material and Methods). The axes

labels of the inset are the same as in Fig. 3. Note the logarithmic

scale of the y-axis.

(EPS)

Figure S10 Genotype set fragmentation for k-functions
with multi-state equilibria S? of period P. Each data point

shows the number of genotype networks in the genotype set of a k-

function with equilibrium states of period (A), P~1, (B), P~2, (C),

P~3, (D), P~4, (E), P~5, (F), P~6, (G), P~7, (H), P~8. The

insets show the proportion of genotype sets that comprise a single

genotype network, as a function of k (cf. Fig. 4).

(EPS)

Figure S11 The average robustness of a circuit may
vary between the genotype networks of a k-function’s
genotype set. Each panel corresponds to a k-function with the

largest number of genotype networks in its genotype set for (A)

k~2, (B) k~3, and (C) k~4. Each panel depicts a histogram of

the average circuit robustness per genotype network. Those

genotype networks with an average circuit robustness of zero

comprise a single genotype.

(EPS)

Figure S12 Transitions between genotype networks are
rare in model gene regulatory circuits. For the genotype set

of each k-function, we calculated the mutational distance between

all pairs of genotypes that inhabited distinct genotype networks.

Each data point in (A) depicts the average of this measure across

all k-functions. Error bars denote one standard deviation, but are

typically smaller than the symbol size. Data only exists for

2ƒkƒ6, because these are the only values of k for which genotype

set fragmentation occurs (Fig. 4). The inset of (A) shows the

proportion of all pairs of genotypes from distinct genotype

networks of the same k-function that were separated by a

mutational distance of two. Representative distributions of

mutational distance for the genotype sets of multifunctions with

(B) k~2, (C) k~4, and (D) k~6 are also provided.

(EPS)

Figure S13 Alternative calculations of circuit robustness
yield similar measures of k-function robustness. Each

data point depicts the robustness of a k-function as measured using

R1 and R2 (Material and Methods), revealing a strong correlation

between these measures (Spearman’s r~0:99). The identity line is

shown for reference.

(EPS)

Table S1 The possible compositions of k-functions. The

numbers in the brackets denote I and T, respectively. Note that a

circuit encounters one state for each I and at least two states for

each T.

(PDF)

Text S1 Analytical results. This section provides analytical

solutions for the number of circuits per k-function, the number of

unique k-functions, and the number of k-functions with zero

robustness. Additionally, we show analytically why there are no

‘‘prohibited’’ k-functions.

(PDF)
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