Hindawi Publishing Corporation
BioMed Research International
Volume 2013, Article ID 909717, 8 pages
http://dx.doi.org/10.1155/2013/909717

Research Article

A High Performance Cloud-Based Protein-Ligand Docking

Prediction Algorithm

Jui-Le Chen,"? Chun-Wei Tsai,” Ming-Chao Chiang,* and Chu-Sing Yang'

! Department of Electrical Engineer, National Cheng Kung University, Institute of Computer and Communication Engineering,

Tainan 70101, Taiwan

2 Department of Digital Multimedia Design, Tajen University, Pingtung 90741, Taiwan
? Department of Applied Informatics and Multimedia, Chia Nan University of Pharmacy & Science, Tainan 71710, Taiwan
* Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

Correspondence should be addressed to Chun-Wei Tsai; cwtsai0807 @gmail.com

Received 7 December 2012; Accepted 12 April 2013

Academic Editor: Ching-Hsien Hsu

Copyright © 2013 Jui-Le Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The potential of predicting druggability for a particular disease by integrating biological and computer science technologies has
witnessed success in recent years. Although the computer science technologies can be used to reduce the costs of the pharmaceutical
research, the computation time of the structure-based protein-ligand docking prediction is still unsatisfied until now. Hence, in this
paper, a novel docking prediction algorithm, named fast cloud-based protein-ligand docking prediction algorithm (FCPLDPA), is
presented to accelerate the docking prediction algorithm. The proposed algorithm works by leveraging two high-performance
operators: (1) the novel migration (information exchange) operator is designed specially for cloud-based environments to reduce
the computation time; (2) the efficient operator is aimed at filtering out the worst search directions. Our simulation results illustrate
that the proposed method outperforms the other docking algorithms compared in this paper in terms of both the computation

time and the quality of the end result.

1. Introduction

The ultimate goal of most people is looking for every possible
solution that provides a more comfortable life; therefore,
most researchers have done their best to advance the interest
of human from different positions, domains, concerns, and
backgrounds. One important work for the lighthearted life
is finding a new drug for particular disease. Needless to
say, drug design can always help human health because
it can be used in preventing and curing diseases. The
structure-based drug design [1] usually can be used to
predict the interactions between small drug molecules and
protein receptor complexes, and now, it is one of the well-
known computer-aided drug design methods. With advance
of computer technologies, the prediction method based on
theoretical computing method and molecular modeling to
establish the three-dimensional structure for designing a new
drug molecule can be used to speed up finding the good

possible candidate solutions. As observed by Volkamer et al.
[2], even though we invest more than one thousand billion
US dollars for drug development, the prediction accuracy and
the development time are still unsatisfied. In other words, the
prediction accuracy of the docking prediction is no more than
70% while the drug discovery process still takes a tremendous
amount of computation time just to find the possible drugs.
To measure the simulation results, the Van der Waals
(VDW), atomic radius, charge, torsional angles, intermolec-
ular hydrogen bonds, and hydrophobicity of the contact
force are usually used to bind the energy between receptor
and ligand. The empirical energy function [3], such as the
score function, is usually used to evaluate the results of
ligand molecular docking conformation which is suitable or
not for binding area of receptor. Each candidate solution
of the protein-ligand docking prediction (PLDP) problem
contains the three-dimensional coordinates of the ligand
center point, the four orientation parameters, and some
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additional special atoms, such as coal, nitrogen, and hydrogen
whose free torsion degrees are used as the parameters. The set
of candidate solutions X can be expressed as the total energy
of the protein-ligand interaction and the sum of the internal
energy for both ligand and protein which is given as follows:

min E, ., (X)=E,+E,+E,+E; + E,, (1)

where E,, E,, and E, denote, respectively, the interaction
forces of intermolecular, namely, Van der Waals forces,
hydrogen bond, and electronic potential energy; E; is the
internal attraction of ligand and protein molecules; E; is the
desolvation of binding area meaning the performance for
hydrophobic.

Because the search space of possible conformations is
extremely large, how to reduce the computation time has
become a very important research issue, especially that all
these problems are usually either NP-hard or NP-complete
problem [4]. Hence, a high-performance search method
is required to speed up the overall performance of the
search process. This explains why many search methods for
reducing the computation time have been presented to solve
the docking problem [5]. The heuristic algorithms, such as
simulated annealing (SA) [6] and genetic algorithm (GA) [3,
7], provide a fast method to search for approximate solutions
which are faster than the brute force search algorithms and
traditional search algorithms. As such, it is one of the efficient
ways for solving the docking problem [8].

To enhance the performance of heuristic algorithms for
the docking problem, this paper presents a novel protein-
ligand docking prediction algorithm to speed up the process
of drug design and development on a cloud computing
environment, by using a novel migration method while at the
same time attempting to improve the accuracy rate (success
rate) of prediction by using an eflicient operator to filter out
the worst search direction.

The rest of the paper is organized as follows. In Section 2,
a brief introduction to the parallel computing for the protein-
ligand docking prediction problem is given. After that, the
concept and design of the proposed algorithm are detailed
in Section 3. Section 4 begins with a brief description of
the materials presented in this paper and then compares
the simulation results of the proposed algorithm with those
of other protein-ligand docking prediction algorithms. The
conclusion is drawn in Section 5.

2. Related Work

In addition to using metaheuristics to improve the perfor-
mance of the docking prediction algorithm as we mentioned
in Sectionl, another way is to enhance the computation
power of hardware, such as parallel computing. However,
since the communication and synchronization costs of the
search algorithm for PLDP on a cloud computing envi-
ronment are much higher than those on a grid or cluster
computing environments, to enhance the performance of
the protein-ligand docking prediction process, we have to
take into consideration these factors in the design and
development of protein-ligand docking prediction algorithm
(PLDPA).
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Among others, three major parallel computation models
are usually used in the evolutionary computation and other
metaheuristics [9-11] for enhancing the search performance,
to not only cut down the computation time but also improve
the quality of the end result. These parallel computation mod-
els are master-slave model [9], fine-grained model (cellular
model) [9], and coarse-grained model (island model) [11].
For instance, the master-slave model for genetic algorithm
will divide the population into several subpopulations and
then assign them to different processors to accelerate the
computation speed. For the fine-grained model, it also
divides the population into several subpopulations each of
which are assigned to different processors or machines. But
each subpopulation can only exchange information with
other subpopulations to which they are directly connected.
The coarse-grained model (also called the island model)
uses the concept of island and migration to exchange
the information between subpopulations. Unlike traditional
computing approaches, the parallel computation models take
into account both the architecture of the search algorithm and
the computation resources together. The major concerns now
become how the chromosomes communicate and exchange
information between the subpopulations to affect their search
performance [12-15].

For the protein-ligand docking prediction (PLDP), Wang
et al. [16] use the master-slave model for Lamarckian genetic
algorithm (LGA) (one kind of hybrid genetic algorithm for
which the genetic algorithm (GA) plays the role of global
search while the local search algorithm plays the role of
fine-tuning the search results found by GA) to speed up the
computation time of the docking prediction process. Various
successful works have been presented in recent years. For
instance, Kannan and Ganji [17] used GPU to speed up the
search process of PLDP. Sampling methods [18] have been
employed to provide not only better initial seeds but also the
possibility of finding better results. Some researchers [19, 20]
attempted to redesign or modify the scoring function for
PLDP because the scoring function takes a large percentage
of the computation time [17]. These researches focus on either
reducing the computation time, increasing the accuracy of
prediction, or both.

As a promising research area in recent years (after the
grid [21] and cluster [22, 23] system), cloud computing
provides a better way to enhance the performance of PLDP,
such as a tremendous amount of the compute and storage
resources, which leverages the strengths of grid computing
and cluster computing. How to apply the PLDP algorithm
to this new infrastructure have nowadays become a critical
research issue. Figure 1 gives the details of master-slave model
and island model. For these distributed computing models,
the main concern is how to divide the computations of a
search algorithm and then dispatch them to the computer
nodes to improve the search performance.

3. The Proposed Method

3.1. Concept. Since most heuristic algorithms do not guaran-
tee that they can find the optimal solution, one of the most
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FIGURE 1: A simple example for illustrating the parallel computation models. (a) Master-slave model; (b) island model.

important problems for the heuristic algorithms to deal
with is to balance the computation cost and the quality of
the solution. For the cluster computing environment, most
computer resources (nodes) are centralized in the same place;
therefore, the communication and synchronization costs are
not as high. For grid and cloud computing environments,
they are, however, an important issue because most com-
puting nodes are not centralized in the same place. Also,
from the perspective of algorithm design, because the total
computation time of each slave (or island) is different, no
matter which of the parallel computation models is used, it is
almost unavoidable to waste time waiting for the other slaves
to finish their tasks.

The proposed algorithm integrates two efficient opera-
tors. The first one is a novel migration operator to mitigate
the costs incurred on a cloud-based environment whereas
the second operator is the pattern reduction operator [29,
30] to filter out the worst search directions. Just like other
researches on protein-ligand docking prediction and [29], the
main focus of this research is not only on the development
of a faster search process but also on getting better solutions
for the binding locations of the protein-ligand docking
prediction.

3.2. The FCPLDPA. As shown in Algorithm 1, the proposed
algorithm (FCPLDPA) is applied to the Lamarckian genetic
algorithm (LGA) to solve the docking problem for the
rigid protein and flexible drug molecules. The FCPLDPA
will first construct the initial solution S and then divide
it into m subpopulations (the number of m is predefined
by the user, which usually matches the number of virtual

(1) Create an initial population S.
(2) Divide the population into m subpopulations and
dispatch them to m islands.

(3) Do

(4)  For each island

(5) Perform the evolutionary process (EP).
(6) End

(7) While the stop criterion is satisfied, then stop and output
the best result.

AvrcoriTHM I: Outline of FCPLDPA for the protein-ligand docking
prediction problem.

machines (computing nodes) that can be used for solving
the docking prediction problem) S = {S,,S,,...,S,,}. Next,
each subpopulation will be dispatched to a virtual machine
(island). Like the island model, each subpopulation will now
undergo the evolution process independently from each
other except that some of the chromosomes are immigrations
or emigrations of the island. Unlike the classical island model,
the migrations of the proposed algorithm are not restricted
to be at the same iteration number (era) because such a
restriction may delay the migration process, by waiting for
the other islands to converge. Algorithm 2 gives the details
of the evolution process for the islands and the migration
procedure, which include the evolution process of the simple
genetic algorithm—selection, crossover, and mutation
operations. However, in addition to applying the pattern
reduction operator [29] (as shown in line 5 of Algorithm 2)
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FIGURE 2: A simple example illustrating how the proposed algorithm works. (a) island-1 and island-2 complete their work at time t + 1; (b)
island-2 and island-4 complete their work at about time ¢ + 2; (c) after the exchange of information between all the islands, FCPLDPA will
synchronize the information; (d) and then FCPLDPA will continue to let all the islands exchange information with approximate island.

(1) T; « 0 and F,; « false.

(2) Calculate the fitness value of each chromosome.

(3) Select the approximate chromosomes to be the parents
of the next generation.

(4) Perform the crossover and mutation operators to create
the children.

(5) Apply the pattern reduction (PR) operator to eliminate
computations that are essentially redundant.

6)T, —T;+1

(7) If (T;% M = 0) Synchronize the migration.

(8) Ify(T, F,; M, = 1, perform the emigration.

9) Ify(T, F,, M;) =2, perform the immigration.

(10) Go to step 2 otherwise.

(11) End If

ALGorITHM 2: Outline of the evolutionary process (EP).

to the proposed algorithm, the timing for migrating
the chromosomes to the other islands (virtual machines) is
the main concern of this paper, as shown in lines 7 and 10 of
Algorithm 2. The migration mechanism is as given below:

v (T, F, M;)
1 fT,=9y F,="false )
=42 T, =9y, F,;="false, M; = true,

0 otherwise,

where M denotes the timing (i.e., migration interval) to
synchronize all the islands (virtual machines), T; is the num-
ber of iterations that has been performed on the evolution
process of the ith virtual machine (VM), 7 ; is the threshold
to determine the timing to migrate the chromosomes to the
other islands, #; is the flag to show whether any migration
process has been done or not since the previous migration
process was performed, and #; is the policy of master
to determine the timing to exchange information between
islands. More precisely, because the migration process of the
islands occurs for particular islands (as shown in Figure 1, this
means that some of the islands will complete their tasks at

about the same time). The synchronization process is needed
to be performed after some of the migration processes (or
once every My iterations) so that the proposed algorithm
is able to transmit the information from one island to the
others. Note that M is defaulted to 25, and T; is defaulted
to 5.

In the case of emigration, that is, the first case in (2),
it illustrates that the migration process will be performed
when the number of iterations at the ith island is equal
to Ty and F; is false. In this case, the proposed algorithm
will select a chromosome (elite solution) to migrate to the
other islands, just like the island model of GA. However, in
the case of immigration, that is, the second case in (2), any
chromosome that wants to enter the ith island must also
satisfy the condition T; = Ty (i.e., after T}; iterations). The
master needs to choose the islands the evolution processes
of which are completed at about the same time to exchange
the information. It will become time oriented; thus, most of
the migration processes need not to wait for the evolution
processes of the other islands to finish.

A simple example is given in Figure 2 to explain the main
idea of the migration strategy of the proposed algorithm.
Figure 2(a) shows that not all the islands will complete their
work at the same time if the time for migration is set
up to, say, once every five iterations. The problem of all
the islands not being able to finish the same work at the
same time is owing to two important factors. One is due
to the communication cost (including the synchronization
and other transmission costs) while the other is due to
the randomness of the convergence speed of most meta-
heuristics. The proposed algorithm attempts to deal with
this problem, by letting islands exchange the information
once they completed their work at about the same time. A
very simple method is to let island-b exchange information
with island-a if the completion time of island-b is closest to
that of island-a and they have not exchanged information
to the other islands in this information exchange round
(i.e., over the past five iterations). Similar to Figure 2(a),
Figure 2(b) also lets island-2 and island-4 exchange infor-
mation (chromosome migration) at time t + 2 because their
completion times are closest to each other.
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Figure 2(c) shows that when all the islands have
exchanged their information after My iterations that is,
migrate the chromosomes to other islands, the proposed
algorithm will then perform a synchronization procedure.
That is, it will randomly pick the chromosomes from these
groups (island-1 and island-3 as the first group while island-2
and island-4 as the second group) and migrate them to islands
of the other group so that the information can be circulated
to all the islands. After that, as shown in Figure 2(d),
FCPLDPA will continuously let all the islands evolve their
subpopulations again and migrate their chromosomes to
the other islands later. In summary, if the communication
costs are high and the convergence speeds of all the islands
are not the same, the proposed algorithm can be used to
avoid wasting time to wait for the other islands to complete
their work. The detailed analysis will be given in later
sections.

4. Simulation Results

In this paper, the performance of the proposed algorithm
is evaluated by using it to solve the protein-ligand docking
problem. All the empirical analyses are conducted on 16
VMs, each of which consists of one CPU (2.5 GHz), 4 GB of
memory, a 100 MBps NIC card, and GNU C++ v4.12, and
runs CentOS_64 v6.2. Also, the test platform for docking is
AutoDock 4.2 [31].

Several state-of-the-art algorithms, namely, differential
evolution [32], particle swarm optimization [33], Lamarckian
genetic algorithm with island model (parallel GA; PGA)
[34, 35], FCPLDPA without PR, and FCPLDPA with PR,
are applied to the AutoDock environment to search for
the possible protein-ligand binding sites. The energy func-
tion which calculates the energy value between the protein
and ligand molecule is used by these search algorithms to
determine which conformation is the candidate with the
most appropriate binding points. The details of composition
formula for free energy expressions could be referred to the
study of [3]. For all these algorithms, the population size N
is fixed at 256, the subpopulation size for the parallel model
is fixed at N/I, where I, denotes the number of islands, the
crossover rate is set equal to 0.9, the mutation rate is set
equal to 0.08, and the number of generations ¢ is set equal
to 10,000.

4.1. Materials. The molecular docking problem can be
regarded as the key matching problem where the lock and
key are the receptor and ligand, respectively, and the goal
of all the simulations is to provide an efficient way to find
the approximate positions of the key and lock from a large
search space or the candidate set of drugs. Although until
now, the accuracy of most candidate sets of approximate
positions (solutions) found by a search algorithm is not as
precise as it is supposed to be; it does provide an efficient
way to find out a good drug molecule which is not validated
yet by a laboratory. In this paper, an effective tool for drug
design based on structure-based protein molecule, AutoDock
[6], is used to evaluate the proposed algorithm and the other

state-of-the-art docking prediction algorithms, such as GA
and parallel GA (PGA). In addition, four different kinds
of data sets, as shown in Figure 3, are used to evaluate the
performance of the proposed algorithm and the state-of-the-
art docking prediction algorithms compared in this paper.
The data sets are taken from the RCSB Protein Data Bank
database (http://www.pdb.org/).

4.2. Results. Our observation shows that most computation
costs of LGA come from the local search process. But this
characteristic will be changed for the parallel GA on a
cloud computing environment. As shown in Figure 4, two
interesting phenomena can be easily observed. First, the
communication costs will increase as the number of islands
(virtual machines) increases. These results show that the
communication costs and the convergence speed of different
islands all may affect the performance of the system. Second,
the local search process may change the percentage of the
computation time for all the operators of protein-ligand
docking prediction. Figures 4(a) and 4(b) show that the
local search of PGA takes much more computation time
than the function evaluation, especially when we invest
much more resources to the local search process for the
four different datasets which differs from the observation
described in [17] because Kannan and Ganji believe that the
function evaluation takes most of the computation time of
the whole convergence process. However, our observation is
that the function evaluation will not affect the computation
time of the whole search process. These results help us
emphasize that the local search, the communication cost,
and the different convergence speed of all the islands are
the other important factors to be taken into account for
the computation time of protein-ligand docking predic-
tion, especially when we are using the cloud computing
environment to solve the protein-ligand docking prediction
problem.

As shown in Table 1, seven different datasets are used to
evaluate the performance of the proposed algorithm and the
other docking prediction algorithms. For each algorithm, the
table gives the percentage of time taken by the initialization,
selection, crossover, mutation, function evaluation, local
search, and send and receive operators. The results show that
the proposed algorithm outperforms the PGA in most cases,
either without PR or with PR in terms of the success rate and
the average time.

Comparison of the proposed algorithm with PGA shows
that if the send and receive costs can be decreased, the overall
computation time can also be decreased. According to our
observation, FCPLDPA without PR can provide a better suc-
cess rate than PGA and DE because the proposed algorithm
postpones the transmission of information from the island to
all the other islands; therefore, the search diversity between
islands can be maintained. Another strategy for the proposed
algorithm is to combine it with PR, called FCPLDPA with PR
(FCPLDPA + PR). The simulation results in Table 1 also show
that FCPLDPA + PR can provide better results than DE, PSO,
PGA, and FCPLDPA alone in terms of the success rate with a
little more investment of the computation time.


http://www.pdb.org/

6 BioMed Research International

(a) 1AAQ [24] (b) 1EPO [25]

(c) HIV [26] (d) 4PHV [27]

(e) 1AZM [26] (f) 3PTB [27]

&

Wt

(g) 1HSH [27]

FIGURE 3: Structure diagrams [28] for both protein and ligand molecules.
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TaBLE 1: Comparison of the proposed algorithm with the other
docking prediction algorithms.

Islands 1 2 4 8 16 32

Chromosomes 256 128 64 32 16 8
DE (island model)

Initialization 0.11% 0.13% 0.34% 0.53% 1.34% 2.63%

Mutation 239% 2.44% 2.36% 2.37% 2.76% 2.72%

Evaluation 0.61% 0.71% 0.68% 0.66% 0.77% 0.64%

Local search 96.88% 93.92% 90.13% 82.86% 70.59% 48.69%
Send and receive 0.00% 3.51% 717% 14.24% 23.31% 43.96%
22.86% 2714% 30.71% 33.57% 40.71% 39.29%

Success rate

Average time  1,726.52 995.23 506.34 251.93 154.33 104.07
PSO (island model)

Initialization 0.07% 0.14% 0.26% 0.78% 1.56% 3.12%

Evaluation 2.37% 2.75% 2.74% 211% 3.28% 2.94%

Local search 97.55% 95.44% 94.61% 90.96% 82.4% 52.69%
Send and receive 0.00% 1.68% 2.39% 6.15% 13.02% 26.14%
17.86% 21.43% 25.00% 31.43% 35.71% 32.14%

Success rate

Average time 284.41 176.39 8739 4294 2815 18.78
PGA (island model)

Initialization 0.20% 0.29% 0.68% 0.94% 0.90% 0.90%

Selection 0.20% 0.34% 0.68% 0.94% 0.90% 0.90%

Crossover 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

Mutation 0.01% 0.01% 0.01% 3.86% 0.10% 0.01%

Evaluation 0.98% 1.69% 3.41% 4.72% 4.44% 4.50%

Local search 98.63% 88.95% 76.72% 62.57% 26.22% 22.20%
Send and receive 0.00% 8.98% 18.29% 28.50% 67.28% 71.35%
15.00% 19.29% 21.43% 28.54% 34.29% 27.14%

Success rate

Average time 572,74 330.71 168.07 84.33 50.14  33.59
FCPLDPA without PR

Initialization — 0.34% 0.68% 0.94% 0.90% 0.90%

Selection — 0.34% 0.68% 0.94% 0.90% 0.90%

Crossover — 0.01% 0.01% 0.01% 0.01% 0.01%

Mutation — 0.01% 0.01% 1.29% 0.01% 0.01%

Evaluation — 1.78% 3.74% 5.26% 5.19% 5.89%

93.35% 84.13% 69.61% 30.69% 26.67%
4.43% 10.41% 19.42% 61.69% 65.61%
25.00% 25.71% 30.71% 37.14% 32.14%

Local search —
Send and receive —

Success rate —

Average time — 313.49 153.78 7590 42.69 30.54
FCPLDPA with PR

Initialization — 0.34% 0.68% 0.86% 0.90% 0.90%

Selection — 0.31% 0.68% 0.83% 0.90% 0.90%

Crossover — 0.01% 0.01% 0.01% 0.01% 0.01%

Mutation — 0.01% 0.01% 1.43% 0.01% 0.01%

Evaluation — 1.78% 3.75% 5.02% 4.06% 5.96%

93.20% 83.59% 70.60% 32.66% 28.50%
4.48% 10.24% 20.88% 61.17% 64.09%
27.86% 32.14% 40.00% 47.14% 45.71%
32091 156.19 7756 44.07 33.49

Local search —
Send and receive —

Success rate —
Average time —

5. Conclusion

In this paper, a novel docking prediction algorithm named
fast cloud-based protein-ligand docking prediction algo-
rithm (FCPLDPA) is presented to enhance the performance

of metaheuristics (i.e., GA-based algorithm) for pharmaceu-
tical research. The simulation results show that the proposed
algorithm can not only significantly reduce the computation
cost of GA in solving the protein-ligand docking prediction
problem by using cloud computing technologies but also
improve the quality of the end result by using the pattern
reduction method. They also show the possibility of using
cloud computing technologies and the dilemmas we need
to face when applying the drug prediction approaches to
the cloud computing environment. More precisely, many
approaches can be used to reduce the computation costs of
metaheuristics, such as investing more computing resources
to finish the job faster or using better search strategy
(i.e., sampling or dimension reduction methods). However,
according to our observation, the improvement was not pro-
portional to the investment because the communication costs
and the different convergence speeds of virtual machines
(islands) all affect the performance of the docking system
on cloud. The main purpose of this research is to eliminate
the waiting between different virtual machines of cloud-based
docking prediction algorithm. The simulation results are
consistent with our assumptions and observations that the
communication costs and the different convergence speeds
between islands may strongly impact the performance of the
purposed algorithm. Two efficient operators are employed in
this paper: (1) the novel migration operator is aimed to avoid
wasting of the computation power and waiting for the other
virtual machines on a cloud computing environment, and
(2) the pattern reduction operator is aimed to enhance the
search performance. The main contributions of this research
can be summarized as follows: (1) we discovered that the
communication costs and the different convergence speeds
between virtual machines (islands) will eventually affect the
performance of the search algorithm on cloud; and (2) we
presented a high-performance cloud-based protein-ligand
docking prediction algorithm to deal with this problem to
guide the search algorithm to find the approximate candidate
solution quickly. In the future, we will focus on finding a more
efficient prediction method to improve the accuracy of the
solution of FCPLDPA while reducing the computation time
of the whole process.
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