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Abstract

Background: Rare coagulation factor deficiencies and disorders of fibrinolysis (defined

as rare bleeding disorders [RBDs]) present with a heterogeneous bleeding phenotype,

and bleeding severity is difficult to predict.

Objectives: Describe underlying rare genetic variants in the Dutch RBD population and

investigate the relationship between genotype, laboratory phenotype, and clinical

phenotype.

Methods: The Rare Bleeding Disorders in the Netherlands is a cross-sectional, nationwide

study conducted between October 1, 2017, and November 30, 2019. Bleeding scores and

blood samples were collected during a single study visit. Coagulation factor levels were

measured centrally, and targeted exome analysis was performed on 156 genes involved in
d equally to this study.
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thrombosis and hemostasis. Pathogenicity was assigned according to the Association for

Clinical Genetic Science guidelines.

Results: Rare genetic variants specific to the diagnosed RBD were found in 132 of 156

patients (85%). Of the 214 rare genetic variants identified, 57% (n = 123) were clearly

pathogenic, 19% (n = 40) were likely pathogenic, and 24% (n = 51) were variants of

unknown significance. No explanatory genetic variants were found in patients with

plasminogen activator inhibitor type 1 deficiency or hyperfibrinolysis. A correlation

existed between factor activity levels and the presence of a genetic variant in the

corresponding gene in patients with rare coagulation factor deficiencies and alpha-2-

antiplasmin deficiency. Co-occurrence of multiple genetic variants was present in a

quarter of patients, but effect on phenotype remains unclear.

Conclusion: Targeted exome analysis may offer advantages over single-gene analysis,

emphasized by a number of combined deficiencies in this study. Further studies are

required to determine the role of co-occurring hemostasis gene variants on the bleeding

phenotype in RBDs.

K E YWORD S

blood coagulation disorders, exome sequencing, fibrinolysis, hemostasis, inherited
iencies are confirmed by a molecular diagnosis.

antly correlated with factor activity levels.

1 gene in patients with plasminogen activator inhibitor type 1 deficiency.

nts was frequent, with an unknown effect on phenotype.
1 | INTRODUCTION disorders of fibrinolysis, and bleeding of unknown cause. The Rare
Rare bleeding disorders (RBDs) encompass a heterogeneous group of

rare, hereditary coagulation factor deficiencies, platelet disorders,
Bleeding Disorders in the Netherlands (RBiN) study employed a pre-

viously commonly used definition to investigate RBDs. In this study,

RBDs are defined as deficiencies of fibrinogen, prothrombin (factor [F]
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II), FV, FVII, FX, FXI, FXIII, combined deficiencies of FV and FVIII, as

well as FV Amsterdam and the fibrinolytic disorders plasminogen

activator inhibitor type 1 (PAI-1), alpha-2-antiplasmin (A2AP) defi-

ciency, and hyperfibrinolysis [1–4]. These RBDs roughly represent 9%

of inherited bleeding disorders [5–7].

RBDs are considered monogenic, and most display an autosomal

recessive inheritance pattern [8]. Therefore, the prevalence of RBDs is

notably higher in regions with a high degree of consanguinity [9,10].

Dysfibrinogenemia and FV Amsterdam, however, follow an autosomal

dominant inheritance pattern, similar to some cases of FXI deficiency

[11–13]. Heterozygous variants in recessive RBD genes may cause

mild factor deficiency. Along the mode of inheritance, penetrance is an

important factor that determines genotype-phenotype correlation in

RBDs. However, due to incomplete penetrance and variable expres-

sivity, the clinical phenotype in patients with RBDs is heterogeneous

and challenging to predict [14,15]. Moreover, prior research on the

correlation between factor activity levels and clinical bleeding severity

has yielded ambiguous results [2,16,17].

High throughput sequencing (HTS) using a multigene panel has

been incorporated into daily practice as a complementary diagnostic

tool for RBDs. Especially in patients with well-defined bleeding dis-

orders, diagnostic sensitivity is high (>90%). However, studies

exploring HTS in RBDs often lack clinical data [18–25]. Whole exome

sequencing (WES) with a multigene panel offers advantage over tar-

geted gene panel sequencing, allowing for potential expansion of

other genes analyzed as information on underlying genetic disorders

evolves. Moreover, the variable clinical phenotype in patients with

RBDs may be partially explained by the presence of gene-gene

interaction caused by oligogenic variants, which go unnoticed in

single-gene analysis. Some cases suggest that presence of a pro-

thrombotic variant can be associated with a milder bleeding pheno-

type in patients homozygous for the FVII Lazio variant [26].

Furthermore, gene panel analysis in the diagnostic work-up in 87

patients with a bleeding tendency identified combined carriership of

variants in autosomal recessive genes as a potential explanation in 5

patients [22]. Nevertheless, identifying inherited genetic modifiers

requires analysis of extensive pedigrees or a considerable number of

unrelated patients, posing a substantial challenge in RBDs [24].

Altogether, these studies suggest that bleeding severity may be

explained by an interplay of procoagulant, anticoagulant, and fibri-

nolytic factors. This prompts further exploration into the possibility of

additional genetic defects interfering with the hemostatic balance. To

unveil underlying genetic variants in thrombosis and hemostasis genes

in patients with an RBD, targeted exome analysis was performed in

the multicenter RBiN study [2]. The relationship between genotype,

laboratory phenotype, and clinical phenotype is investigated in this

substudy.
2 | METHODS

The cross-sectional, nationwide RBiN study recruited participants

from all 6 Dutch Hemophilia Treatment Centers (HTCs) between
October 1, 2017, and November 30, 2019. RBDs were defined as rare

coagulation factor deficiencies, FV Amsterdam, and disorders of

fibrinolysis. Patients aged ≥1 year were invited to participate if they

had a diagnosis of an RBD based on coagulation factor activity levels

below the lower limit of normal or a previously proven homozygous or

(compound) heterozygous variant in a gene encoding for an RBD.

Therefore, both patients and family members with heterozygous

variants in RBD genes were included in this study [27]. Patients with

A2AP deficiency were included based on A2AP activity levels below

the lower limit of normal (<87%) or presence of a (likely) pathogenic

variant in SERPINF2. All patients with PAI-1 deficiency and hyper-

fibrinolysis were included in the HTC Nijmegen-Eindhoven-Maastricht

(NEM), as this is the national specialized center for disorders of

fibrinolysis. Laboratory tests for diagnosis of PAI-1 deficiency or

hyperfibrinolysis are performed in patients with a positive family

history of a fibrinolytic disorder, an International Society on Throm-

bosis and Haemostasis Bleeding Assessment Tool (ISTH-BAT) > 10, or

in patients with a typical fibrinolytic bleeding pattern. PAI-1 deficiency

may be diagnosed if PAI-1 activity levels are below the detection limit

and PAI-1 antigen level is below the lower limit of normal (3.4 ng/mL)

[2,27]. Hyperfibrinolysis is assessed with the use of euglobulin clot

lysis time (ECLT). An ECLT ratio is determined by comparing the time

for clot lysis in blood samples collected before and after 10 minutes of

venous compression, and ECLT ratios of >5.7 or a baseline ECLT <

116 minutes are indicative of hyperfibrinolysis [27]. Design and pa-

tient inclusion details were published previously [2].
2.1 | Patient selection

To limit blood sample volume in young children, patients qualified for

genetic analysis if they were aged ≥12 years or if genetic analysis had

already occurred during a prestudy visit in their own HTC. Additional

informed consent was given separately for targeted exome analysis

with a gene panel containing thrombosis and hemostasis genes in

accordance with the Declaration of Helsinki. The Medical Research

Ethical Commission Oost-Nederland approved this study, and this

study was registered at ClinicalTrials.gov as NCT03347591.
2.2 | Clinical and laboratory assessment

During a single study visit, clinical phenotype was assessed with the

use of the ISTH-BAT (normal range 0-3 for men, 0-5 for women, and

0-2 for children [28]), and clinical bleeding grades were determined

based on the 4 categories of severity from the European Network-

RBD study (Supplementary Table S1) [16]. Blood samples were ob-

tained for laboratory testing. The central laboratory of the HTC-NEM

analyzed the samples, with the exception of global blood count and

platelet function analyzer (PFA) tests, which were performed locally.

Moreover, baseline coagulation factor activity levels for patients with

missing samples and/or on prophylaxis with factor replacement ther-

apy were extracted from local electronic patient records. Fibrinogen

http://ClinicalTrials.gov
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activity levels were measured using the Clauss method. A 1-stage

clotting assay with factor-deficient plasma (Cephascreen/PTT-LA

FVIII and FIX, CK-Prest FXI, Neoptimal FII, FV, FVII and FX, STA-R

Evolution, Stago) measured factor activity levels of FII, FV, FVII,

FVIII, FIX, FX, and FXI. FXIII activity levels were determined using the

Berichrom chromogenic ammonia release assay (Siemens). von Wil-

lebrand factor (VWF) antigen (VWF:Ag) and ristocetin cofactor ac-

tivity (VWF:RCo) were measured with an automated assay (HemosIL

AcuStar VWF Assay Panel [Instrumentation Laboratory]). A chromo-

genic assay of antiplasmin (STA-Stachrom Antiplasmin [Stago])

measured A2AP activity. Considering the diurnal variation of PAI-1

antigen and activity levels, baseline levels from morning samples

were extracted from patient records from HTC-NEM for patients with

a PAI-1 deficiency [27]. Additionally, ECLT ratios were extracted from

patient records for patients with hyperfibrinolysis. If fibrinogen levels

were below the detection limit (250 mg/L), the level was set to 250

mg/L. As the measurement of FXIII activity levels is unreliable in pa-

tients with low (<800 mg/L) or high (>6000 mg/L) fibrinogen levels,

FXIII activity levels were not reported in these patients [29].
2.3 | Targeted exome analysis

Targeted exome analysis was performed at the Department of Human

Genetics of the Radboudumc in Nijmegen, the Netherlands. Genomic

DNA was isolated from whole EDTA blood using an automated pro-

cedure. Exonic enrichment and library preparation were performed

with the Twist Human Core Exome Kit (Twist Biosciences). DNA

samples were sheared with a Covaris R230 Focused-ultrasonicator

(Covaris), followed by sequencing on a NovaSeq 6000 and/or HiSeq

instrument (Illumina). Alignment to the hg19 (GRCh37) reference

genome was performed with Burrows-Wheeler Aligner mapping

(version 0.5.9-r16) [30]. Variant calling required a minimum exon

coverage of >40×. The Genome Analysis Toolkit (version 3.2.2) was

used for variant calling, and variants were annotated using an in-house

custom diagnostic annotation workflow [31]. Genes known to be

involved in thrombosis and hemostasis were selected by a bio-

informatic in silico filter (HEMOS panel, 156 genes, version 12.8,

Supplementary Table S2). The HEMOS panel also included genes

associated with bleeding that are not considered coagulation or

platelet regulatory genes, such as genes associated with connective

tissue disease. Low-quality variant calls (Genome Analysis Toolkit

quality depth < 500) were manually inspected and, if necessary,

confirmed by standard Sanger sequencing. The copy number inference

from the exome reads method was used for the identification of copy

number variants [32]. No segregation analysis was performed.

Variants were independently evaluated by 2 clinical laboratory ge-

neticists, who were not blinded to clinical information. Evaluation for

possible pathogenicity was based on prior literature, a local database,

population frequencies (Genome Aggregation Database [GnomAD]

database, v2.1.1GRCh37/hg19), functional tests, andmultiple prediction

tools incorporated in the Alamut software [33]. Variants with population

frequencies >1% were considered polymorphisms and were excluded
from further evaluation. However, the prothrombotic polymorphisms FV

Leiden (NM_000130.5:c.1601G>A) and prothrombin G20210A

(NM_000506.5:c.*97G>A) were extracted from the unfiltered variant

call format files. A real-time polymerase chain reaction-based method

(Xpert HemosIL FII & FV [Instrumentation Laboratory], GeneXpert) was

performed in patients with insufficient coverage of NM_00506.5:c.*97.

Pathogenicity was assigned to variants using the practice guide-

lines of the Association for Clinical Genetic Science (ACGS), ratified by

the Dutch Society of Clinical Genetic Laboratory Specialists, and

largely in agreement with the American College of Medical Genetics

and Genomics (ACMG) guidelines [34–36]. Results underwent multi-

disciplinary review by 2 registered clinical laboratory geneticists, a

hematologist, a coagulation laboratory specialist, and the clinical

researcher of the study. We reported relevant variants of unknown

significance (VUS; class 3), likely pathogenic (class 4), and clearly

pathogenic (class 5) variants. Variants in both autosomal dominant and

recessive disease genes were included, following the main inheritance

described in the Online Mendelian Inheritance of Men (OMIM)

database (Supplementary Table S3) [37].
2.4 | Clinical interpretation of targeted exome

analysis

An 8-category scale was developed by discursive reasoning, integrating

OMIM inheritance and ACGS classification, for an optimal interpreta-

tion of rare genetic variants (Table 1) [35,37]. Multiple variants in a

single gene were hypothesized as trans and interpreted as compound

heterozygous if patients had factor activity levels ≤ 5%, fibrinogen

levels ≤ 250 mg/L, or had a proven compound heterozygous genotype

prior to this study. Multiple variants in the same gene that could not be

interpreted as compound heterozygous were categorized as “phase

unknown,” as no segregation analysis was performed. These variants

were assigned a higher category compared with a single variant.
2.5 | Statistical analysis

All statistical analyses were performed using IBM SPSS Statistics,

version 29 (IBM, SPSS Inc). Descriptive statistics were used for patient

characteristics, and values are reported as median with IQR if not

mentioned otherwise. Statistical tests, including chi-squared test,

Fisher’s exact test, Mann–Whitney U-test, and Kruskall–Wallis test,

were employed based on data characteristics. Correlation between

coagulation factor activity levels and genetic variant category was

tested with the Spearman rank correlation coefficient. Strength of the

correlation coefficient (r) was categorized as nonexistent (<0.19),

weak (0.20-0.39), moderate (0.40-0.59), strong (0.60-0.79), or very

strong (>.80) [38]. Patients using medications potentially affecting

coagulation factor activity levels, such as vitamin K antagonists and

direct oral anticoagulants (DOACs), were excluded from statistical

analyses pertaining to relevant coagulation factors. A result was

considered statistically significant if P < .05.



T AB L E 1 Categories of the 8-tier scale (0-7). This scale combines
established mode of inheritance (Online Mendelian Inheritance of
Men) with the 5-tier classification according to the practice guidelines
of the Association for Clinical Genetic Science, with a description of
the contents of each category. Case identification numbers
(corresponding with Supplementary Table S3) are provided as an
example and for clarification.

Severity of variant

Category 0

No class 3, 4, or 5 variants

Category 1

Class 3 heterozygous, AR

Category 2

Class 3 2 variants phase unknown, AR (cases 87 and 105)

Category 3

Class 3 homozygous

Class 3 compound heterozygous

Class 3 heterozygous, AD

Class 3 hemizygous (case 156) or hemizygous, XL (case 151)

Category 4

Class 3 2 heterozygous variants, AD (case 69)

Class 3 2 homozygous variants (case 105)

Class 4 heterozygous, AR

Class 4 and class 3 variants phase unknown, AR (case 24)

Category 5

Class 4 2 heterozygous variants phase unknown, AR (case 9)

Class 5 and class 3 variants phase unknown, AR (case 115)

Class 5 heterozygous, AR

Category 6

Class 4 homozygous

Class 4 compound heterozygous

Class 4 heterozygous, AD

Class 4 hemizygous, XL

Class 5 and class 3 compound heterozygous (cases 118 and 119)

Class 5 and class 4 variants phase unknown, AR (cases 8 and 90)

Class 5 2 heterozygous variants phase unknown, AR (case 77)

Category 7

Class 5 homozygous

Class 5 compound heterozygous (case 123)

Class 5 heterozygous, AD

Class 5 hemizygous, XL

Class 5 heterozygous and class 4 compound heterozygous (cases 120

and 121)

AR, autosomal recessive; AD, autosomal dominant; XL, X-linked.
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3 | RESULTS

3.1 | General results of targeted exome analysis

Out of 263 RBiN participants, 167 gave permission for targeted

exome analysis [2]. Mainly due to insufficient quality, genetic data of

156 patients were available (Figure 1). A total of 214 variants (1.4/

patient) were identified in thrombosis and hemostasis genes, with 114

(53%) being unique. Of these 114 unique variants, 34 (30%) were

novel. Due to the targeted exome analysis, it is uncertain whether

large deletions (case identification numbers: 4, 9, 86, and 156) were

novel or reported previously. Single nucleotide variants were

responsible for 90% of the variants, and the remainder consisted of

small (<20 bp) deletions or insertions (6%), gross deletions (3%), and

small indels (1%). Most variants (n = 123; 57%) were classified as

clearly pathogenic. Additionally, 40 (19%) likely pathogenic variants

and 51 (24%) VUS were identified.

In 132 patients (85%), gene panel analysis yielded rare genetic

variants corresponding to the patients’ specific RBDs. Additional rare

genetic variants were detected in genes from the gene panel in 36/

132 (27%) patients with a genetic variant in the corresponding RBD

gene. These variants were present in platelet disorder genes (n = 10),

the VWF gene (n = 12), F8 (n = 2), PROS1 (n = 2), and other RBD genes

(n = 12). Of these additional rare variants, 14 were classified as clearly

pathogenic (37%), 8 likely pathogenic (21%), and 18 VUS (47%).

In 24 patients (15%), mainly with PAI-1 deficiency (n = 10) and

hyperfibrinolysis (n = 7), no genetic variant was identified specific to

their bleeding disorder. Other patients without a genetic variant

matching their RBD had fibrinogen disorders (n = 2), FV (n = 2), FVII

(n = 2), or FXI deficiency (n = 1). However, 13 variants in other genes

were found in 9/24 patients (38%) that may contribute to a bleeding

phenotype. These variants occurred in platelet disorder genes (n = 6),

VWF (n = 3), or other RBD genes (n = 4).

The results of targeted exome analysis of all 156 patients are

summarized in a heatmap (Figure 2), which combines assigned path-

ogenicity, inheritance, laboratory, and clinical data. Supplementary

Table S3 provides an overview of all reported genetic variants.
3.2 | Laboratory phenotype

Coagulation factor activity levels (fibrinogen, FII, FV, FVII, FVIII, FX,

FXI, FXIII, and A2AP) were measured and compared between RBDs.

The resulting boxplots (Figure 3A–I) show markedly lower factor ac-

tivity levels corresponding with the patients’ individual RBD. High-

lighted in Figure 3 are notable outliers with coagulation factor activity

levels below the 95th percentile. Patients who used vitamin K an-

tagonists, highlighted in green, had lower vitamin K-dependent

coagulation factor activity levels. Furthermore, low FVIII activity

levels were measured in 1 patient with a DOAC, most likely due to



F I GUR E 1 Flowchart of patient inclusion. RBiN, Rare Bleeding

Disorders in the Netherlands.
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assay interference. In addition, patients with FV Amsterdam had

notably higher FV activity levels and markedly lower FVII activity

levels, which may be explained by direct inhibition of FVII by high

tissue factor pathway inhibitor levels [39].

For most coagulation factor deficiencies, a gradual decrease of

category level was observed as coagulation factor activity levels

normalized per RBD (indicated by color intensity, Figure 2). Overall,

there was a strong to moderate correlation between factor activity

levels and the designated genetic variant category of the corresponding

RBD (Supplementary Figure S1A–H). Patientswith FVAmsterdamwere

excluded from the analysis between F5 and FV activity levels, and F7

and FVII activity levels. When multiple fibrinogen genes were affected

(n = 1), the variant of the highest category was used.

Strong correlations were observed between factor activity levels

and category of genetic variant for fibrinogen genes (FGA, FGB, and

FGG; n = 154; r = −0.65 [95% CI, −0.73 to −0.54]; P < .001) and F7

(n = 146; r = −0.65 [95% CI, −0.74 to −0.54]; P < .001). In addition, we

discovered a moderate correlation for F2 (n = 148; r = −0.43 [95%

CI, −0.56 to −0.29]; P < .001), F5 (n = 150; r = −0.48 [95% CI, −0.56
to −0.34]; P < .001), F11 (n = 154; r = −0.55 [95% CI, −0.66 to −0.43];
P < .001), F13A1 (n = 131; r = −0.46 [95% CI, −0.59 to −0.31]; P <

.001), and SERPINF2 (A2AP; n = 154; r = −0.51 [95% CI, −0.62
to −0.38]; P < .001). Lastly, a weak correlation was found for F10 (n =

148; r = −0.31 [95% CI, −0.45 to −0.15]; P < .001), which must be

interpreted with caution, as only 5 patients (including 1 patient with

FVII deficiency) with a F10 variant were included in this study.
Performing this analysis with the exclusion of VUS had no impact on

the strength of the Spearman rank correlation coefficients.
3.3 | Clinical phenotype

Bleeding tendency varied across RBD groups, with overall high ISTH-

BAT scores (range, 6-18; Table 2). ISTH-BAT scores were missing in

19 patients (12%). We report generally mild factor deficiencies in our

population, except for FXIII deficiency. Diagnostic rationale was avail-

able for 110 patients (71%): patients were diagnosed because of

bleeding symptoms in 38% (n = 42), aberrant coagulation profile on

routine laboratory examination in 16% (n = 17), and in 46% (n = 51)

because of an affected family member. As expected, median ISTH-BAT

scores significantly differed between these groups, with the highest

median (13 [IQR, 11-18]) in patients with bleeding symptoms compared

with patients diagnosed because of an aberrant coagulation profile

(median, 9 [IQR, 4.5-13.5]), or familymembers (median, 6.5 [IQR, 4-11]).

Overall, ISTH-BAT scores were not significantly different betweenmen

and women, except in patients with FVII deficiency, where men had

significantly lower (7.5) median ISTH-BAT scores than women (13).

ISTH-BAT scores available in 3 children were 0, 3, and 24, respectively.

In total, 17/153 (11%) patients with RBDs were using antith-

rombotic medication at the time of inclusion, and data regarding

antithrombotic use was missing in 3 patients. Six patients used vitamin

K antagonists, 1 patient used a DOAC, 7 patients used aspirin, 2 pa-

tients used clopidogrel, and 1 patient used a combination of aspirin

and clopidogrel. Median ISTH-BAT scores did not differ significantly

between patients who used antithrombotics (median, 10 [IQR, 4-14])

and those who did not (median, 10 [IQR, 6-16]; P = .357). Interestingly,

median ISTH-BAT scores for 7 patients who used a DOAC or vitamin

K antagonists were significantly lower (median, 4 [IQR, 3-7]) compared

with the remaining population (median, 11 [IQR, 6-15]; P = .014).
3.4 | Co-occurrence of multiple genetic variants

Supplementary Table S4 provides information for patients with co-

occurrence of multiple genetic variants. Co-occurrence of multiple

genetic variants did not significantly affect median ISTH-BAT scores

compared with patients with a single genetic variant (both with me-

dian, 10 [IQR, 5-15]) and was not associated with bleeding grade

(median grade, 2 [IQR, 0-3]). FV Leiden was present in 4 patients

(2.6%), comparable with the prevalence in the overall Dutch popula-

tion (2.9%) [40]. Our genetic data revealed no participants with a

prothrombin G20210A polymorphism (prevalence in the Dutch pop-

ulation: 1.7%) [41]. Two patients with A2AP deficiency and a VUS in

PROS1 were noted. Overall, the median ISTH-BAT score for these 6

patients harboring a prothrombotic variant was 2.5 (range, 0-16),

significantly (P = .036) lower than in patients without a prothrombotic

variant (median ISTH-BAT, 10; range, 0-30).



F I GUR E 2 Heatmap that summarizes gene panel analysis by

exome sequencing results of 156 patients. The genetic variants

are color-coded based on their designated category as described

in the Methods and Table 1. The legend of the color code is

displayed on the right and shows colors for hemorrhagic genetic

variants on the left and colors for prothrombotic genetic variants

on the right. Each row in the heatmap represents 1 individual

patient. Some genes were infrequently affected, and these genes

are combined in the second-last column, “other genes,” where

the corresponding gene symbol is provided in the appropriate

box. The factor (F)V Leiden variant is abbreviated as FVL. Cases

are sorted by coagulation factor activity levels (CFLs) of the

corresponding coagulation deficiency, starting from the top with

the lowest CFL, and are displayed on the right side of the

heatmap. Cases of plasminogen activator inhibitor type 1 (PAI-1)

deficiency and hyperfibrinolysis are sorted by PAI-1 antigen and

euglobulin clot lysis time (ECLT) ratio, respectively. Further

information on all reported genetic variants is provided in

Supplementary Table S3. A2AP, alpha-2-antiplasmin; Fibr,

fibrinogen; FII/FV/FVII/FX/FXI/FXIII, factor II/V/VII/X/XI/XIII;

ISTH-BAT, International Society on Thrombosis and Haemostasis

Bleeding Assessment Tool; NA, not available.
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F I GUR E 3 (A–I) Boxplots of factor activity levels measured in different rare bleeding disorder groups. Individual outliers with

corresponding patient numbers (Supplementary Tables S3 and S4) are marked with different colors. A2AP, alpha-2-antiplasmin; FII/FV/FVII/FX/

FXI/FXIII, factor II/V/VII/X/XI/XIII; PAI-1, plasminogen activator inhibitor type 1; VUS, variants of unknown significance.
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T AB L E 2 Overview of demographic data of included Rare Bleeding Disorders in the Netherlands patients.

Rare bleeding disorder

Patients Female Age, y Coagulation factor activity levels ISTH-BAT

n n (%) Median (IQR) Median (IQR) Median (IQR)

Fibrinogen deficiency 31 21 68 44 (32-56) 860 mg/L (450-1440) 11 (6-13)

FII deficiency 10 6 60 54 (37-68) 52% (13%-58%) 7 (3-11)

FV Amsterdam 2 1 50 40 (31-48) Not available 18 (17-18)

FV deficiency 14 9 64 41 (31-62) 5% (4%-49%) 17 (4-22)

Combined FV and FVIII 2 1 50 21 (16-26) FV: 48%; FVIII: 41% 7

FVII deficiency 27 13 48 44 (30-56) 23% (2%-43%) 9 (6-14)

FX deficiency 4 3 75 51 (33-58) 32% (20%-47%) 6 (2-14)

FXI deficiency 24 15 63 56 (36-67) 46% (32%-52%) 8 (5-12)

FXIII deficiency 10 3 30 47 (19-54) Undetectable (undetectable to 5%) 15 (13-23)

A2AP deficiency 15 11 73 50 (36-66) 68% (23%-74%) 9 (4-12)

PAI-1 deficiency 10 10 100 43 (26-51) Act: <1.0 ng/mL (<1.0 to <1.0)

Ag: 2.3 ng/mL (1.0-2.6)

11 (10-14)

Hyperfibrinolysis 7 6 86 62 (47-74) ECLT ratio: 9.3 (8.1-10.6) 12 (10-16)

Total 156 99 63 46 (32-62) Not applicable 10 (5-15)

Mean and range are used instead of median and IQR in patients with FV Amsterdam and combined FV and FVIII deficiency.

A2AP, alpha-2-antiplasmin; Act, activity; Ag, antigen; ECLT, euglobulin clot lysis time; FII/FV/FVII/FX/FXI/FXIII, factor II/V/VII/X/XI/XIII; ISTH-BAT,

International Society on Thrombosis and Haemostasis Bleeding Assessment Tool; PAI-1, plasminogen activator inhibitor type 1.
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3.5 | Variants in the von Willebrand gene

In total, 14 patients carried 15 variants in the VWF gene, with 10

being VUS. Although we observed a higher ISTH-BAT (median, 13

[IQR, 8-21]) compared with patients without VWF variants (median, 10

[IQR, 5-14]), this difference was not statistically significant (P = .137).

Additionally, no significant differences were observed between pa-

tients with and without VWF variants for FVIII activity levels, VWF:Ag,

VWF:RCo, platelet count, PFA-epinephrine (EPI), or PFA-adenosine

diphosphate (ADP) (Supplementary Table S5A). After selecting pa-

tients with likely and clearly pathogenic variants, ISTH-BAT scores

remained nonsignificantly higher in patients with a variant in VWF

(median, 14 [IQR, 10-25]; P = .07), with no significant effect on labo-

ratory parameters (Supplementary Table S5B). No correlation be-

tween VWF and VWF:Ag or VWF:RCo could be demonstrated in this

cohort (data not shown).
3.6 | Platelet disorder variants

In 15 patients (10%), 16 variants in platelet disorder genes were

found. Most of these variants were VUS (n = 11), with the exception of

a likely pathogenic variant in NBEAL2 and clearly pathogenic variants

in STXBP2 (n = 1) and ITGA2B (n = 3). None of these 15 patients

displayed thrombocytopenia (defined as platelet count < 150 × 10⁹L).

Platelet count did not significantly differ between patients with a

platelet disorder variant (median, 237 × 10⁹/L [IQR, 219-274]) and

those without (243 × 10⁹/L [IQR, 212-283]; P = .787).
PFA-closure time (CT) results were frequently missing (31%-43%).

In 15 patients with platelet disorder variants, missing data approached

50% (with 3/5 PFA-CT missing in patients with likely or clearly

pathogenic variants). PFA-EPI (median, 129 [IQR, 100-175]) and PFA-

ADP (median, 95 [IQR, 75-135]) in patients with platelet disorder

variants did not differ significantly from patients without such a

variant (PFA-EPI median, 134 [IQR, 116-167]; P = .576; PFA-ADP

median, 104 [IQR, 91-124]; P = .54). Patients who used aspirin, clo-

pidogrel, or NSAIDs (n = 16) were excluded from this analysis. No

platelet disorder variants were found in patients with thrombocyto-

penia (n = 4; range, 83-138 × 10⁹/L) or in patients previously diag-

nosed with thrombopathy (n = 2).
4 | DISCUSSION

This study presents results from targeted exome analysis in a Dutch

RBD population, integrating genetic data with bleeding phenotype and

laboratory data. Consistent with previous studies that report a high

diagnostic sensitivity of HTS in well-defined bleeding disorders, tar-

geted exome analysis revealed rare class 3, 4, or 5 variants in the

corresponding RBD gene in most patients (85%) [18–21,42,43]. An 8-

tier genetic variant category system incorporating established inher-

itance (OMIM) with pathogenicity according to ACGS guidelines

showed significant correlations with factor activity levels [34–36].

Co-occurrence of genetic variants in thrombosis and hemostasis-

related genes was identified in nearly a quarter of participants, a

frequency higher than observed in previous gene panel studies
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[18–20]. Rare variants in diagnostic-grade genes for rare bleeding,

thrombotic, and platelet disorders have previously been discovered in

9% of the population, constituting approximately a third of these co-

occurrences [44]. Furthermore, this study reports VUS in RBDs and

other thrombosis and hemostasis genes with an autosomal dominant

inheritance pattern, potentially explaining the observed high fre-

quency. These findings may suggest that an additional genetic defect

is required for a bleeding disorder to manifest, specifically in hetero-

zygous carriers. However, co-occurrence of multiple genetic variants

had no significant effect on median ISTH-BAT scores. Notably, overall

high ISTH-BAT scores (median, 10 [IQR, 5-15]) were observed in the

RBiN population.

Additional genetic variants were predominantly identified in VWF

and platelet disorder genes, with two-thirds of cases involving VUS.

Previous research in patients with von Willebrand disease reported

additional (mild) coagulation defects in a considerable portion of pa-

tients (10%-36%) [45–47]. Although ISTH-BAT was higher in these

patients, this increase did not reach statistical significance. It is

noteworthy that VWF:Ag and VWF:RCo in our cohort did not fall

below 50%. However, due to variations in timing of blood sample

collection, diurnal fluctuations in VWF:Ag levels, with midday peak

levels, may play a role [48]. Additionally, prior studies in UK Biobank

participants with pathogenic variants in VWF showed no clear effect

on odds ratio for bleeding [44]. Therefore, it may reasonably be

assumed that presence of a nonpathogenic VWF variant without low

VWF levels has no clear impact on bleeding phenotype in the RBiN

population. Moreover, platelet disorder variants were not associated

with prolonged PFA-CT or decrease in platelet count. Because of the

small sample size, the prevalence of VUS, and frequently missing PFA-

CT results, drawing definitive conclusions is impossible. Specific

evaluation of platelet function in patients with platelet disorder var-

iants may offer some insights into the clinical relevance of such

variants.

Median ISTH-BAT scores of 6 patients with a prothrombotic

variant were lower than the overall RBiN population (2.5 vs 10). Co-

occurrence of a prothrombotic variant may ameliorate bleeding risk

in patients with RBDs, as these variants have been associated with

lower annual bleeding rates and delayed onset of first bleeding in

patients with hemophilia [49,50]. Investigating prothrombotic variants

(including polymorphisms) in a larger cohort of RBDs would be valu-

able in understanding their potential impact on RBDs.

Patients with anticoagulants had lower median ISTH-BAT scores

compared with the rest of the RBiN population. Patients taking anti-

coagulants typically have an underlying medical condition necessi-

tating their use, often due to a history of arterial or venous

thrombosis. Consequently, their phenotype may lean more toward the

thrombotic end, which may translate into lower bleeding scores. We

observed that 3 out of 7 patients (43%) using DOACs or coumarin

derivatives had a history of thrombosis compared with 12 out of 133

patients (36%) in the remaining RBiN population. Although these

numbers are small, the difference was statistically significant (P = .02).

Four patients had missing data in this analysis. Unfortunately, the

duration of anticoagulant usage was not available.
The bleeding phenotype in RBD individuals appears to result from

a complex interplay of laboratory parameters, genetic, and external

factors [2,17,19,20,44]. We believe that gene panel analysis through

exome sequencing offers an advantage over single-gene analysis.

Targeted exome analysis may improve tailored patient treatment,

emphasized by the number of combined deficiencies found in this

study. However, the clinical relevance of co-occurrence of multiple

variants in thrombosis and hemostasis genes needs careful consider-

ation within the context of the patient’s phenotype and prevalence

within the normal population [24]. Multidisciplinary collaboration

between clinical geneticists, laboratory specialists, and clinicians is

therefore required. In the future, analyzing hemostasis in patients

with multiple co-occurring variants, including prothrombotic ones,

could potentially be enhanced by incorporating global hemostasis

assays alongside assessments of primary hemostasis.

No explanatory genetic variants were identified for patients with

PAI-1 deficiency and hyperfibrinolysis. In half of these patients, VUS in

other genes was identified, with the addition of 1 clearly pathogenic

variant in F2. Remarkably, no genetic variants were found in SER-

PINE1, previously linked to PAI-1 deficiency [51]. Fibrinolytic abnor-

malities may account for a substantial portion of patients with

bleeding of unknown origin [27,52], and the diagnostic yield of HTS in

patients with unexplained bleeding is notoriously low (3%-17%)

[19–22,42]. Fibrinolytic disorders are difficult to diagnose because

clinically validated assays to detect a hyperfibrinolytic state are

lacking, and therefore, assessment of fibrinolysis is not (yet) a stan-

dard element in the work-up of bleeding disorders [27,52,53]. Un-

fortunately, WES is limited to exome sequencing only, excluding

information on intronic 4G/5G polymorphisms that can influence and

downregulate circulating PAI-1 activity levels, possibly explaining the

lack of genetic confirmation [54]. Whole genome sequencing in a

larger cohort of patients with PAI-1 deficiency and hyperfibrinolysis

may help identify new causative genetic variants and could potentially

improve the diagnosis of fibrinolytic disorders.

Our study has several limitations. First, the cross-sectional design

and relatively small sample size are inherent to researching rare dis-

orders. Secondly, gene panel analysis by exome sequencing fails to

capture deep intronic variants and is not ideal for calling (large) indels.

However, a standardized gene panel HTS reduces risks of incidental

findings and has become a standard diagnostic approach in the field of

RBDs and beyond [20,25,55]. Furthermore, ACMG-specific variant

codes are not available, as ACGS guidelines were followed in the

reporting of variants according to national practice. Moreover, the

collected data were insufficient to certainly determine the number of

families included in this study, as no segregation analysis was per-

formed, and it was not recorded which patients belonged to the same

family prior to pseudonymization. Overall, RBiN patients presented

with high bleeding scores despite relatively mild factor deficiencies,

suggesting a potential selection bias of severe patients with RBDs in

Dutch HTCs. Nevertheless, the RBiN study population likely reflects

the actual RBD population treated in HTCs. Additionally, ISTH-BAT

scores were based on current status, which may have resulted in

higher overall bleeding scores. Unfortunately, presence of
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hypermobility symptoms was not routinely assessed in our study.

Lastly, exclusion of variants with population frequencies >1% means

that common variants with known functional effects were not

considered [56]. Future analyses are planned to explore the effect of

common variants within the RBiN population.
5 | CONCLUSIONS

In summary, targeted exome analysis reveals diverse genetic profiles in

Dutch patients with RBDs, and most patients harbored rare genetic

variants specific to their RBD. Co-occurrence of variants in multiple

genes existed in a quarter of patients but did not affect median ISTH-

BAT scores. Furthermore, an overall significant correlation exists be-

tween genetic variant category of an RBD gene (based on inheritance

and pathogenicity) and corresponding factor activity levels. WES with a

multigene panel may offer an advantage over single-gene analysis,

especially considering personalized treatment in complex patients with

RBDs. Further studies employing cosegregation analysis and functional

studies within families are necessary to determine the impact of co-

occurrence of multiple variants on bleeding severity. Global hemo-

static assays, covering a more overall view of parts of the hemostatic

system, may provide additional valuable insights in this regard.
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