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Abstract. Health events emerge from host, community, environment, and pathogen factors—forecasting epidemics
is a complex task. We describe an exploratory analysis to identify economic risk factors that could aid epidemic risk
assessment. A line list was constructed using the World Health Organization Disease Outbreak News (2016–2018) and
economic indicators from the World Bank. Poisson regression employing forward imputations was used to establish rela-
tionships with the frequency with which countries reported public health events. Economic indicators demonstrated
strong performance appropriate for further assessment in surveillance programming. In our analysis, three economic
indicators were significantly associated to event reporting: how much the country’s urban population changed, its aver-
age forest area, and a novel economic indicator we developed that assessed how much the gross domestic product
changed per capita. Other economic indicators performed less well: changes in total, female, urban, and rural population
sizes; population density; net migration; change in per cent forest area; total forest area; and another novel indicator,
change in percent of trade as a fraction of the total economy. We then undertook a further analysis of the start of the cur-
rent COVID-19 pandemic that revealed similar associations, but confounding by global disease burden is likely. Contin-
ued development of forecasting approaches capturing information relevant to whole-of-society factors (e.g., economic
factors as assessed in our study) could improve the risk management process through earlier hazard identification and
inform strategic decision processes in multisectoral strategies to preventing, detecting, and responding to pandemic-
threat events.

INTRODUCTION

The challenge of employing infectious disease outbreak
data usefully to help those managing an emergency and the
need to purposefully develop models oriented to decision-
makers and in a context of being connected to management,
is increasingly recognized.1 Monitoring population health,
which includes demographic and health surveillance and
epidemiological studies, can generate valuable data that can
be used in health prediction models.2 There are several bar-
riers to this. Among them are availability of validated data
before an emergency to proof the model and during an event
to provide actionable information. Such efforts focus on
early warning of an event or its trajectory. They often are
anchored on specific characteristics of how an outbreak
pathogen behaves. This may result in clumsy applications of
information oriented in that way to a community-based per-
spective of what must be done to prevent and mitigate risks.
Here, we attack these challenges from the flank, pursuing in
a pilot analysis economic indicators at the population level
that may assist prediction in broad strokes across many
pathogens, seeking to demonstrate potential utility of openly
available information from both health and nonhealth intera-
gencies, and exploring triggers meriting prevention and early
mitigation efforts.
The WHO Disease Outbreak News (DON) is a major con-

duit for information sharing relevant to state party obligations
under the International Health Regulations. Last published in
2007, the International Health Regulations includes an
assessment and notification tool to report events that may
constitute a public health emergency of international

concern.3 The outputs from this risk identification tool are
translated into brief reports for the DON. Each WHOMember
State is meant to report events in accordance with these
regulations.3

We aimed to 1) describe reported outbreak events impact-
ful to communities via the WHO DON from 2016 to 2018, 2)
identify and explore major economic indicators at the popu-
lation level potentially related to these events, and, 3) gener-
ate hypotheses regarding associations between economic
factors and events for the purpose of identifying triggers for
enhanced surveillance, other health system strengthening,
or holistic community interventions that might later be inves-
tigated for either early risk mitigation or prevention of
pandemic-threat events. Detecting early risk signals boosts
the risk management process (Figure 1) through longer lead
time for risk identification and characterization.

METHODS

Information contained in WHO DON from 2016 to 2018
was reviewed and used to construct a line listing. Each row
of the line listing identified a single outbreak (event) in a
single country. Multiple reports corresponding to the same
outbreak (or event) were summarized within the same row.
Outbreak information such as demographics and epidemio-
logical indicators were recorded, as available. In order for a
country to be included in analyses, it had to have reported a
health event to WHO resulting in a WHO Disease Outbreak
News release. Ninety-six countries met this criterion.
Economic indicators were sought to represent extrinsic

factors, that is, nonbiological factors that could contribute to
the risk of a health event regardless of the pathogen
involved. As outbreaks spread and spatiotemporally sepa-
rated waves become entangled with human mobility, behav-
ioral changes, pathogen evolution, and other factors, the
power of prediction models decrease despite increasing
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time-series lengths.4 This makes the prediction of an event
complex. We limited our study to evaluate each of a specific
number of potentially predictive associations between eco-
nomic indicator factors and frequency of reported health
events. We used World Bank’s World Development Indica-
tors, which are internationally comparable statistics about
global development selected as community-centric risk fac-
tors that are routinely assessed and could inform a risk
management and prioritization process. We surveyed com-
municable disease burden modeling efforts in the literature
and selected eight of these factors (MEDLINE search terms:
emerging infectious diseases prediction, health events fore-
cast, and extrinsic health factors) after consultation with an
economist familiar with World Bank metrics. Our interest in
signal detection (something has changed and so a new risk
management action may be appropriate) influenced selec-
tion. The selected factors were Population Change, Female
Population Change, % Forest Area Change, Forest area
square kilometers, Population Density, Net Migration, Urban
Population change, and Rural Population change. We also
developed and incorporated two novel indicators that we
calculated from the World Bank indicators—gross domestic
product (GDP) change per capita and trade as a % of GDP
change—testing a hypothesis that economic change in
either direction is associated with risk as it relates with how
people interact within a community with both each other and
their environment. Change was determined for economic
indicators by calculating an average delta (D) as the

difference between averages per annum baseline values
(2006–2008) and average current per annum values
(2016–2018).

Data management. Data were aggregated using country
as a grouping variable. Events’ frequency (dependent
variable) was summed and grouped per country. All the
countries reported at least one event within the timeframe
analyzed. Independent variables related to economics, pop-
ulation level, and environment were collected at baseline
and current years. Baseline values were considered 10 years
before (2006–2008) the DON reports included in the line list
(2016–2018). Independent indicators were extracted from
the World Bank open data repository. This database con-
tains 1,600 time series indicators for 217 economies and
more than 40 country groups from the past 50 years.5

Statistical analysis. Descriptive statistics were used to
describe the health events in terms of age, sex, case count,
death count and other variables. Nonparametric statistics
were applied to the dataset. Bivariate analyses exploring
associations included Spearman’s rank correlation coeffi-
cient and Mann–Whitney U tests. Country comparisons to
identify a potential confounding factor related to economic
reporting behaviors relevant to achieving aid were per-
formed. Data related to global health security funding com-
mitments from 2014 to 2019 for the three countries in our
data set with the most and least absolute GDP per capita
change was retrieved and compared using the Georgetown
Infectious Disease Atlas.6

Poisson regression models employing forward imputa-
tions were used to establish relationships and predict values
over the dependent variable, particularly to characterize the
performance of the new surveillance indicators in the model
and validity. Statistical model fitting was assessed by omni-
bus test (P , 0.001) and the goodness of fit. Over-
dispersion was evaluated by Pearson chi-square value from
the goodness of fit. All statistics were considered significant
at a P value of 0.05. A Monte Carlo simulation was used
employing the Poisson regression results. All input variables
were fitted before running simulations to include tests for
interaction.

RESULTS

From 2016 to 2018, 96 countries reported to WHO through
the DON the amount of 155 health events from 29 pathogens
(Figure 2A). The most common pathogens/disease events
reported are displayed in Figure 2B. Zika outbreaks repre-
sented 18.7% of the health events reported, followed by
MERS-CoV (11.0%) and yellow fever (8.4%). A dengue virus
event was the largest reported, with more than 94,000
cases, followed by cholera with 27,978 cases. The demo-
graphic characteristics of the countries with more health
events and least health events reported are depicted on
Table 1. We observed no overall trend when comparing
demographic indicators between countries with the highest
number of reported health events against those with the low-
est number reported (a single report).
Economic indicators tested against reported health event

frequency are described in Table 2. Total population and
GDP per capita had the greatest magnitude of change. The
least changing indicator was female population with an over-
all mean change of –0.17%. In indicator validation, bivariate
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FIGURE 1. Risk signal identification and input effect on the risk
management process. This figure appears in color at www.ajtmh.org.
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Poisson test results showed that the economic indicators
GDP change per capita, urban population change, and cur-
rent average forest area were significantly associated with
health event frequency (P 5 0.001, 0.004, and , 0.001,
respectively). Net migration change was the least related
indicator (P5 0.838).
After testing all covariates (nine in total) against the depen-

dent variable: health event frequency, multiple models were
constructed for the purpose of exploring covariate associa-
tions. Ultimately, three variables in the Poisson analyses
were associated significantly with event frequency (popula-
tion urban change, GDP change per capita, and the average
forest area [2016–2018 current average]) and a fourth
variable (percent of trade change) that was not statistically
significant alone in the model interacted with the other cova-
riates (Table 3). This suggested that an increase in the GDP
change increases the likelihood of an event by 1% (P 5
0.00), increase in urban population change raises the likeli-
hood by 7.2% (P 5 0.011), and an increase in average forest
area (square meter) increases the likelihood by 27.9% (P 5
0.002). The goodness-of-fit Pearson chi-square was 0.850,
suggesting a good fit of our data to a Poisson distribution in
the regression, with no apparent impact from covariate

interactions. The likelihood ratio chi-square results showed
GDP change per capita, population urban change, and aver-
age forest area have a discernible effect (P, 0.05).
Monte Carlo simulations were used to further assess the

resilience of observed associations, showing strong correla-
tions with GDP change per capita, population urban change,
and average forest area in Monte Carlo simulations. A total
of 71,075 cases were simulated using Monte Carlo method
to meet the confidence interval of the mean of the target var-
iables (health events), at the 95% confidence level. The tor-
nado chart (Figure 3A) shows a strong Pearson correlation
between health events and GDP change per capita
(adjusted) of 0.85 and moderate correlations for the input
variables population urban change and current average for-
est area (adjusted) with correlation coefficients of 0.54 and
0.40, respectively. The probability density chart (Figure 3B)
displayed the distribution of the target variable (health events
frequency) simulated by the Monte Carlo method. Results
show a probability of 14% to have more than two health
events and a probability of 87.9% to have at least one health
event with our Poisson analysis indicators.
A confounding analysis related to economic reporting

behaviors was performed. It showed Venezuela, Nigeria, and

Pathogen/Disease Events Reported (%)
Zika 29 (18.7)

MERS - CoV 17 (11.0)

Yellow Fever 13 (8.4)

Lassa Fever 11 (7.1)

Cholera 10 (6.5)

Chikungunya 7 (4.5)

Guillain - Barre Syndrome 7 (4.5)

Dengue Fever 6 (3.9)

Vaccine - Derived Poliovirus Type 2 5 (3.2)

Microcephaly 4 (2.6)

A B

FIGURE 2. Overview of the reported health events in the WHO Disease Outbreak News (2016–2018). Economic indicators were tested against
the frequency with which a particular country reported a health event meriting a WHO Disease Outbreak News release, a mechanism of Interna-
tional Heath Regulations (2005) compliance. This figure provides an overview of the distribution and dominant event types that constituted that
dataset. (A) Geographic heat map displaying the frequency of health events reported by country. (B) Frequency of the most common of the patho-
gens/diseases reported. This figure appears in color at www.ajtmh.org.

TABLE 1
Countries’ Demographic Characteristics for 2018

Country Health events Population
Mortality rate, under 5 (per

1,000 live births)
Birth rate, crude (per 1,000

people)
Death rate, crude (per

1,000 people)

Nigeria 12 195,874,740 120 38 12
Democratic Republic

of Congo
7 84,068,091 88 41 9

China 6 1,392,730,000 9 11 7
United States 6 326,687,501 7 12 9
France 5 66,977,107 4 11 9
Cuba 1 11,338,138 4 10 9
Dominica 1 71,625 36 12 8
Guyana 1 779,004 30 20 7
United Kingdom 1 66,460,344 4 11 9
Malaysia 1 31,528,585 8 17 5

The top five and the least five countries reporting health events toWHO Disease Outbreak News.
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the United States with the greatest GDP change and Haiti,
Bahrain, and Pakistan with the least change. Among the
low- and middle-income countries, global health security
funds commitments were comparable for size with the
exception of Venezuela; however, given the political distance
between the major global health security donors and that
country during the time period, this was not surprising. After
evaluating comparisons among countries, an economic
reporting bias was not found.
In light of the ongoing novel coronavirus disease (COVID-

19) public health emergency of international concern, we
undertook an additional exploratory analysis of COVID-19
cases in the WHO DON through 30 April reported in the
countries included in our dataset, seeking to represent initial
case rises rather than the pervasive and persistent aspects
of that health emergency. A correlation analysis showed
GDP change per capita (P 5 0.024) and average forest area
(P , 0.001) linkages to COVID-19 case counts. This is fur-
ther supported with linear regression demonstrating that
GDP change per capita, average forest area, and urban pop-
ulation change influence the outcome variable—in this case,
COVID-19 cases reported (P , 0.001). An R 5 0.5 suggests
moderate correlation, and a 32% variance proportion in the
dependent variable (COVID-19 reported cases, R2) can be
predicted from these same three variable.

DISCUSSION

Research that pushes how surveillance and related activi-
ties happen is important.7 Doing so can be challenging for
many reasons. Medical intelligence and surveillance are
increasingly multisectoral in nature resulting in many stake-
holders that both compete and collaborate. Nonetheless,
opportunities for enhancing public health practice exist in
terms of increased scientific rigor, outcomes-focused

research, and health informatics.7 We sought a novel appli-
cation of unconventional data for these purposes, selecting
the WHO DON because the events matter to communities,
and the World Bank economic development indicators as
they reflect broad aspects of community wellness. We
applied them holistically in a way that mitigates their internal
validity issues.
Our work here only includes WHO countries that reported

events during 2016–2018, resting on premises that past
experiences are related to future experiences and that these
countries offer lessons for those that have not yet reported
such events, even if they may have experienced analogous
ones. We evaluated nine extrinsic factors; four of these were
significantly related to frequency of a reported emerging
infectious diseases event, with the average forest area
square meters being the extrinsic factor with the highest
effect in the Poisson analysis. Our simulation showed that
there is an 87% probability that a country will experience a
health event during a 3-year observation period if it has
undergone significant GDP, trade, and population changes
in the previous 10 years while having a large forest area. This
suggests that extrinsic factors related to a health event must
be incorporated, or a tiered approach adopted, to have a ful-
ler picture of community and patient vulnerabilities for an
event.
Previous studies have shown that extrinsic factors are

associated with health, such as green space area, popula-
tion density, wealth, education and others.8–11 Our results
showed an association between forest area and health
event. More forest area available was associated with an
increased risk of reported emerging infectious disease
events. Changes in land cover and land use, including forest
area change (particularly deforestation and forest fragmenta-
tion), urbanization (which is included here as population
urban change), and agricultural intensification are major

TABLE 3
Poisson regression model parameters estimates for health event frequency

Explanatory variable Rate ratio 95% CI for rate ratio
Significance level

(P value)

(Intercept) 1.024 0.740 1.418 0.885
GPD change per capita (US 100 dollars) 1.010 1.006 1.015 , 0.001*
Population urban change (%) 1.072 1.016 1.132 0.011*
Average forest area sq. meter (million sq/km) 1.279 1.095 1.494 0.002*
Trade percent change (%) 1.000 0.997 1.003 0.932
CI5 confidence interval. Dependent variable: event frequency.N5 96 countries from 2016 to 2018.
*P value, 0.05.

TABLE 2
Description of the economic factors evaluated

Economic factors
2006–2008 2016–2018

Mean changeMean (SD) Mean (SD)

GDP per capita (US 100 dollars) 111.77 (167.82) 120.73 (167.02) 8.96*
Population (million people) 59.28 (191.57) 66.43 (208.08) 7.14*
Urban population (%) 54.66 (24.15) 57.96 (23.84) 3.30*
Female population (%) 49.43 (3.94) 49.26 (4.52) 20.17
Population density (people per square kilometer of land area) 186.32 (266.45) 215.22 (324.09) 28.90*
Net migration† 6,428.69 (993,765.53) 215,462.46 (744,692.31) 221,127.50
Forest Area (million sq/km) 32.32 (25.31) 32.10 (25.47) 20.39
Trade (%) 90.06 (78.08) 76.38 (43.10) 216.60*
Age 65 and older (years) 6.26 (4.59) 7.42 (5.70) 1.16*
N5 96 countries from 2016 to 2018.
*Paired t-test significant at P, 0.05.
†Net migration data was available from 2007 and 2017.
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factors contributing to the surge in infectious diseases.12 A
recent study sought to forecast the next forest-based
emerging infectious disease and concluded that southern
and eastern forests around Freetown in Sierra Leone, the
forest region around Douala in Cameroon, or the southern
forest region in Nigeria were potential upcoming originating
centers of emerging infectious disease.13 These regions
have extensive forest areas, consistent with our assessment,
presumably from increased opportunities for zoonotic cross-
over events. Exposure time is a dominant feature of risk.
Urban population change had a moderate association with

health events when tested with other extrinsic factors. In
2014, the WHO asserted that urban areas held 54% of the
total global population.14 This ratio is expected to increase
from 55% in 2018 (some 4.2 billion people) to 68% by
2050.15 Our findings suggest that undergoing an urban pop-
ulation change increases risk of a health event. Whether this
is better explained by forest incursion from urbanization,
human consolidation and so increased human-to-human
exposure time, aspects of domestic travel and draw from
more wild fringe areas prone to sentinel zoonotic events, or
other root causes is less clear. Incorporation of more local
market and migration factors could assist in making these
distinctions. Regardless, with rapid global urbanization,
understanding relationships between the changing urban
environment and human health is vital. Urban environments
play an indispensable role in influencing human health and
well-being.16

Human population density has been recognized as a puta-
tive driver of emerging infectious diseases.17 Human behav-
ioral changes regarding movement and urbanization are
thought to contribute to this.18 Megacities may serve
as incubators for new epidemics and zoonotic diseases of
rapid spread.19 Sporadic encounters between wildlife and
humans in urban areas may become more frequent in periur-
ban settings, resulting in greater exposures to parasites,
dengue virus, cholera, tuberculosis, Lyme, and other
threats.17,18,20–24

Our statistically strongest association rested on whether
the gross domestic product of a country had undergone
change in the intervening decade. Studies have shown asso-
ciations between GDP and health outcomes, as well as

increased health care expenditures and GDP growth.25,26

We specifically tested whether a changing GDP changed
risk for a health event. This bore from our suspicion that
whether increasing or decreasing, a changing GDP indicated
a condition under which communities must adapt in ways
that seek new markets and ways of instigating commerce,
sporadic and sustained forest contact, evolving interactions
with urban areas, and changing patterns of interactions
between persons. Indeed, our results demonstrate that GDP
change per capita in either direction increases the probabil-
ity of an emerging infectious disease event. This suggests
that all countries are vulnerable to this effect regardless of
baseline GDP.
Our work focused on indicator development and did not

seek to establish a prediction or forecasting model. There
are, however, relevant new initiatives aimed at how risk mod-
els for infectious diseases are developed, such as the
Epidemic Prediction Initiative from the Centers for Disease
Control and Prevention.27 Although this initiative is meant to
facilitate open forecasting projects toward public health
decision-making, they are targeted to explore specific
pathogens, diseases, or vectors (e.g., dengue, influenza,
Aedes aegypti, and Aedes albopictus).27 Our approach may
be particularly useful for whole-of-society planning and
operational health emergency risk management processes,
such as that called upon in the Joint External Evaluation
monitoring progress in country attainment of International
Health Regulations 2005 capacities, as well as other capabil-
ity development and exercise initiatives.28

The main advantages of our approach are simplicity; ready
hypothesis generation from existing open source, long-lived
data mechanisms; and the ability to be adapted to specific
epidemiological scenarios, including contextual layering on
current pathogen-specific prediction models. Employing non-
health factors may improve surveillance and modeling
practice in a variety of ways, including model accuracy when
predicting risks from pandemic threats. It offers readily
observable triggers for initiating targeted risk assessments
and planning, and it may improve event-based surveillance.29

Our exploration into these effects impact on COVID-19
risk were limited. However, these results suggest that
COVID-19 disease dynamics (e.g., outbreak magnitude,

FIGURE 3. Monte Carlo simulation output using Poisson equation regression model. (A) Correlation tornado chart for input variables: gross
domestic product change per capita, population change and average forest area. (B) Probability density chart of health event frequency; reference
probability values were placed at 0.0 and 1.0 events. This figure appears in color at www.ajtmh.org.
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cases, death toll) when reported could be affected by the
economic indicators identified in our findings. The analysis
may have been heavily confounded by the pervasiveness of
COVID-19 in the pandemic setting.
Our main limitations revolve around data collection in low-

resource settings and reporting in politically associated sys-
tems. Variability existed in how data were reported in the
WHO DON. Demographic characteristics and epidemiologi-
cal indicators were sometimes nonspecific or missing.
Under-reporting of cases occurred. For example, although
Ebola virus disease, influenza, and Zika events were
reported when the outbreak started in the country, subse-
quent reports of the outbreaks were omitted or contained
limited information. Data extraction was made from WHO
DON reports; therefore all the countries incorporated in the
analysis have at least one event reported. On one hand, this
introduces bias and limits the applicability of the findings to
the nonreporting countries on the studied timeframe; on the
other hand, countries without a report were relatively few,
and the presence of at least one report indicates that the
country will and has the mechanism to report. Although our
confounding analysis regarding country wealth, funding, and
reporting behaviors yielded reassuring results, confounding
may still be present. Additionally, we did not incorporate
community and governmental action in preparedness and
response in our assessments of event likelihood; however,
the persistence of effect across resource levels suggest that
although such analysis would be valuable, it would be com-
plementary rather than obviating.
This is the first step in a path of work. We are interested in

exploring and eventually characterizing how nonhealth indi-
cators might be incorporated into the ways that surveillance
across the event- and indicator-based spectrum are con-
ducted. We perceive the value of economic indicators as
being fundamentally connected to community-centered out-
comes and purposefully in our construct oriented the tests
for associations in that way, including why we chose the
outbreak data sets that we did. Although not our focus,
eventually greater incorporation of such indicators in more
conventional health system modeling should be tested. Our
approach, in contrast, is to test the utility of such economic
indicators as triggers for deeper whole-of-society action on
health emergency prevention, readiness, and resiliency and
understanding the immediacy of threats.

CONCLUSION

Our exploratory analysis demonstrates that economic fac-
tors are associated with whether a country experiences a
significant health event from an emerging or reemerging
infectious disease, based on major health events (e.g., infec-
tious diseases outbreaks) reported by WHO member states
between 2016 and 2018. We developed a novel indicator,
GDP change per capita, which had the statistically strongest
association in our analyses. Established economic indicators
of urban population and forest area also were associated
with higher frequencies of health event reporting. Further
exploration of dynamic economic factors as tools in predic-
tion of such events anchored in community-centered out-
comes is merited. Even now, indicators representing these
factors as well as from other disciplines may be valuable for
use case applications to contextualize whole-of-society

threat-planning processes and medical intelligence, leading
to public health decision-making for priority surveillance and
other health and nonhealth investments.
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