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Abstract

Numerous living systems are hierarchically organized, whereby replicating components are grouped into reproducing collectives—e.g.,
organelles are grouped into cells, and cells are grouped into multicellular organisms. In such systems, evolution can operate at two levels:
evolution among collectives, which tends to promote selfless cooperation among components within collectives (called altruism), and evo-
lution within collectives, which tends to promote cheating among components within collectives. The balance between within- and
among-collective evolution thus exerts profound impacts on the fitness of these systems. Here, we investigate how this balance depends
on the size of a collective (denoted by N) and the mutation rate of components (m) through mathematical analyses and computer simula-
tions of multiple population genetics models. We first confirm a previous result that increasing N or m accelerates within-collective evolu-
tion relative to among-collective evolution, thus promoting the evolution of cheating. Moreover, we show that when within- and among-
collective evolution exactly balance each other out, the following scaling relation generally holds: Nma is a constant, where scaling expo-
nent a depends on multiple parameters, such as the strength of selection and whether altruism is a binary or quantitative trait. This relation
indicates that although N and m have quantitatively distinct impacts on the balance between within- and among-collective evolution, their
impacts become identical if m is scaled with a proper exponent. Our results thus provide a novel insight into conditions under which cheat-
ing or altruism evolves in hierarchically organized replicating systems.
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Introduction
A fundamental feature of living systems is hierarchical organiza-
tion, in which replicating components are grouped into reproduc-
ing collectives (Maynard Smith and Szathmáry 1995). For
example, replicating molecules are grouped into protocells (Joyce
and Szostak 2018), organelles such as mitochondria are grouped
into cells (Burt and Trivers 2006), cells are grouped into multicel-
lular organisms (Buss 1987), and multicellular organisms are
grouped into eusocial colonies (Davies et al. 2012; Gershwin et al.
2014).

Such hierarchical organization hinges on altruism among rep-
licating components (Bourke 2011), the selfless action that
increases collective-level fitness at the cost of self-replication of
individual components (West et al. 2007). For example, molecules
in a protocell catalyze chemical reactions to facilitate the growth
of the protocell at the cost of self-replication of the molecules, a
cost that arises from a trade-off between serving as catalysts and
serving as templates (Durand and Michod 2010; Ivica et al. 2013).
Likewise, cells in a multicellular organism perform somatic

functions beneficial to the whole organism, such as defence and
locomotion, at the cost of cell proliferation due to different trade-
offs (Bell 1985; Buss 1987; Kirk 1998).

Altruism, however, entails the risk of invasion by cheaters—
selfish components that avoid altruism and instead replicate
themselves to the detriment of a collective. For example, para-
sitic templates replicate to the detriment of a protocell (Maynard
Smith 1979; Bansho et al. 2016), selfish organelles multiply to the
detriment of a cell (Burt and Trivers 2006), and cancer cells prolif-
erate to the detriment of a multicellular organism (Greaves and
Maley 2012; Aktipis et al. 2015). Since cheaters replicate faster
than altruists within a collective, they can out-compete the altru-
ists, causing the decline of collective-level fitness—within-collec-
tive evolution, for short. However, collectives containing many
altruists can reproduce faster than those containing many cheat-
ers, so that altruists can be selected through competition among
collectives—among-collective evolution. Evolution thus operates
at multiple levels of the biological hierarchy in conflicting direc-
tions—conflicting multilevel evolution. Whether within- or
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among-collective evolution predominates exerts profound
impacts on the stability and evolution of hierarchically organized

replicating systems (Wilson 1975; Slatkin and Wade 1978; Aoki

1982; Crow and Aoki 1982; Leigh 1983; Kimura 1984, 1986; Frank

1994; Rispe and Moran 2000; Goodnight 2005; Traulsen and
Nowak 2006; Bijma et al. 2007; Chuang et al. 2009; Leigh 2010;

Frank 2012; Simon et al. 2013; Tarnita et al. 2013; Fontanari and

Serva 2014; Luo 2014; Takeuchi et al. 2016, 2017; Blokhuis et al.
2018; Cooney 2019; Takeuchi and Kaneko 2019; van Vliet and

Doebeli 2019), which abound in nature (Buss 1987; Maynard

Smith and Szathmáry 1995; Burt and Trivers 2006; Davies et al.

2012; Gershwin et al. 2014; Joyce and Szostak 2018). Therefore,
how the balance between within- and among-collective evolution

is determined is an important question in biology.
Previously, we have demonstrated that the balance between

within- and among-collective evolution involves a simple scaling

relation between parameters of population dynamics (Takeuchi
et al. 2016, 2017; Takeuchi and Kaneko 2019). These parameters

are the mutation rate of components (denoted by m) and the

number of replicating components per collective (denoted by
N)—in general, N represents the “size” of a collective, such as the

number of replicating molecules per protocell, organelles per cell,

cells per multicellular organism, and organisms per colony. As m

or N increases, within-collective evolution accelerates relative to
among-collective evolution (i.e., promoting the evolution of

cheating), and m and N display the following scaling relation

when within- and among-collective evolution exactly balance
each other out (i.e., no bias toward the evolution of cheating or al-

truism): Nma is a constant (i.e., N / m�a), where scaling exponent

a is approximately one half (Takeuchi et al. 2016, 2017; Takeuchi

and Kaneko 2019). This scaling relation indicates that although m
and N have quantitatively different impacts on the balance be-

tween within- and among-collective evolution, their impacts are

identical if m is scaled with exponent a (e.g., doubling N and quar-
tering m approximately cancel each other out, keeping the bal-

ance of multilevel evolution).
While the above scaling relation provides a novel insight into

how the balance between within- and among-collective evolution

is determined, the generality of this relation is unknown because
the relation has originally been demonstrated in specific models

of protocells through computer simulations (Takeuchi et al. 2016,

2017; Takeuchi and Kaneko 2019). To shed light on the generality

of the scaling relation, here, we adapt a standard model of popu-
lation genetics, the Wright–Fisher model (Ewens 2004), to investi-

gate the balance between within- and among-collective

evolution. Combining computer simulations and mathematical
analyses, we establish the following generalized scaling relation

under the assumption that selection strengths are stationary in

time: N / m�a, where a decreases to zero as selection strength s

decreases to zero. To examine further the generality of the scal-
ing relation, we analyze another simple model of multilevel evo-

lution, which approaches the model studied by Kimura (1984,

1986) as s! 0. Interestingly, our results show that this model dis-
plays a distinct scaling relation: N / m�a, where a increases to one

as s decreases to zero. We show that this difference stems from

the fact that our first model considers a quantitative trait,

whereas our second model and Kimura’s consider a binary trait.
Taken together, our results suggest that the existence of scaling

relation N / m�a is a general feature of conflicting multilevel evo-

lution, but scaling exponent a depends on multiple factors in a

nontrivial manner.

Materials and methods
Model
Our model is an extension of the Wright–Fisher model to incorpo-
rate conflicting multilevel evolution (Ewens 2004). The model
consists of a population of M replicators grouped into collectives,
each consisting of at most N replicators (Figure 1 and Table 1).
The number of replicators in a collective can increase or de-
crease, and if this number exceeds N, the collective randomly
divides into two.

Replicator j in collective i is assigned a heritable quantitative
trait (denoted by kij) representing the degree of altruism it per-
forms within collective i (e.g., kij represents the amount of chemi-
cal catalysis a replicating molecule provides in a protocell or the
amount of somatic work a cell performs in a multicellular organ-
ism). Replicators are assumed to face a trade-off between per-
forming altruism and undergoing self-replication. Thus, the
fitness of individual replicators (denoted by wij) decreases with
individual trait kij, whereas the collective-level fitness of replica-
tors hwi~j i increases with collective-level trait hki~j i, where hxi~j i is xij

averaged over replicators in collective i (i.e., xij is averaged over
the index marked with a tilde; see also Table 1). For simplicity,
we assume that the strengths of selection within and among col-
lectives, defined as

sw ¼ �
@lnwij

@kij
and sa ¼

@lnhwi~j i
@hki~j i

; (1)

respectively, depend only very weakly on kij and hki~j i (i.e.,
@sw=@kij � 0 and @sa=@hki~j i � 0). This assumption implies that the
relative fitness of replicators and collectives is translationally
invariant with respect to kij and hki~j i, respectively—i.e.,
ðwij þ DwijÞ=wij � 1þ swDkij, and ðhwi~j i þ Dhwi~j iÞ=hwi~j i � 1þ sa

Dhki~j i. Owing to this assumption, our model informs only about
short-term evolution. For computer simulations, we used the
following fitness function:

wij ¼ esahki~j i e�swkij

he�swki~j i
; (2)

where sw and sa are constant so that Equation (2) satisfies the
above assumption. This particular form of fitness function, how-
ever, does not affect our main conclusion, as will be seen from

1 generation
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low

Division

Removal

kij

Wright-Fisher
process

Collective-level

process

Replicator-level
division-removal

Figure 1 Schematic of model. Replicators (dot) are grouped into
collectives (circles). kij represents degree of altruism performed by
replicators within collectives.
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the fact that the mathematical analysis presented below is inde-
pendent of it.

The state of the model is updated in discrete time (Figure 1).
In each generation, M replicators are sampled with replacement
from replicators of the previous generation with probabilities pro-
portional to wij, as in the Wright–Fisher process (Ewens 2004).

During the above sampling, a replicator inherits group iden-
tity i and trait kij from its parental replicator with potential mu-
tation (no migration among collectives is allowed). More
precisely, the kij value of a replicator is set to kijp þ �, where kijp

is the trait of the parental replicator, and � takes a value of zero
with a probability of 1�m or a value sampled from a Gaussian
distribution with mean zero and variance r (determining muta-
tion step size) with a probability of m (representing a genetic or
epigenetic mutation rate). The assumption that the mean of �
is zero is made on the following premise: evolution is mainly
driven by selection or random genetic drift, and the direction of
evolution is not directly determined by mutation. Although
this premise often approximates reality, it can be wrong if a
mutation rate is so high as to dictate the direction of evolution
as in the error catastrophe (Domingo et al. 2005), a situation
that is ignored in this study. The assumption that r is indepen-
dent of kij is made for simplicity and implies that our model
informs only about short-term evolution. Although we could
reduce the number of parameters by aggregating m and r into
mr (which is the variance of �), we keep them separate so that
the mutation rate as usually defined is discernible.

After the above sampling, collectives containing more than N
replicators are randomly divided into two, and those with no rep-
licators removed (Figure 1).

Parameter-sweep diagram
The values of Dhhk~i~j ii used to create Figure 2 were estimated
from slopes of the least squares regression of hhk~i~j ii against time.
The estimates were unreliable if jDhhk~i~j iij < 3� 10�7 owing to a

limitation of simulations, in which case the right-hand side (RHS)
of Equation (3) was used as a proxy for Dhhk~i~j ii.

Parameter-region boundaries across which Dhhk~i~j ii changes
sign were estimated as follows. The value of N for which the RHS
of Equation (3) becomes zero was estimated for each selected
value of m with linear interpolation from the values of the RHS of
Equation (3) (or Dhhk~i~j ii if sa � 10) measured through simulations
for two smallest values of N for which the RHS of Equation (3) (or
Dhhk~i~j ii if sa � 10) has different signs (the values of m and V for
which simulations were run were selected as shown in Figure 2).
The resulting estimates of N were then used to estimate the value
of a through the least squares regression of N / m�a.

Ancestor tracking
Ancestor tracking is a method that provides novel information
about evolutionary dynamics by tracking the genealogy of indi-
viduals backwards in time. In our study, individuals whose gene-
alogy was tracked were collectives. Since collectives undergo
binary fission, their genealogy can be pictured as a binary tree,
where an event of binary fission is represented by the coales-
cence of two branches of the tree. As the tree is traversed from
the tips to the root (i.e., from the present to the past), all branches
eventually coalesce to a single branch, the stem of the tree,
which represents the lineage of common ancestors of all collec-
tives present at a particular point in time. Information about
common ancestors can be visualized as time-series data along
their line of descent, i.e., along the stem of the tree. In Figure 5D,
ni and hki~j i of the common ancestors are plotted.

Results
Demonstration of a scaling relation by computer
simulations
By simulating the above model, we measured the rate of change
of hhk~i~j ii, where hhx~i~j ii is xij averaged over all replicators, at steady

Table 1 Symbol list

Symbol Description

M Total number of replicators.
N Maximum number of replicators per collective.
L Total number of collectives.
n i Number of replicators in collective i.
kij Degree of altruism performed by replicator j in collective i.
wij Fitness of replicator j in collective i.
sw Within-collective selection strength: �ðo=okijÞlnwij.
sa Among-collective selection strength: ðo=ohki~j iÞlnhwi~j i.
m Probability of mutation of kij per generation.
e Effect of mutation on kij.
r Variance of e (only in continuous-trait model).

hxi~j i Within-collective average: n�1
i

Pni
j¼1 xij

ave~i ½xi� Among-collective average: M�1PL
i¼1 nixi

hhx~i~j ii Global average: M�1PL
i¼1

Pni
j¼1 xijð¼ ave~i ½hxi~j i�Þ

E½X� Expected X after one iteration of Wright–Fisher process.

covi~j ½xij; yij� Within-collective covariance: n�1
i

Pni
j¼1ðxij � hxi~j iÞðyij � hyi~j iÞ

cov~i ½xi; yi� Among-collective covariance: M�1PL
i¼1 niðxi � ave~i ½xi�Þðyi � ave~i ½yi�Þ

vw Within-collective variance of kij: ave~i ½hðki~j � hki~j iÞ
2i�

va Among-collective variance of kij: ave~i ½ðhki~j i � hhk~i~j iiÞ
2�

vt Total variance of kij: hhðk~i~j � hhk~i~j iiÞ
2ii (¼ va þ vw).

cw Within-collective third central moment of kij: ave~i ½hðki~j � hki~j iÞ
3i�

ca Among-collective third central moment of kij: ave~i ½ðhki~j i � hhk~i~j iiÞ
3�

N. Takeuchi, N. Mitarai, and K. Kaneko | 3



states as a function of m and N, assuming sw ¼ sa. The result indi-

cates the existence of two distinct parameter regions, where

hhk~i~j ii either increases or decreases through evolution (Figure 2;

the section Parameter-sweep diagram). (Note that although the

model displays an unlimited increase or decrease of hhk~i~j ii over

time, the model is intended to inform about short-term evolution

as described above; therefore, its result should be considered as

providing information about an instantaneous rate of evolution

in a steady state for given parameters.)
The two parameter regions mentioned above are demarcated

by scaling relation N / m�a, where a # 0 as s # 0 (Figure 3A)—i.e.,

the evolution of hhk~i~j ii becomes increasingly independent of m as

s decreases. Similar scaling relations hold also when sw ¼ 10sa or

sw ¼ 0:1sa (Figure 3A). These results generalize those previously

obtained with specific models of protocells (Takeuchi et al. 2016,

2017).

Mathematical analysis of the scaling relation
Next, we present a theory that can account for N / m�a under the

assumptions that sa and sw are sufficiently small. Although such

a theory could in principle be built by calculating the dynamics of

the frequency distribution of kij, for simplicity, we instead calcu-

late the dynamics of the moments of this distribution. The

expected change of hhk~i~j ii per generation is expressed by Price’s

equation as follows (Price 1972; Hamilton 1975)

[see Supplementary Text S1 “Derivation of Equation (3)”]:

E½Dhhk~i~j ii� ¼ hhw~i~j ii
�1fcov~i ½hwi~j i; hki~j i� þ ave~i ½covi~j ½wij; kij��g; (3)

where E½x� is the expected value of x after one iteration of the

Wright–Fisher process, cov~i ½xi; yi� is the covariance between xi

and yi over collectives, covi~j ½xij; yij� is the covariance between xij

and yij over replicators in collective i, and ave~i ½xi� is xi averaged

over collectives (see Table 1 for precise definitions). Note that the

RHS of Equation (3) is divided by hhw~i~j ii, so that E½Dhhk~i~j ii�
depends on relative rather than absolute fitness (note also that

relative fitness is independent of the absolute values of kij and
hki~j i, as described in the section Model).

Expanding hwi~j i and wij in Equation (3) as a Taylor series
around hki~j i ¼ hhk~i~j ii and kij ¼ hki~j i (Iwasa et al. 1991), we obtain
[see Supplementary Text S1 “Derivation of Equation (4)”]

E½Dhhk~i~j ii� ¼ sava � swvw þ Oðs2
wÞ þ Oðs2

aÞ; (4)

where va is the variance of hki~j i among collectives, and vw is the
average variance of kij among replicators within a collective
(Table 1). Equation (4) implies that if sa and sw are sufficiently
small, the boundary of the parameter regions, on which
E½Dhhk~i~j ii� ¼ 0, is given by the following equation: sava ¼ swvw.
Since this equation is expected to imply scaling relation N / m�a,
we need to calculate vw and va to calculate a.

To calculate vw and va, we first consider a neutral case where
sa ¼ sw ¼ 0. Let the total variance be vt ¼ va þ vw. In each genera-
tion, M replicators are randomly sampled from replicators of the
previous generation with mutation. The mutation increases vt to
the variance of kij þ �, which is vt þmr since kij and � are uncorre-
lated (the variance of � is mr). Moreover, the sampling decreases
the variance by a factor of 1�M�1 (in general, sample variance of
sample size M is smaller than population variance by a factor of
1�M�1). Therefore, the expected total variance of the next gener-
ation is

E½v0t� ¼ ð1�M�1Þðvt þmrÞ: (5)

Likewise, the expected within-collective variance of the next
generation can be calculated as follows. To enable this calcula-
tion, we assume that all collectives always consist of b�1N repli-
cators, where b is a constant (as will be described later, this
approximation becomes invalid for s � 1; however, its validity for
s� 1 is suggested by the fact that it enables us to calculate scal-
ing exponent a correctly). Randomly sampling b�1N replicators
from a collective with mutation is expected to change vw to

E½v0w� ¼ ð1� bN�1Þðvw þmrÞ: (6)

Since E½v0a� ¼ E½v0t� � E½v0w�, we obtain

E½v0a� ¼ ð1�M�1Þva þ ðbN�1 �M�1Þðvw þmrÞ; (7)

where the first term on the RHS indicates a decrease due to ran-
dom genetic drift, and the second term indicates an increase due

α
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B

Figure 3 Scaling exponent a of parameter-region boundaries where
Dhhk~i~j ii changes sign as a function of selection strength. (A) Quantitative-
trait model (M ¼ 5� 105 and r ¼ 10�4). Data points are simulation
results (see section Parameter-sweep diagram). Lines are prediction by
Equations (10) and (11). sw ¼ sa (black circle and solid line), sw ¼ 10sa

(blue triangle up and dashed line), and 10sw ¼ sa (orange triangle down
and dash-dotted line). (B) Binary-trait model (sw ¼ sa and M ¼ 5� 105).
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Figure 2 Parameter-sweep diagrams (sw ¼ sa ¼ s; M ¼ 5� 105, and
r ¼ 10�4). Symbols have following meaning: Dhhk~i~j ii > 3� 10�7 (black
filled triangle up); Dhhk~i~j ii < �3� 10�7 (orange filled triangle down); RHS
of Equation (3) measured in simulations is positive (black open triangle
up) or negative (orange open triangle down), where jDhhk~i~j iij < 3� 10�7.
Lines are estimated boundaries where Dhhk~i~j ii changes sign (see section
Parameter-sweep diagram).
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to random walks of hki~j i through within-collective neutral evolu-
tion. Note that Equations (6) and (7) partially incorporate the
collective-level division-removal process implicitly through the
assumption of a constant collective size.

Next, we incorporate the effect of selection on vw and va.
Allowing for the fact that replicators are sampled with probabili-
ties proportional to fitness wij, we can use Price’s equation to ex-
press the expected values of vw and va after one iteration of the
Wright–Fisher process as follows [see Supplementary Text S1
“Derivation of Equation (8)”; Zhang and Hill 2010]:

E½v0w� ¼ ð1� bN�1Þ½vw þmr� swcw þ Oðs2
wÞ�

E½v0a� ¼ ð1�M�1Þ½va þ saca þ Oðs2
aÞ þ Oðs2

wÞ�
þ ðbN�1 �M�1Þ½vw þmr� swcw þ Oðs2

wÞ�;
(8)

where cw is the average third central moments of kij within a col-
lective, and ca is the third central moment of hki~j i. Besides the as-
sumption of a constant collective size, the derivation of Equation
(8) involves the additional assumption that the variance of kij

within collective i is statistically independent of hki~j i as i varies.
Given that the dimension of cw and ca is equivalent to that of

v3=2
w and v3=2

a , we make a postulate, which we verify later by simu-
lations, that

ca ¼ �cav3=2
a ;

cw ¼ cwv3=2
w ;

(9)

where ca and cw are positive constants. An intuitive reason for
postulating that ca < 0 is due to the finiteness of M, as follows
(Figure 4). The distribution of hki~j i has a finite range since M is fi-
nite. The right tail of this distribution, the one with greater hki~j i, is
exponentially amplified by selection among collectives; however,
the right tail cannot be extended because its length is finite
(Tsimring et al. 1996; Hallatschek 2011). By contrast, the left tail is
contracted by among-collective selection, and this contraction is
unaffected by the finiteness of the tail length. Likewise, the finite-
ness of tail lengths does not affect the rightward shift of the
mean of the distribution due to among-collective selection.
Consequently, asymmetry builds up such that the right tail
becomes shorter than the left tail, hence ca < 0. The same argu-
ment can be applied to cw, but the direction of selection is oppo-
site, hence the opposite sign: cw > 0.

Combining Equations (8) and (9), we obtain

E½v0w� ¼ ð1� bN�1Þ½vw þmr� cwswv3=2
w þ Oðs2

wÞ� (10)

E½v0a� ¼ ð1�M�1Þ½va � casav3=2
a þ Oðs2

wÞ þ Oðs2
aÞ�

þ ðbN�1 �M�1Þ½vw þmr� cwswv3=2
w þ Oðs2

wÞ�;
(11)

Equations (10) and (11) enable us to calculate vw and va at a
steady state if sa and sw are sufficiently small (a steady state is
defined as E½v0w� ¼ vw and E½v0a� ¼ va). For illustration, let us con-
sider extreme conditions in which the expressions of vw and va

become simple. Specifically, if b�1N� 1 and sw �
½cw

ffiffiffiffiffiffiffi
mr
p

ðb�1NÞ3=2��1, Equation (10) implies that

vw � b�1Nmr: (12)

Moreover, Equation (11) implies that

M�1va þ casav3=2
a � ðbN�1 �M�1Þvw; (13)

where the term involving saM�1 is ignored under the assumption
that both sa and M�1 are sufficiently small (and the assumptions
that b�1N� 1 and sw � ½cw

ffiffiffiffiffiffiffi
mr
p

ðb�1NÞ3=2��1 are used again).
Substituting Equation (12) into Equation (13), we obtain

va �
Mmr 1� b�1N

M

� �
if sa � ðca

ffiffiffiffiffiffiffi
mr
p

M3=2Þ�1

mr
casa

1� b�1N
M

� �h i2=3
if sa � ðca

ffiffiffiffiffiffiffi
mr
p

M3=2Þ�1:

8><
>: (14)

Equation (14) shows that va at a steady state is independent of
N if b�1N� M, a result that might be contrary to one’s intuition
since by the law of large number, increasing N reduces random
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Figure 4 Mechanism by which trait distribution becomes skewed owing
to selection and finiteness of population. Drawing depicts frequency
distributions of collective-level trait hki~j i (orange) and effect of among-
collective selection (blue arrows; for simplicity, within-collective
selection is not depicted). Distribution is initially assumed to be
symmetric (left), so that its third central moment ca is zero. Tails of
distribution have finite lengths due to finiteness of total population size
M (red arrows). Because of finite lengths, left and right tails react
differently to selection depending on whether they are amplified or
reduced (red cross; see also main text). Consequently, distribution gets
skewed (right), and ca becomes negative. It is postulated based on
dimension that ca / �v3=2

a at steady state, where va is variance of hki~j i.
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Figure 5 Testing theory by simulations (M ¼ 5� 105; r ¼ 10�4, and
sw ¼ sa ¼ s). (A) Circles are simulation results: s ¼ 10�6 (pink), 10�5

(black), 10�2 (red), 1 (orange), and 102 (blue). Lines are least squares
regression: va / mg, where g ¼ 0:98 (pink), 0.8 (black), 0.62 (red), 0.48
(orange), and 0.45 (blue). (B) Circles are simulation results: s ¼ 10�5

(black), 10�2 (red), and 102 (blue). For s ¼ 10�2 or 102, lighter (or darker)
colors indicate Dhhk~i~j ii < 0 (or > 0, respectively). Line is vw / mN, as
predicted by Equation (12). (C) Circles are simulation results: s ¼ 10�5

(black), 10�2 (red), 100 (orange), and 102 (blue). Line is jcaj / v3=2
a , as

postulated in Equation (9). (D) Dynamics of common ancestors of
collectives: number of replicators per collective (black) and hki~j i (orange).
s¼ 1, N¼ 562, and m¼ 0.01. See also section Ancestor tracking.
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genetic drift within collectives and thus decelerates the growth of
va. Indeed, the increase of va per generation is approximately pro-
portional to N�1vw according to the second term of Equation (11).
However, since vw / Nm according to Equation (12), N cancels
out, so that va is independent of N (see Supplementary Figure S1
for simulation results). This cancelation resembles that occurring
in the rate of neutral molecular evolution, which is also indepen-
dent of population size (Kimura 1968).

To examine the validity of Equations (10) and (11), we mea-
sured va, vw; ca, and cw through simulations, assuming sw ¼ sa ¼
s (Figure 5). The results show that va / m for a very small value
of s (viz., 10�6) in agreement with Equation (14) (Figure 5A).
Moreover, vw / mN as predicted by Equation (12) (Figure 5B), ex-
cept for cases where Dhhk~i~j ii < 0 (this deviation will be discussed
later). Finally, ca � cav3=2

a if s� 1 (Figure 5C), and cw � cwv3=2
w if

s� 1 and Dhhk~i~j ii�0 (Supplementary Figure S2), as postulated in
Equation (9). Taken together, these results support the validity of
Equations (10) and (11) when sw and sa are sufficiently small, and
m and N are close to the boundary of the parameter regions (i.e.,
Dhhk~i~j ii � 0).

Using Equations (10) and (11), we can calculate the scaling ex-
ponent (a) of the boundary of the parameter regions for suffi-
ciently small sa and sw. Since E½Dhhk~i~j ii� ¼ 0 on the parameter
boundary, Equation (4) implies that va=vw � sw=sa. Thus, for ex-
treme parameter conditions (viz., 1� b�1N� M, and
sw � ½cw

ffiffiffiffiffiffiffi
mr
p

ðb�1NÞ3=2��1), Equations (12) and (14) imply that

a � 0 if sa � ðca
ffiffiffiffiffiffiffi
mr
p

M3=2Þ�1

a � 1=3 if sa � ðca
ffiffiffiffiffiffiffi
mr
p

M3=2Þ�1:
(15)

For sa 	 ðca
ffiffiffiffiffiffiffi
mr
p

M3=2Þ�1, Equations (12) and (13) imply that

rM�1b�1ðNþ
ffiffi
r
p

saCN3=2m1=2Þ � 1; (16)

where r ¼ sw=sa and C ¼ ca

ffiffiffiffiffiffiffiffi
r=b

p
M, and Equation (16) implies that

a increases from zero to one-third as
ffiffi
r
p

sa increases from zero.
We also numerically obtained a by calculating the values of N

and m (m 2 ½10�4; 10�1�) that satisfy va=vw ¼ sw=sa at a steady
state using Equations (10) and (11), and the values of b, ca, and cw

estimated from Figure 5BC and Supplementary Figure S2, respec-
tively [viz., b�1 ¼ 0:45 and ca ¼ 0:26 through least squares regres-
sion of Equations (12) and (9) for s ¼ 10�6 and 10�2, respectively;
cw ¼ 0:25 through least squares regression of Equation (9) for
Dhhk~i~j ii�0]. The results agree with the simulation results for sa <

1 when r¼ 1 and 10, and for sa < 10�3 when r¼ 0.1 (Figure 3A).
We do not know why the validity of analytical prediction is re-
stricted when r is small. Overall, the above results support the va-
lidity of Equations (10) and (11) for sufficiently small values of sa

and sw.
In addition, we note that the postulate in Equation (9) is also

supported by previous studies calculating the evolution of a
quantitative trait (viz., fitness) subject to single-level selection
(Tsimring et al. 1996; Hallatschek 2011). These studies show that
fitness increases through evolution at a rate proportional to the
two-third power of the mutation rate. That result is consistent
with Equations (10) and (11) and, hence, also with Equation (9), as
follows. Since Tsimring et al. (1996) assume single-level selection
and a very large population, let us also assume that sw ¼ 0 and
M!1, respectively, in our model. Then, Equations (4) and (14)
imply that logarithmic fitness, lnhhw~i~j ii / hhk~i~j ii, increases at a
rate proportional to m2=3 (Supplementary Figure S1). Reversing
the argument, we can also use the model of Tsimring et al. (1996)

to estimate the value of ca as about 0.25 (Supplementary Text S1

under “Estimation of ca”), which matches the value measured in

our model (viz., 0.26). Moreover, the model of Tsimring et al.

(1996) can also be applied to estimate cw, and the value of cw

measured in our model is about 0.25 (Supplementary Figure S2).

Taken together, these agreements corroborate the validity of

Equation (9).
Finally, to clarify why Equations (10) and (11) deviate from the

simulation results for s � 1 or Dhhk~i~j ii < 0, we tracked the geneal-

ogy of collectives backwards in time to observe the common

ancestors of all collectives (the section Ancestor tracking).

Figure 5D displays the dynamics of hki~j i and ni (the per-collective

number of replicators) in these ancestors along their single line

of descent. The results indicate that the model displays a phe-

nomenon previously described as evolutionarily stable disequilib-

rium (ESD, for short; Takeuchi et al. 2016). Briefly, the collectives

constantly oscillate between growing and shrinking phases

(Figure 5D). During the growing phase, the collectives continually

grow and divide, and their hki~j i values gradually decline through

within-collective evolution, a decline that eventually puts the

collectives to a shrinking phase. In the shrinking phase, the col-

lectives steadily decrease in the number of constituent replica-

tors; however, their hki~j i values abruptly jump at the end of the

shrinking phase, a transition that brings the collectives back to

the growing phase. This sudden increase of hki~j i is due to random

genetic drift induced by very severe within-collective population

bottlenecks. Although such an increase of hki~j i is an extremely

rare event, it is always observed in the lineage of common ances-

tors because these ancestors are the survivors of among-

collective selection, which favors high hki~j i values (Takeuchi et al.

2016, 2017).
ESD breaks the assumption—involved in Equations (10) and

(11)—that all collectives always consist of b�1N replicators be-

cause ESD allows extremely small collectives to regrow and con-

tribute significantly to vw and va (note that the contributions of

collectives to vw and va are proportional to the number of replica-

tors they contain, as defined in Table 1). We found that ESD

occurs for s � 1 (Figure 5D) or for Dhhk~i~j ii < 0 (Supplementary

Figure S3). Thus, ESD might be responsible for the failure of

Equations (10) and (11) to predict a for s � 1 (Figure 3) as well as

the fact that ca 6¼ cav2=3
a for s � 1 (Figure 5C). In addition, ESD

might also be responsible for the fact that vw is not proportional

to mN when Dhhk~i~j ii < 0 (Figure 5B).
Another potential reason for the failure of Equations (10) and

(11) for s � 1 is the fact that va and ca constantly oscillate with a

periodic sign change of ca (Figure 6). This oscillation not only

invalidates the assumption that ca ¼ cav2=3
a but also makes it

questionable to consider a steady-state solution of Equations (10)

and (11). Finally, we add that this oscillation is distinct from ESD,

in that it is observed in terms of va and ca, which are properties of

an entire population of collectives, whereas ESD is observed in

terms of the properties of common ancestors of collectives.

Comparison to a binary-trait model
To examine further the generality of the scaling relation de-

scribed above, we next consider a study by Kimura (1984, 1986).

Kimura has investigated a binary-trait (i.e., two allele) model of

multilevel evolution formulated based on a diffusion equation.

Using this model, Kimura has revealed the following scaling rela-

tion that holds when within- and among-collective evolution ex-

actly balances each other out:
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N ¼ bsa

4sw
m�1 (17)

(the notation has been converted to ours as described in
Supplementary Text S1 under “Converting Kimura’s notation
into ours”; Kimura 1984, 1986). Equation (17) is derived under the
assumption that the steady-state frequency of the altruistic al-
lele is identical to that in the absence of selection, thus involving
a weak-selection approximation (Kimura 1984, 1986). Therefore,
the scaling exponent in Kimura’s model (a � 1) differs from that
in ours (a � 0) for sa � 0 and sw � 0.

To study how a depends on s (where s ¼ sw ¼ sa) if the trait is
binary, we modified our model into a binary-trait model by as-
suming that kij switches between zero and one at mutation rate
m. By simulating the modified model, we obtained a parameter-
sweep diagram, where parameter regions were defined by the
sign of hhk~i~j ii � 1=2 at steady states (Supplementary Figure S4;
this definition of parameter regions is essentially equivalent to
that used for the quantitative-trait model, in that it can be
rephrased in terms of the sign of Dhhk~i~j ii at hhk~i~j ii ¼ 1=2). The
results show that the parameter-region boundary constitutes
scaling relation N / m�a, where a " 1 as s # 0 (Figure 3B)—i.e., the
evolution of hhk~i~j ii becomes increasingly dependent on m as s
decreases. Therefore, the way a depends on s is compatible with
Equation (17), but is opposite to that in the quantitative-trait
model, where a # 0 as s # 0 (Figure 3A).

To pinpoint why the two models yield such distinct predic-
tions, we re-derived Equation (17) using the method developed in

the section Mathematical analysis of the scaling relation (for details,
see Supplementary Text S1 under “Derivation of Kimura’s result
through our method”). Briefly, the most important difference
from the quantitative-trait model is in the definition of mutation:
� depends on kij in the binary-trait model (specifically, � takes a
value of 1� 2kijp with a probability of m, where kijp is the trait of a
parental replicator). While this difference does not alter the con-
dition for a parameter-region boundary implied by Equation (3), it
significantly changes the calculation of variances. Namely,
Equations (6) and (7) need to be modified to

E½v0w� � ð1� bN�1Þ½vw þ 4mð1�mÞva� (18)

E½v0a� � ð1�M�1Þva þ ðbN�1 �M�1Þvw (19)

�4ð1� bN�1Þmð1�mÞva; (20)

respectively, where we have assumed that the parameters are on
a parameter-region boundary and, therefore, that hhk~i~j ii ¼ 1=2.
Equations (18) and (19) ignore the effect of selection and are thus
an approximation expected to be valid for sufficiently weak selec-
tion. Dividing Equation (18) by Equation (19) on each side and as-
suming a steady state (i.e., E½v0w�=E½v0a� ¼ vw=va), we obtain

vw

va
� 4mð1�mÞð1� bN�1Þ

bN�1 �M�1 : (21)

Imposing the condition for a parameter-region boundary,
vw=va � sa=sw, we obtain

4mð1�mÞð1� bN�1Þ
bN�1 �M�1 � sa

sw
; (22)

which is approximately the same as Equation (17) if m� 1 and
M�1 � bN�1 � 1 as assumed by Kimura (1984, 1986).

Equations (18) and (19) allow us to understand why the two
models display different scaling exponents. These equations con-
tain terms involving 64mð1�mÞva, which increase vw and com-
mensurately decrease va. This “transfer” of variance occurs
because mutation causes hki~j i to tend toward 1/2, for which vw is
maximized, in every collective. In other words, mutation directly
causes the convergent evolution of hki~j i, raising the vw=va ratio.
Consequently, the balance between within- and among-
collective evolution strongly depends on m. By contrast, the
quantitative-trait model assumes that mutation does not cause
any directional evolutionary change in hki~j i. Moreover, mutation
equally increases vw and va according to Equations (10–12).
Consequently, the balance between within- and among-
collective evolution does not much depend on m if selection is
weak.

Discussion
The results presented above suggest that scaling relation N / m�a

is a general feature of conflicting multilevel evolution. Scaling ex-
ponent a, however, depends in a nontrivial manner on the
strength of selection and whether altruism is a quantitative or bi-
nary trait.

Although we have assumed that the parameters involved in
the scaling relation—the mutation rate, selection strength, and
the distinction between quantitative and binary traits—are inde-
pendent of each other, these parameters are potentially corre-
lated in reality. While such correlations are not well understood
(Thompson et al. 2013; Kasper et al. 2017), discussing them can

2.8e+4 2.9e+4 3e+4

-2e-3

2e-3

0

1e-4

-1e-4

0va ca

Generations

A

0 1e-3 2e-3 3e-3

0

-1e-4

1e-4

ca

va

B

Figure 6 Oscillation of va and ca observed in simulations (N¼ 5623,
m¼ 0.1, sa ¼ sw ¼ 1; M ¼ 5� 105, and r ¼ 10�4). (A) va (black, left
coordinate) and ca (red, right coordinate) as functions of generations. (B)
Phase-space trajectory of same data as shown in A. Cross indicates
mean values of va and ca in this trajectory. Arrows indicate direction of
trajectory.
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illustrate the utility of the findings of this study. For this illustra-

tion, we first note that whether altruism is a quantitative or bi-

nary trait can be translated into the number of loci involved in

altruism: a quantitative trait involves many loci, whereas a bi-

nary trait involves one. The number of loci is likely to be posi-

tively correlated with the mutation rate of the trait, and it is

possibly negatively correlated with the effect size of mutation

(e.g., a single locus with large effects vs many loci with small

effects). The effect size of mutation, in turn, is possibly positively

correlated with the strength of selection. These correlations,

which we assume here for the sake of illustration, would imply a

spectrum of altruism ranging from a strongly selected, binary

trait with a low mutation rate to a weakly selected, quantitative

trait with a high mutation rate (we are ignoring the possibility

that mutations have highly heterogeneous effects). Such correla-

tions would be conducive to the evolution of altruism, an infer-

ence that is enabled by the following findings of this study:

binary-trait altruism is susceptible to the invasion by cheaters for

a high mutation rate, but this susceptibility decreases with selec-

tion strength (a decreases with s); by contrast, quantitative-trait

altruism is relatively insensitive to mutation for weak selection (a

decreases to zero as s decreases to zero).
Although the results of this study are phrased in the language

of multilevel selection (Wilson 1975; Slatkin and Wade 1978; Aoki

1982; Crow and Aoki 1982; Leigh 1983; Kimura 1984, 1986; Frank

1994; Rispe and Moran 2000; Goodnight 2005; Traulsen and

Nowak 2006; Bijma et al. 2007; Chuang et al. 2009; Leigh 2010;

Frank 2012; Simon et al. 2013; Tarnita et al. 2013; Fontanari and

Serva 2014; Luo 2014; Takeuchi et al. 2016, 2017; Blokhuis et al.

2018; Cooney 2019; Takeuchi and Kaneko 2019; van Vliet and

Doebeli 2019), they can easily be rephrased, mutatis mutandis, in

the language of kin selection (Cheverud 1985; Queller 1985;

Queller 1992; Wolf et al. 1999; Frank 1997; Gardner et al. 2007;

Bijma and Wade 2008; Chuang et al. 2010; McGlothlin et al. 2010;

Queller 2011; Akçay and van Cleve 2012; McGlothlin et al. 2014).

To do this, we define the relatedness of replicators as the regres-

sion coefficient of hki~j i on kij (Hamilton 1970; Rice 2004), i.e.,

R ¼ va=ðva þ vwÞ, and express all the results in terms of R instead

of vw=va. Therefore, our results are compatible with the kin selec-

tion theory.
An important issue to address for future research is to test

whether the scaling relation is observed in reality. Such tests

could in principle be conducted through evolutionary experi-

ments.
Capturing the essence of multilevel selection, the models and

analyses presented above are likely to have broad utility. They

are generally relevant for the evolution of altruism in replicators

grouped into reproducing collectives, e.g., symbionts, organelles,

or genetic elements grouped into cells (Burt and Trivers 2006),

cells grouped into multicellular organisms (Buss 1987), or other

systems that have emerged through major evolutionary transi-

tions (Maynard Smith and Szathmáry 1995).

Data availability
Supplementary Texts and Figures can be found in

Supplementary File S1. Cþþ source code implementing the mod-

els can be found in Supplementary File S2. Supplementary mate-

rial is available at figshare: https://doi.org/10.25386/genetics.

14337251.
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