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Abstract The noisy threshold regime, where even a small
set of presynaptic neurons can significantly affect post-
synaptic spike-timing, is suggested as a key requisite for
computation in neurons with high variability. It also has
been proposed that signals under the noisy conditions are
successfully transferred by a few strong synapses and/or by
an assembly of nearly synchronous synaptic activities. We
analytically investigate the impact of a transient signaling
input on a leaky integrate-and-fire postsynaptic neuron that
receives background noise near the threshold regime. The
signaling input models a single strong synapse or a set of
synchronous synapses, while the background noise repre-
sents a lot of weak synapses. We find an analytic solution
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that explains how the first-passage time (ISI) density is
changed by transient signaling input. The analysis allows
us to connect properties of the signaling input like spike
timing and amplitude with postsynaptic first-passage time
density in a noisy environment. Based on the analytic solu-
tion, we calculate the Fisher information with respect to
the signaling input’s amplitude. For a wide range of ampli-
tudes, we observe a non-monotonic behavior for the Fisher
information as a function of background noise. Moreover,
Fisher information non-trivially depends on the signaling
input’s amplitude; changing the amplitude, we observe one
maximum in the high level of the background noise. The
single maximum splits into two maximums in the low noise
regime. This finding demonstrates the benefit of the analytic
solution in investigating signal transfer by neurons.

Keywords First-passage time density - Transient signaling
input - Strong synapse - Gaussian noise - Threshold
regime - Fisher information

1 Introduction

High variability in spiking activities of in vivo cortical
neurons is considered as one of the fundamentals of infor-
mation processing by networks of neurons (Softky and
Koch 1993; Shadlen and Newsome 1998). Since it is dif-
ficult to experimentally control mechanisms that underlie
the highly variable neuronal activity, theoretical and com-
putational analysis of a stochastically spiking neuron model
are invaluable approaches to investigate how information is
transferred via the variable spiking activities (Abbott et al.
2012). Statistics of spike timing beyond the spike-rate con-
veys information in the sensory systems; in particular,
neuron’s first-spike time after stimulus onset can encode
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most of the information in the sensory cortex (Petersen
et al. 2001; Panzeri et al. 2001; Van Rullen and Thorpe
2001; Furukawa and Middlebrooks 2002; Johansson and
Birznieks 2004; Van Rullen et al. 2005). Hence the spike-
timing distribution, if attained at sufficient accuracy, could
be a building block in modeling neural computation (Herz
et al. 2006); it would explain consequences of activity-
dependent plasticity (Babadi and Abbott 2013), information
transmission by a population of neurons (Silberberg et al.
2004; De La Rocha et al. 2007; Pitkow and Meister 2012)
and even behavior (Pitkow et al. 2015). An analytical solu-
tion would serve this purpose; however, the non-linear
dynamics of a single neuron has so far prevented obtaining
such a solution.

The variability observed in spike-timing is thought to
reflect fluctuations of synaptic inputs rather than the intrin-
sic noise of neurons (Mainen and Sejnowski 1995). A
neuron is sensitive to input fluctuations and fires irregularly
if inputs from excitatory and inhibitory neurons are bal-
anced at levels near but below the threshold (Shadlen and
Newsome 1998). Intracellular recordings from in vivo corti-
cal neurons have revealed ubiquity of such balanced inputs
from excitatory and inhibitory populations (Wehr and Zador
2003; Okun and Lampl 2008). The balanced inputs are self-
organized in sparsely connected networks with relatively
strong synaptic connections and result in asynchronous pop-
ulation activities (van Vreeswijk and Sompolinsky 1996;
1998; Kumar et al. 2008; Renart et al. 2010). Encourag-
ingly, a recent experiment (Tan et al. 2014) demonstrated
that membrane potential of macaque V1 neurons are dynam-
ically clamped near the threshold when a stimulus is pre-
sented to the animal. All these evidence place importance
on developing an analytic solution to understand neural
behavior near the threshold regime.

On the other hand, the distribution of synaptic strength
is typically a log-normal distribution, which indicates the
presence of a few extremely strong synapses and a major-
ity of weak synapses (Song et al. 2005; Lefort et al. 2009;
Ikegaya et al. 2013; Buzsdki and Mizuseki 2014; Cossell
et al. 2015). These strong synapses may form signaling
inputs (Abbott et al. 2012), with the aid of other weak
synapses (Song et al. 2005; Teramae et al. 2012; Ikegaya
et al. 2013; Cossell et al. 2015). Moreover, it has been long
debated that nearly synchronized inputs, from multiple neu-
rons, act as a strong signal on top of the noisy background
input (Stevens and Zador 1998; Diesmann et al. 1999; Sali-
nas and Sejnowski 2001; Takahashi et al. 2012). The strong
input, in many cases, is a short lasting signal. For exam-
ple, the signaling inputs which code stimulus information
in early sensory processing areas like in primary visual and
auditory cortex, are usually known to be transient (Gol-
lisch and Herz 2005; Geisler et al. 2007). Thus, besides
many weak synapses which form a noisy background input,
we should also consider strong or temporally coordinated
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synaptic events which induce strong transient signaling
inputs.

The leaky integrate-and-fire (LIF) neuron model is the
simplest model that captures the important features of cor-
tical neurons (Rauch et al. 2003; La Camera et al. 2004;
Jolivet et al. 2008). This simple model is largely used to
investigate the input-output relation of postsynaptic neu-
ron (Tuckwell 1988; Brunel and Sergi 1998; Burkitt and
Clark 1999; Lindner et al. 2005; Burkitt 2006a, b; Richard-
son 2007, 2008; Richardson and Swarbrick 2010; Helias
et al. 2013; Iolov et al. 2014). There are analytical studies
which obtained the linear response of the neuron to oscilla-
tory signaling input (Bulsara et al. 1996; Brunel and Hakim
1999; Brunel et al. 2001; Lindner and Schimansky-Geier
2001), excitatory and inhibitory synaptic jumps (Richardson
and Swarbrick 2010; Helias et al. 2010) or transient input
(Herrmann and Gerstner 2001; Helias et al. 2010, 2011).
However, a closed-form analytical solution for the impact
of strong transient signaling input on a LIF neuron model
subject to Gaussian noise is not achieved yet.

Here we analytically derive the first-passage time den-
sity of a LIF neuron receiving transient signaling input with
arbitrary amplitude; the background input is noisy but bal-
anced at the threshold regime. We extend our solution for
the arbitrary shape of transient signaling input. As an appli-
cation of this solution, we calculate the Fisher information
with respect to input’s amplitude; the maximum of Fisher
information provides the minimum error to estimate the sig-
naling input’s amplitude from spiking activity. We quantify
the noise level and signal’s amplitude which yield the best
possible discrimination.

2 Results

2.1 Impact of a transient signaling input
on postsynaptic spiking

We consider a specified presynaptic neuron that provides
the transient signaling input, while the rest of presynaptic
neurons produce noisy background inputs to the postsynap-
tic neuron (Fig. 1a). The question is how a single spike of
the signaling input affects the spike timing of the postsynaptic
neuron (Fig. 1b). We use the LIF neuron model for postsy-
naptic neuron; the membrane potential, V, evolves with:
dv
m— - =—V-=V)+1(), ey
dt
where 1, is the membrane time constant, and I (¢) is the
total input current. The neuron produces a spike when its
voltage reaches the threshold, V. The membrane voltage
then resets to its resting value, V,., which we assume to be
zero without loss of generality.
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Fig. 1 The framework to study the impact of a specified presynap-
tic neuron on postsynaptic spiking activity. a The effect of specified
presynaptic neuron is separated from the noisy background input,
which is produced by the rest of presynaptic neurons. b A schematic
view of the signaling input activity and its effect on the mem-
brane potential and spiking of the postsynaptic neuron. ¢ Postsynaptic
membrane potential versus time, Top-left: There can be different tra-
jectories, due to the noise. Any trajectory, if not reached the threshold

The effect of specified signaling input, and the rest of
excitatory/inhibitory presynaptic neurons come through the
input current / (¢):

1(t) = Ip(t) + Al (1, 1), ()

where Io(t) is the background input induced by presy-
naptic neurons, and A/(¢, t*) is the signaling input from
the specified neuron; here ¢* represents the time that the
signaling input arrives. For large number of presynaptic neu-
rons, the uncorrelated background input is approximated as:
Io@) = I + &(t), where [ is the mean input strength and
&(t) is a zero mean Gaussian noise (i.e. < £(t) >= 0 and
<EMEW) >= 2D58(t —t'), where 8(¢) is the Dirac delta
function).

When a spike from presynaptic neuron arrives at synaptic
terminal, the postsynaptic current instantaneously increases
according to the strength of the synapse, and decays with
a time constant of t;. For 17y < 1, which is measured for
fast currents generated by AM PA and GABA 4 receptors
(Destexhe et al. 1998), we can model the input current as
(Stern et al. 1992):

0 t <t*,
Al t*)=Ax { 1/At *F<r<t*+Ar, (3)
0 t*+ Ar <1,

where At ~ 1,. This resembles a current which begins
at ¢ t*, remains constant for a short time window,
t € [t*, t* + At], and vanishes after that. It transmits a net
charge of A regardless of At; it also converges to the Dirac
delta function in the limit of Ar — 0 (i.e. AI(¢,t*) —

before signaling input arrival at ¥, shows a sharp increase during *
to t* 4+ Az time window. Top-right: For the particular case of = Vj,
we can use the image method. The membrane potential trajectory and
its mirror image coincide at V = T line. This can help to fulfill the
thresholding criteria if it is the same line of V = Vj. Bottom: It shows
the membrane potential trajectory of the postsynaptic neuron. When
the voltage reaches to Vjy, the neuron fires and the voltage resets to 0.
Here we particularly consider the first spike after t = 0

A §(t—1*)). In this limit, the process (see Eq. (1)) converges
to jump-diffusion process (Kou and Wang 2003).

As mentioned, a key element of this article is to predict
when the postsynaptic neuron spikes if the signaling input
arrives at t*. We consider the last spike of the postsynaptic
neuron as the origin of time, t = 0, and analytically pre-
dict when the first postsynaptic spike will happen (Fig. 1b).
However, because of the stochastic term in the background
input, £(z), we cannot predict the exact time of the next
spike, but can describe its probability density, J(Vp, 1).

We consider an ensemble of many postsynaptic neurons
(or many repetitions of the same experiment with a single
postsynaptic neuron); the life of each neuron in this ensem-
ble is described by a trajectory of V (), which is governed
by the LIF equation (see Fig. lc, top-left). All trajectories
begin from the same point (V = 0 at t = 0), but do not fol-
low the same path; because of different values realized for
the stochastic background noise, £ (7). The neuron initiates
a spike if a trajectory passes the threshold voltage, Vy. Then
J(Vp, t), which we shortly call first-passage time density,
is the probability density function that a trajectory passes
Vy at time t. However, to obtain J(Vp, t), we have to know
P(V,t), the probability density that a trajectory has the
potential V' at time ¢. This membrane potential probability
density satisfies the Fokker-Planck (FP) equation (Risken
1984; Kardar 2007):

2

8P(V 1) =
ot .

— PV, ¢t
T2 V2 V.0

1 _
+——a [(V—1—AI(t%)P(V,0)]. 4)
Tm 0V
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Here, the temporal evolution of P(V, 1) is governed by (i)
a diffusion term which is a signature of the stochastic input
(i.e. £(1)), and (ii) a drift term which represents both the leak
and the non-stochastic currents (i.e. I and AI(z, t*)).

Threshold nonlinearity of neuronal spike generation is
dictated as a boundary condition in Eq. (4). The LIF neuron
spikes if it passes the threshold voltage. Since each mem-
brane trajectory ends at the threshold, there is no neuron
with V > Vp. In the continuum limit, this results in the
absorbing boundary condition of P(V > Vy, t) = 0 (Gerst-
ner et al. 2014). Here, we do not consider the reappearance
of the trajectory from the resting potential after each spike
occurs; because we are interested in neuron’s first spike
only (Fig. 1c, down). This results in the absorbing bound-
ary condition instead of the widely used periodic boundary
condition to derive firing rate (Brunel and Hakim 1999;
Brunel et al. 2001; Lindner and Schimansky-Geier 2001;
Richardson and Swarbrick 2010).

Finally, we will obtain P(V,t) for t > ty by solving
Eq. (4) under this boundary condition once we specify an
initial distribution of the membrane potential at time r = 0.
Here we use P(V,0) = §(V) as we assumed that all
membrane trajectories started from V = 0.

Unfortunately, the analytical solution of P(V, t) and con-
sequently J(Vp, t) is not attainable in general even if we
discard the signaling input from the equation. However, we
may obtain the analytical solution at a particular regime
known as the threshold regime, which will be described
in detail as follows. For a fixed noise strength (i.e., D),
a simple ratio 7/ Vj determines how P(V,t) and the cor-
responding first-passage time density of J(Vp,t) behave.
The neuron regularly spikes if I significantly exceeds Vj;
because the high value of mean input robustly drives neu-
ron to its threshold. If, on the other hand, I <« Vpy, there
would be occasional spikes whenever the noise or the sig-
naling input happens to be strong enough to prevail the gap
between I and V. An interesting regime exists somewhere
in-between; for I ~ Vj, a modest signaling input or some
conventional noise can induce spike of the postsynaptic neu-
ron. This is the near threshold regime. It was empirically
observed (Shadlen and Newsome 1998; Tan et al. 2014)
and suggested as a basis of high variability in neural net-
works (van Vreeswijk and Sompolinsky 1996, 1998). The
quest for a closed-form analytical solution for Eq. (4) also
leads us to the very same regime. There exists a closed-form
solution for P(V,t), and consequently for J(Vy, 1), if (i)
I = Vj and (ii) no signaling input is applied: A7 (¢, t*) = 0
(Wang and Uhlenbeck 1945; Sugiyama et al. 1970; Bul-
sara et al. 1996). Below, we describe the reason behind this
peculiarity of the threshold regime and revisit the closed-
form solution without the signaling input. We then extend
this analytical solution to include effect of the signaling
nput.
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2.2 The first-passage time density in the absence
of signaling input

We begin with the simpler condition in which the signaling
input is turned off (AI(z,t*) = 0). Even in such a case,
solutions for P(V,t) are, in general, available only in a
non-closed form such as inverse Laplace transforms (Siegert
1951; Ricciardi and Sato 1988; Ostojic 2011). However,
there exists a closed-form analytical solution for the par-
ticular case of the threshold regime, I = V, (Wang and
Uhlenbeck 1945; Sugiyama et al. 1970; Tuckwell 1988).

A closed-form solution for probability density would
exist for arbitrary I if we could neglect the absorbing bound-
ary condition. Assume that we have freed ourselves from
the absorbing boundary condition, and that the membrane
potential has a definite value of V = Vj at time t = 1y,
there exists a closed-form analytical solution for Eq. (4), for
t > to. It would be the free Green’s function, and it reads
(Uhlenbeck and Ornstein 1930):

G (V.t:Voutg) = | !
PB =N DT — 123t — 1)

[ Tm (V—I_—(Vo—l_)r(t—to))z}
Xexp|——— .

2D 1 —7r2(t — 1)
(5)

Here Vp and 1y quote the initial condition, and r(t) =
exp [—f/tm]. The free Green’s function describes a proba-
bility density of the membrane trajectories which all begin
from the point O; = (7o, Vp), but follow different paths due
to the noise (see Fig. lc, Right). Since we have neglected
the threshold for the moment, the trajectories do not end as
they pass the threshold line, V = Vj. Thus we can freely
consider any initiating point, even above the threshold line,
for the trajectories. It would be O = (f, 21 — V), the
mirror-image point of Oy, with respect to the V = I line
(Fig. 1c, Right). The probability density for this initiating
pointis G (V, t; 21 — Vo, t9). The encouraging fact is that
the two Green’s functions yield equal values on the mirror-
line: G¢(V = 1,t; Vo, 10) = G¢(V = 1,5 21 — Vy, tg).
Conclusively, we define the main Green’s function as:

GV, t; Vo,10)=G r(V,t; Vo, t0) — G s (V, t; 21 — Vi, t).
(6)

This linear combination of the free Green’s functions, satis-
fies the linear Fokker-Planck equation (i.e., Eq. (4)). It also
approaches zero on the V. = I line. Now, if we choose
I equal to Vjp, this means that G(V, t; Vy, fp) also satis-
fies the absorbing boundary condition. Thus we can utilize
the analytical free Green’s functions to obtain an analytical
solution under the absorbing boundary condition only at the
threshold regime.
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For our main problem, in which the postsynaptic neuron
has the certain voltage of V = 0 at t = 0, the probability
density of membrane potential is simply:

Po(V,t) =G(V,t; 0,0). @)

The probability of spiking between ¢ and ¢ + dt, is pro-
portional to the number of voltage trajectories which pass
the threshold in [z, t + dt] (see Fig. lc, left). This equals
Jo(V, t)|y=v,dt where Jy(V, t) is the current density:

D 9 V-1
JO(VJ)=—¥WPO(VJ)— o

For V = Vp, Eq. (8) yields the first-passage time density;
it simplifies to (Wang and Uhlenbeck 1945; Sugiyama et al.
1970; Tuckwell 1988; Bulsara et al. 1996):

v = L 2 Vi r2()
VoD =2 NT D T=r20)

2 2
X exp |:— Tm Vo~ _r7(1) :|, ©)

2D 1 —r%()

where r(t) = exp[—t/tm]. Apart from a 1/7y, pre-factor
in Eq. (9), which stands for its time inverse dimensionality,
the overall shape of function is characterized by a dimen-
sionless ratio of D /(ty ng). The ratio quantifies the strength
of input background noise relative to the other competing
factors. Other relevant quantities are also characterized by
this ratio. For example, the maximum value of first-passage
time density, Jo(Vp, t), occurs at tmax = Tm h( D/ (T V92))
where:

h(x):%ln(% (1—x+ 9x2—2x+1)>. (10)

Py(V,1). ®)

For weak enough noise (i.e. x = D/(rmv92) < 1),
this function simplifies to 0.5 x ln(rmV92 /D). Finally, it
is important to extend this formalism to more plausible
sub/supra-threshold cases. In Appendix I, we show how a
scaling approach does help us to do so.

2.3 The transient signaling input modifies
the probability density and first-passage time density

In this subsection, we extend the above analysis to the case
in which signaling input is additionally applied to the neu-
ron. The presence of the signaling input modifies P(V,¢)
and consequently J(Vp, t). To obtain a clear causal picture,
we rewrite Eq. (4) as:

at  Tm2oV?2 o1y m 0V
Al(t,t*) 9
=———PV,1). 11
o 8V( ) (11)

We assume that AI(¢,t*) corrects the initial thresh-
old regime answer of Py(V,t) to P(V,t) = Py(V,t) +

AP(V,t); Py(V,1t) is the analytical solution of membrane
potential density in the absence of the signaling input,
and AP(V, 1) is the correction, due to the signaling input.
AP(V,t) would be zero if the signaling input did not exist,
A = 0 (see Eq. (3)). For arbitrary signaling input, AP(V, 1)
would be a function of A, the signaling input’s strength. This
lets us write a Taylor series for AP(V, t) as:

AP(V,t) = X)=°8P,(V, 1), (12)

where § P, (V,t) o« A". Since AP(V,t) vanishes for A =
0, the constant term, 8 P,_o(V, 1) o A, is not included in
the series. We plug P(V,t) = Po(V,t) + Z, =76 P, (V, 1)
into Eq. (11); for each n, we consider terms proportional to
A", on both sides of equality, as a separate equation. For

n = 1 the equation reads:

Al 1) 0 Po(V. 1) (13)
= oV o(V., 1),

This is the first-order perturbation equation, as both its sides
are proportional to A'. To address its boundary conditions,
we note that AP(V, t) is zero before the occurrence of the
specified signaling input (i.e. ¢ < t*); consequently we
obtain § P{(V, t < t*) = 0. Moreover, the absorbing bound-
ary condition at V. = Vj results in AP (Vy,t) = 0, from
which we conclude that § P;(Vy,t) = 0. These let us use
the aforementioned Green’s function, and write § P1(V, t)
as a Green’s integral over the source term, the right side of
Eq. (13):

t Vg
SPi(V,t) = / dl‘()/ dVo G(V,t; Vo, ty)
to=0 Vo=—00

« [_Mipo(vo, to)} _

14
Tm Vo (14

Equation (14) could be further simplified, if we note that
AlI(tg, t*) is zero for 1ty < t* or ty > t* + At; thus the
toin G(V, t; Vo, ty) and (3/0V) Py(Vy, ty) always belong to
[t*, t* + At], a short time interval. As At < Ty, We con-
clude that the two functions are almost constant during this
time interval and approximate them with G(V,t; Vy, t*)
and (3/9V) Py(Vp, t*) respectively. This further simplifies
Eq. (14):

tOAI(ty, t*
SPI(V, 1) = —/ Alw,?)
[0:0 fm

Vo 9
X/ G(V,t; Vo, 1") — Po(Vp, t™) d Vj.
Vo=—o0 8‘/0

5)
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Taking the time integral in Eq. (15), we have:

A
§PI(V,1) = fi(t, 1) (T—>

m
Vo 9
X/ GV, t; Vo, t*) — Py(Vo, t™) d Vo,
Vo=—00 Vo
(16)

where

0 < t*,
@t —t*)/At <t <t*4+ At, (17)
1 4+ Af <t

fie, 1) = —

For n > 2, the nth order perturbation equation is the
same as Eq. (13) by replacing § P (V, t) and § Py(V, t) with
8P,(V,t) and 6 P,_1(V,t). A recursive formalism, then,
yields:

SPy(V, 1) = fult, 1) (Ti)

Vg gn
X/ G(V,t; Vo, 1) Po(Vo, 1) d Vo,
Vi

A Vg
(18)
where
(—1)" 0 t<t*,
fult, ") = —— { [(t — %)/ At]" <t <"+ At, (19)
n! 1 "+ At <t

Py(V,1)

PVt = [yl oo GUV.1: Vo, 1) Py (Vo — A x5E, r*) avp.

Vo
Vo=—00

G(V.t: Vi, t*) Py (vo -4, z*) dvp.

This helps us to calculate the series in Eq. (12) and obtain
AP(V,t).Fort > t* + At, for example, it reads:

Vo
APV, 1) :/ GV, 1; Vo, t%)
Vo=—00
1 —A n 8”
=00 —— Py(Vo, 1) | dVy (20
x[ o n!(fm) ave 0o(Vo )] o (20

The summation in bracket is the Taylor expansion of
Po(Vo — A/tm, t*) — Py(Vy, t*); thus for t > t* + At:

Vg
APV, 1) :/ G(V,1; Vo, 1)
Vo=—00
A
X [Po <Vo -—, t*) — Py(Vo, t*)} dVp.  (21)
Tm

For t* <t < t* 4+ At, a similar reasoning yields:

Vo
AP(V,t)=f G(V,t; Vo, 1%) (22)
Vo=—00
A t—t*
PolVo— — L) =Py (Vo, t%)] d V.
x[o(o 2 ) ) (Vo )] :

And evidently, for t < r*, §P,(V,t) = 0. We use the
combination rule, for propagators:

Vo

Po(V. 1) = / G(V. 15 Vo, 10) Po(Vo, t0)dVo.  (23)
Vo=—00

The final result, P(V,t) = Py(V,t)+ AP(V,t), simpli-
fies as:

t < t*,
<t <rt*4+ At

(24)

t* 4+ At < t.

Finally, we use P(V, t) to obtain the corrected first-passage
time density in the presence of the signaling input:

J(Vy,t) = b 3 PV, 1)
6,1) = T2 3V s Dlv=vy.

(25)

While our formalism is applicable to arbitrary values
of transient signaling input, here we focus on the effect
of strong excitatory/inhibitory signaling input on postsy-
naptic neuron’s response. Figure lc (top-left) shows how
voltage trajectories almost uniformly increase during arrival
of excitatory signaling input (i.e. t € [t*,t* 4+ Atr]). The
short period of signal arrival (i.e. At < 7t) guarantees
this uniform increase and results in an overall rise of A/7y,.
Consequently, if the value of membrane potential of a partic-
ular trajectory is larger than Vg — A/t upon signal arrival,
it passes the threshold during signal arrival: the neuron
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fires. If, on the other hand, it is smaller than Vy — A/ty,
the membrane potential does not cross the threshold by
the additional signaling input: the neuron does not fire.
This simple picture helps us to understand results shown in
Fig. 2.

Figure 2a and b show that excitatory and inhibitory sig-
naling inputs can result in quite different spiking behaviors,
depending on their arrival time. The dashed-black curve, in
both panels of Fig. 2a, b, right and left, shows the first-
passage time density in the absence of the signaling input,
Jo(Vp, t). In the left panels, the signaling input arrives at
t* = 50 ms; it has A = 10 mV x ms which increases or
decreases the membrane potential by A/t = 0.5 mV. In
this case, the excitatory signaling input shifts the original
density leftward for excitation or rightward for inhibition
(thick-red-curves). In contrast, the right panels show the
spiking density when the signaling input occurs at t* =
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Fig. 2 First-passage time density when the neuron receives signaling
input and background noise at the threshold regime. The black verti-
cal arrows show when the signaling input arrives; it changes the initial
IST distribution, shown in dashed black curve, to the modified distri-
bution, thick red curve. Even when the signaling input is remarkably
strong, the analytic modified distribution well matches the simula-
tion results, which come as empty green circles. a Left: An early
excitatory signaling input at t* = 50 ms causes a leftward temporal
shift. Right: A drastic change occurs, If the signaling input arrives at
t* = 100 ms, close enough to the peak of initial spiking density. b Left:

100 ms. This is close t0 fmax = 0.5 X T In(TmV7/D) =~
93 ms, at which the Jy(Vpy, t) is maximized. Therefore,
when the signal arrives, many trajectories are already close
to the threshold potential (i.e., larger than Vy — A/ty). All
such trajectories will spike, due to the aforementioned rise
of excitatory A/ty; this results in a sudden sharp increase
of the first-passage time density at r = * (see Fig. 2a,
right, and its inset). In contrast, the inhibitory input prevents
all trajectories to reach the threshold, which makes a sharp
depletion in the first-passage time density (Fig. 2b, right).
The effect of inhibitory input fades away after a while and
again trajectories approach the threshold; this leads to the
second rise of the first-passage time density (Fig. 2b, right).
These theoretical predictions were confirmed by numerical
simulation of the LIF model (green dots). It is also impor-
tant to see what will happen if the signaling input comes
much later than f,,x. This means that most of the trajectories
have already reached the threshold voltage, and only a tiny

250

Postsynaptic spike time, tpost [Ms]

Cc Excitatory signaling input

Spike density

An inhibitory signaling input imposes a mere temporal shift, a delay, if
it occurs too early, t* = 50 ms. Right: If the inhibitory signaling input
occurs close enough to the peak, 1 = fn,x, the spiking density almost
divides into two distinct regions. ¢ The first-passage time density as
a function of the presynaptic spike timing, t*, for small excitatory
signaling inputs, A = 0.2 mV x ms. The values of the parame-
ters are chosen using the physiologically plausible range (McCormick
et al. 1985). Here, we use membrane time constant t,, = 20 ms,
A = 10 mV ms, threshold voltage of Vy = 20 ms, diffusion coefficient
of D = 0.74 mV?ms and the simulation time step is A7 = 0.05 ms

portion of them remains. Consequently, the signaling input
does not induce much change in J(Vp, t). In other words,
if the signaling input comes too late, the postsynaptic neu-
ron has already fired, and the signal cannot change its first
spike-time any more (Fig. 2¢). This figure also demonstrates
that the first-passage time density undergoes the maximum
change when the excitatory input arrives around fy,y, the
peak time of no-signaling input case.

It is also important to note that there is a critical value
for excitatory signal strength for which postsynaptic neuron
fires, apart from the signal arrival time. For a signal with
A > 1y, Vy, the aforementioned rise would be Vy which
results in spiking of almost all trajectories, irrespective of
signal arrival time. This introduces another dimensionless
ratio of A/(tymVp), which quantifies the strength of the
signaling input.

Figure 3 shows how the first-passage time density
changes with the diffusion coefficient. When the scaled

@ Springer



154

J Comput Neurosci (2018) 44:147-171

a Excitatory signaling input

> . .
10 + Spike density
1.25 0.024
] 0.02
o 0.015
e 075
£
£
Z
a] 05 0.01
0.25 0.005
00125 - - 0

20 40 60 80
Postsynaptic spike time, tpost [MS]

100 120 140 160 180 200

b Inhibitory signaling input
Spike density

0.75 0.015

05

0.25 0.005

0.0125

D/ (V)

P
_::I
= o = o

g g &

S

20 40 60 80 100 120 140 160 180 200

Postsynaptic spike time, tpost [MS]

Fig. 3 First-passage time density as a function of the scaled dif-
fusion coefficient, D/(rngz). a Excitatory signaling input: (Left)
The signaling input occurs at ¢+ = 50ms, black arrow. Variation of
the scaled diffusion modifies the overall picture of ISI distribution.
There is an apparent jump in the spiking density when D/(ty Vez) ~
0.25 x 1072, 1t is because D /(Tm V92) controls fmax, the maximum
of the ISI distribution in the absence of the signaling input; and
tmax =~ S0ms for D /(ty VQZ) ~ 0.25 x 10~2. For higher/lower values
of the scaled diffusion coefficient, however, we see minor modifica-
tion as fymax would be larger/smaller enough compared to the signaling
input arrival time. (Right) The signaling input occurs at t = 100 ms;

diffusion coefficient increases, the first-passage time den-
sity and fmax shift to the left. So signaling inputs that arrive
earlier than 5« at 50 ms can modulate the density (Fig. 3a,
left). When the signaling input arrives at time * = 100 ms
which is close to fyax, the first-passage time density is
modulated in low diffusion regimes (Fig. 3a, Right). In
the case of inhibitory presynaptic spike (Fig. 3b), for high
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we chose much weaker diffusion coefficient, so that f,,x would be
comparable to this signaling input arrival time. However, the modi-
fication is drastically larger, compared to the left panel. This shows
that the influence of the signaling input amplifies, for weaker dif-
fusion/noise strength. b The same as in (a) but with inhibitory sig-
naling input. Reducing the scaled diffusion coefficient, from left to
right, drastically amplifies the modification imposed by the signal-
ing input. The values of the intrinsic parameters are chosen using
the physiologically plausible range, Vy = 20 mV and 7, = 20 ms
(McCormick et al. 1985). The amplitude of signaling input is fixed at
A =1mV ms

scaled diffusion coefficient, the first-passage time density
decreases at the time of presynaptic spike but because of
high diffusion, it goes up quickly. As the scaled diffusion
decreases, the recovery from inhibition takes time which
makes distance between two separated distributions.

The first-passage time density also depends on the scaled
amplitude of the signaling input (Fig. 4). For an excitatory



J Comput Neurosci (2018) 44:147-171

155

a Excitatory signaling input
Spike density
0.125

0.024 '
002
0015

0.0625
0.01
0.005
0 0.0025

20 40 60 80 100 120 140 160 180 200
Postsynaptic spike time, tpost [ms]

>E =
*r &
~— 0025 Z
<

o

0.0025

b Inhibitory signaling input
Spike density

0.024 0125
002
0015

0.0625
0.01 <
0.005
0 0.0025

20 40 60 80 100 120 140 160 180 200
Postsynaptic spike time, toost [MS]

/(z,V,)

0.025

A/(TMVQ)

0.0025

Fig. 4 First-passage time density as a function of scaled signaling
input amplitude A/(tmVp). a Excitatory signaling input: When the
amplitude of signaling input increases, the first-passage time density
gradually shifts to the left (a, left) and in specific strong amplitude, the
density changes to a peak because the signaling input is so strong that
makes all the trajectories to fire at the time of signal arrival (a, mid-
dle). The signaling input arrives at t* = 50 ms (left and middle) and
at r* = 100 ms (Right). b Inhibitory signaling input: Inhibitory sig-
nal arrives at * = 50 ms (left and middle) and * = 100 ms (Right).
When the input arrival time is much less than 7,,x = 90 ms, the effect

input which fires at time (#*) much earlier than #,y, as the
amplitude increases, the density moves to the left (Fig. 4a,
left) until the amplitude is large enough to make them spike
at the same time (Fig. 4a, middle). When inhibitory sig-
naling input arrives near fmax, the density breaks in two
parts (Fig. 4b, right). As the amplitude increases, the spik-
ing density is zero not only at the time of presynaptic
spiking but also for a duration after that. This duration
nonlinearly depends on the strength of signaling input
(Fig. 4b, right).

2.4 Arbitrary shapes of the transient signaling input

One merit of this formalism is its flexibility to address other
shapes of the transient signaling input. We solve the first-
passage time problem for the exponentially decaying input,
which is more physiologically plausible (i.e. AI(¢,t*)
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of increasing the amplitude of inhibitory input is just to push the den-
sity to the right (b, Left and middle). For cases that ¢* is comparable to
max, the first-passage time density breaks at the time of input arrival
(b, right). As the amplitude increases, the recovery of distribution from
that break takes more time and the distance between separated distri-
bution increases nonlinearly. The signaling input arrival is shown by
black arrows and the diffusion coefficient is fixed at D = 1 mV?ms.
The values of the intrinsic parameters (Vy = 20 mV and 7, = 20 ms)
are chosen using the physiologically plausible range (McCormick et al.
1985)

exp(—( — t*)/ts), see Appendix II for the derivation and
results). Figure 5a and b show how an exponential transient
signaling input modifies the first-passage time density.

For early signaling arrival, the modification due to exci-
tatory (inhibitory) input is a leftward (rightward) shift, very
similar to the changes we had for square input (Fig. 2a,
b). For an excitatory input at t* = 100 ms (Fig. 5a
right) there is a jump upon signal arrival; comparing to
the square excitatory input (Fig. 2a right) the jump is
less sharp but more wide. Similarly, the inhibitory expo-
nential input at * = 100 ms induces a fall (Fig. 5b
right), similar but less steep than the fall observed for the
square inhibitory input (Fig. 2b right). The numerical sim-
ulations well verify these analytic results (green circles in
Fig. 5a, b).

The analytical solutions for square and exponential input
suggest a general formula for probability density in the
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Fig. 5 First-passage time density when the neuron receives exponen-
tial decaying signaling input and background noise at the threshold
regime. The black vertical arrows show when the signaling input
arrives; it changes the initial ISI distribution, shown in dashed black
curve, to the modified distribution, thick red curve. Even when the
signaling input is remarkably strong, the analytic modified distribu-
tion well matches the simulation results, which come as empty green
circles. a Left: An early excitatory signaling input at t* = 50 ms
causes a leftward temporal shift. The result is very similar to the case
of square input (Fig. 2a, left). Right: A drastic change occurs, if the
signaling input arrives at * = 100 ms, close enough to the peak of
initial spiking density. The change in density is smoother comparing

presence of an arbitrary input current, Al (t,t*), which
arrives at t*. If the duration of signal arrival is shorter
enough than the membrane time constant (i.e. 73 < Tp) We
suggest the probability density as:
ve TAI(s, t*
Alls, 1)

PV, 0=
Vo=—0o0 Tm

R l‘*) dVy.

(26)

G(V,t,Vo,t*) Py <V0—f
0

This conjecture covers our results for both the square input
(i.e. Eq. (24)) and the exponential decay (i.e. Eq. (54) in
Appendix II). We also test it by comparing the analytical
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with Fig. 2a, right. The inset shows the shape of the signaling input.
b Left: An inhibitory signaling input imposes a mere temporal shift, a
delay, if it occurs too early, t* = 50 ms. Right: If the inhibitory sig-
naling input occurs close enough to the peak, t = fpnax, the spiking
density almost divides into two distinct regions. The inset shows the
shape of the signaling input. ¢ The first-passage time density for the
cases that signaling input is gamma function with parameter y = 1
(Top) and y = 0.25 (Bottom). The values of the parameters are cho-
sen using the physiologically plausible range (McCormick et al. 1985).
Here, we use membrane time constant t,, = 20 ms, t;, = 2 ms, A =
10 mV ms, threshold voltage of Vy = 20 mV, diffusion coefficient of
D = 0.74 mV?ms and the simulation time step is At = 0.05 ms

result of first-passage time (obtained using Eq. (26)) with
simulation results (Fig. 5¢) using the Gamma function input
current:

0
AI(ZJ*)=AX{ 1 (t—t*)y 1

T\ ) X% &XP

(-=-)

the I'(n) is the Euler’s Gamma function (Davis 1959). The
signaling inputs are shown in the insets of Fig. 5c, top (bot-
tom) for y = 1 (y = 0.25). The inputs arrive at t*
100 ms, and have a short duration of g = 2 ms < Ty,
20 ms; we recognize a good agreement between simulation
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and analytical results. The method also can be extendable to
the case that more than one presynaptic spike arrives. The
derivation for more spikes of presynaptic neuron comes in
Appendix II1.

It is worthy to use Eq. (26) and obtain a general solution
for the first-passage time density, due to transient signaling
input with arbitrary shape. Using Eq. (8), the first-passage
time density reads:

Vo

D ~
J(Vé)»t) = _T_ G(Vevtv VOat*)

I%l Vo=—00

PAI(s, t*
XP()(VO—/ Lals,t*) dve,  (28)
0

Tm

where G(Vy, 1, Vo, %) =
reads:

~ 273 r(t —t*) x (Vo — Vp)
G(Vg,t, Vo, %) = L
Vo 1. Yo 1) =\ D3 (1= 2 — )P

Tm 12 (t—1%) (Vo—Vp)?
X ex —_—
2D 1 —r2(t —1t*)

AG(V,t, Vo, 1) /dV |y=y,; it

] (29)

We use Eq. (7) for probability density, Py(V), and try to
calculate the integral in Eq. (28) (see Appendix IV). An
expression is derived, for the first-passage time density in
the presence of arbitrary signaling input (t; < Tpy):

()]
(o)}

where erf(x) = (2/y7) [y exp(—t2)dt and «(z,1%),
w(t,t*) and @ (¢, t*) are:

k(t, 1) =10 —r))/A—r —t%)?),
r(t — )21 = r(t%)?)

w(t,t*) = 1=r ) , (€28
(t, 1) = __mY {i (t*)— tﬁ—M(m*)}
=N D=y | o™ Vo

The first-passage time density, Eq. (30), is the probability
density of the first spike of the postsynaptic neuron when
the signaling input arrives at ¢*; the r* measures the time
elapsed since the last spike of postsynaptic neuron up to the
signal arrival.

There are experimental studies in which the postsynap-
tic neuron’s spike times both before and after signal arrival
are recorded (Blot et al. 2016). In these researches, the ¢*
is observed/assumed. For example studies regarding timing
dependent plasticity, assume the knowledge of the last post-
synaptic spike (Froemke and Dan 2002; Wang et al. 2005).
The timing of the last spike may also be learned by intrinsic
mechanisms (Johansson et al. 2016; Jirenhed et al. 2017).
In such cases, it would be possible to directly apply our
formalism to the analysis. However, there are experimental
studies which do not take into account such knowledge of
the last postsynaptic spike timing (Panzeri et al. 2014); a
downstream neuron may have no access to the information
of the neuron’s former spikes. Therefore, we should con-
sider all possible values for ¢*, a statistical procedure known
as marginalization.

2.5 First spike-timing density after signaling input’s
arrival

We observed that timing of the signaling input, relative to
the last postsynaptic spike, significantly affects the first-
spiking density of the postsynaptic neuron. However, the
postsynaptic neuron (as well as downstream neurons) may
have no access to this elapsed time. Assume that we monitor
the arrival of a signaling input; it would be more convenient
to consider arrival time as the time origin. Therefore, we
reset the time origin accordingly and ask what is the proba-
bility density f(tr) that postsynaptic neuron fires at t after
signaling input arrival.

As a building block to address this question, we need to
know the probability of the last postsynaptic spike occurring
in a time window between #* and t* + dt* before the sig-
nal arrival, P,k (t*) dt*. Following the language of voltage
trajectories, this probability can be computed by consider-
ing that (A) a trajectory has begun from V; = 0 in the
mentioned time window, but (B) it has not yet reached the
threshold at V = Vj. The answer comes as multiplication of
probabilities associated with the two conditions (A) and (B):

t*
Poack (1%) dt™ = 1dt* x (1 —/0 Jo(Vo, s5) ds). (32)

where A = (fOOOSJ()(VQ, s)ds)~! is the spike rate of the
postsynaptic neuron in the absence of any signaling input
and Jy(Vp, 5) is given by Eq. (9). Ppack (¢*) is known as the
density function of backward recurrence time in the point
process theory (Cox 1962).
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The next question is which portion of the trajectories,
addressed above, will reach the threshold at T to T + dr,
after signal arrival. This sets a temporal distance of t* + 7
between the beginning point of the trajectories with V =
Vi = 0 to their spiking point at V = Vj. The answer is a
conditional probability which reads:

J(Vy, T +1%)dt
L= [0 Jo(Ve, s)ds

flthdr = (33)

Note that J(Vy, T + t*) is given by Eq. (30), where
the signaling input arrives at ¢*, after the last postsynaptic
spike. The denominator is a normalization term to achieve
IS fxltdr = 1.

Having f(t|t*) and Ppack (), we should integrate over
all possible values of backward recurrence time, t*, to
obtain f(7):

F) = fo FEl*) x Poaert®) di*

o
= A/ J(Vo, T + 1) dr*. (34)
0

The result in Eq. (34) presents the probability density of
first-spike timing after input arrival; the time of input arrival
(stimulus onset) should be known by some mechanisms in
the cortex (Van Rullen et al. 2005; Panzeri et al. 2014).

It is worth to see how Ppack (%) successfully connects us
to the existing stationary solution for the membrane poten-
tial (Brunel and Hakim 1999; Brunel 2000). We should
address the probability of finding the membrane potential
between Vy and Vj 4+ d V) at an arbitrary observation time.
We split the task into two questions: First, what is the prob-
ability that the last postsynaptic spike has happened in a
time window of t* to t* 4 dt*, before observation time?;
Second, what is the conditional probability that voltage tra-
jectories, which initiated from #* before observation time,
have a potential V e [Vy, Vo + dVp] at the time of obser-
vation. The answer for the first question is simply given by
the probability density of the backward recurrence time. The
answer for the second question is a conditional probability:

Py(Vo, t*)d Vo

PWVolt")dVy = .
1Yo Po(v,19av

(35)

Py(V, t*) is given by Eq. (7). The denominator is a nor-
malizing factor to ensure: fl/go p(Volt*)dVy = 1. It has
the very same origin we mentioned for the denominator in
Eq. (33); in fact, it is easy to verify that the two denom-
inators are equal, due to the conservation of probability:

IYo PV, 19aV = 1 — [I" Jo(Vy, s)ds. We combine
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the answers of two questions, and obtain the stationary
probability density as:

o
Ps(Vp) = / P(Volt™) X Poack(t™) dt*
0

o
= A/ Po(Vp, t%) drt*. (36)
0

Figure 6b-inset shows that Ps(Vj) nicely coincides with
the existing stationary solution found by Brunel and Hakim
(Brunel and Hakim 1999; Brunel 2000). To use their solu-
tion, we have simply put the mean input current equal to the
threshold potential, I = V.

P;(Vy) provides an alternative approach to find f (7). It
determines the probability density that the postsynaptic neu-
ron has a membrane potential of V. = V{y upon signal arrival,
(i.e. t = t*). We have also obtained how the probability
density evolves after signal arrival (i.e. t > t*), for a square
(see Eq. (24)) or exponential (see Eq. (55)) signaling input.
We note that the framework of solutions which results in
Eq. (24) or Eq. (55) does not depend on the initial choice of
Py(Vo, t) or Ps(Vp). Conclusively, if we want to determine
first-spiking density, with no previous knowledge about the
last postsynaptic spike, we should simply replace Po(Vy, t*)
with Ps(Vy) (see Appendix V). This lets us follow our sug-
gestion for J(Vp, t) in the presence of an arbitrary transient
input, Eq. (30), and obtain f (t) accordingly:

Vo

D -
f@ =~ G (Vo, 7, Vo, 0)
T,

m J Vp=—00

( © AI(s, 0)
x Py (Vo — / —ds> dvo, (37)
0

Tm

where G(Ve, 7, Vb, 0) is given by Eq. (29). In Fig. 6¢c, we
depict f(t) using both Eq. (37), dashed lines, and Eq. (34),
full lines. There is a nice coincidence between two sets of
curves which shows the consistency of the result from two
approaches mentioned here. The result arises from each one
of two approaches, has its own advantage. Since Eq. (34) has
just one temporal integral, and J (Vp, 1) is already well sim-
plified in Eq. (30), it is computationally easier and faster to
work with. At first glance, Eq. (37) also has one temporal
integral, however, there is another integral in Ps(V') to reach
stationary solution (see Eq. (36)). Consequently, it would be
computationally faster to use Eq. (34) but Eq. (37) provides
more intuition about how f(t) behaves.

2.6 Fisher information

The analytical first-spiking density after input arrival, Eq. (34),
allows us to quantify the minimum error for any unbiased
estimator to decode signaling input’s properties such as
its amplitude (input’s strength). Based on Cramer-Rao’s
inequality (Rao 1973), the Fisher information provides the
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Fig. 6 a, Top: Fisher information with respect to the amplitude of sig-
naling input in logarithmic scale as a function of the scaled amplitude,
A/(tmVp), and the scaled diffusion coefficient, D/ (thez). We use
exponential decaying signaling input with 7, = 1 ms (see Eq. (46)).
For high level of the noise, Fisher information has one maximum
in strong amplitude, but for a specific level of the noise, it splits
into two maximums which occur in strong and weak amplitudes. The
dashed black line shows the maximums of Fisher information. It is
notable that Fisher information does not monotonically decrease with
the noise level; except for A/(tVy) >~ 1 and A/(t,Vp) < 0.1, for
the rest of scaled amplitudes, the Fisher information is maximized for
a certain level of the noise (stochastic resonance). Bottom: in the low
noise regime, D/ (vaez) < 0.088, the Fisher information is maxi-
mized either by small signaling input’s amplitudes, A/(tmVp) < 0.3

lower bound of the estimator’s variance (062St > 1/ZFy).
Applied to spike timing density, maximizing the Fisher
information gives us the minimum error to decode an

input parameter (e.g. signal’s amplitude) using the spiking
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or by its strong amplitudes, A/(tmVp) =~ 1. The two maximums
approach each other, as the diffusion coefficient increases, and reach
for D/(tm Vez) > 0.088. This one maximum would be robust to the
change of the amplitude in a wide range. b stationary distribution of the
membrane potential for different scaled diffusion coefficient. When
strong amplitudes in low diffusion arrive, nearly all trajectories reach
the threshold and only small portion of them remains (hatched red
area). Inset shows the comparison between stationary distribution from
Egs. (36) and (77) (Brunel and Hakim 1999; Brunel 2000). ¢ f(7) in
logarithmic scale for weak and strong signaling inputs: The solid col-
ored lines are obtained using Eq. (34) while the black dashed lines are
the results using Eq. (37). The coincidence shows that two equations
produce the same result, for the same signaling input’s amplitude. The
scaled noise level is D/(ty V92) =0.04

activity. Spike timing of postsynaptic neuron contains
information that spike count does not carry (Rieke et al.
1999; van Vreeswijk 2001; Toyoizumi et al. 2006). Indeed,
discarding spike timing information (specifically first-spike
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timing) leads to loss of information (Panzeri et al. 2001).
Hence here, we investigate the Fisher information based on
the spike timing with respect to the strength of signaling
input. In this scenario, the decoder must know the input
arrival time and the first spike time after that. It was dis-
cussed that this knowledge about the input arrival time as
a time reference may be known by, for example, network
oscillations or other mechanisms in cortical/sensory sys-
tems (Van Rullen et al. 2005; Panzeri et al. 2014). Here,
depending on the level of noise, we want to find the ampli-
tudes of signaling inputs with which an optimal decoder
can make the best possible discrimination.
The Fisher information is defined as:

_ ol (Alog FON | | [ 0F()/94)

where the expectation is performed by f(r) itself (see
Eq. (34)). We assume the exponential decaying as signal-
ing input’s functionality (i.e. AI(¢,0) o exp(—t/ts), see
Eq. (46) for details).

Figure 6a top, shows the Fisher information as a function
of two scaled variables: amplitude, A/(tyVp), and noise
level, D/(tm V92). The dashed black lines locate the points of
local maximums. Given the high noise level, D/(ty V92) >
0.088, the Fisher information is maximized at a certain
amplitude. The single maximum, however, splits into two
maximums as the noise decreases. Figure 6a bottom, depicts
the same Zp(A) as a function of signal’s amplitude, for
certain values of the noise level. There are two distinct max-
ima in the dark-red curve, D/(ty Vez) ~ 0.01. The two
peaks, however, go down and approach each other as the
noise level is increased; they finally merge into one peak for
D/(tmV}) 2 0.09, the blue and dark-blue curves.

The mentioned two maximums which appear in low
noise regime show noise plays a major role in optimal
decoding. Despite the high noise level, the best discrimina-
tion would happen for two kinds of input strength, in the low
noise level. The crucial role of noise is also studied in the
context of mutual information, where the maximally infor-
mative solutions for neural population splits into two, as
noise level decreases (Kastner et al. 2015). Figure 6a shows
two branches for the maximum of the Fisher information.
The left side branch indicates that the maximizing ampli-
tude diminishes as noise decreases. A similar behavior has
been seen using an extension of the perfect integrate and
fire model (Levakova et al. 2016); however, they observed
a single but not two maximums. Therefore, the existence of
the second maximum, as a result of strong signaling input,
is less expected and needs more exploration. Here, we sug-
gest a hand-waving explanation, which intuitively explains
the existence of the second peak for strong amplitudes in
low noise levels.

@ Springer

The Fisher information (Eq. (38)) has an integral over
T; we may expect that the maximization of its integrand
versus A, for certain domains of 7, results in the maximiza-
tion of the whole Zrj(A). The integrand, also, is a fraction
with df(7)/dA in its nominator, and f(t) in its denomi-
nator. Figure 6¢ shows in the logarithmic scale, how f(7)
modifies as A increases. For large signal’s amplitude, as
A/(tm Vp) varies from 0.7 to 1, we see no significant change
of f(r) for 0 < t < 2.5ty domain. On the contrary, for
T 2 2.57¢, we see a significant decrease in f(r); increasing
A/(tmVp) by a constant step of 0.1, always results in a sig-
nificant downward shift of f(r). The shift in the last step
(A/(tmVpg) : 0.9 — 1) seems almost twice as large as the
shift in its previous step, in logarithmic scale. This picture
suggests thatas A/(tm V) — 1, f(7) drastically decreases,
whereas 0f (t)/0 A remains finite. This results in the growth
of the integrand and hence the integral for the T 2 2.5t
domain.

Going back to the scenario of voltage trajectories, we
can further understand this trend. A large transient signal-
ing input boosts all trajectories with an upward shift of
A/ty. Consequently, those trajectories which are closer to
the threshold than A /7y, upon signal arrival, will fire imme-
diately. What remains to fire afterward would be the tra-
jectories which were below Vg — A /1y, upon signal occur-
rence. This picture lets us introduce two distinct sources
for f(r), during and after signal arrival. Fyying(A) =

\YH i A/t Ps(Vp)dVy measures the portion of those trajec-
tories which fire during signal arrival (e.g. 0 < 7 <
2.515), whereas Fiyfer(A) = fng/rm Py(Vy)d Vy measures
the portion which will reach the threshold after the sig-
nal arrival. For the case of exponentially decaying input, it
roughly implies that:

Vo—A/tm 00
Fer(A) = / Py(Vo) dVo ~ f2 _ f@dr. (9)

oo

Equation (39) does not fully determine how f(7)
behaves after signal arrival; but it provides us a hint on how
f () varies with A. However, Fig. 6¢ helps us to go one step
further; it shows a linear tail for f(t) in logarithmic scale,
f(r) o exp(—at); all tails show almost the same slope: o ~
Tm ! This decouples the dependence of f(r) on A, from its
temporal dependence: f(t) o Fiyfer(A) x exp(—at). Con-
sequently, we would be able to estimate df (t)/dA which
reads (0 Faper (A)/0A) x exp(—at). The 0 Fyfier(A) /0 A sim-
plyis —(1/tm) Ps(Vo — A/tm). These points clarify how the
integrand in Eq. (38) varies with A, in the 2.573 < T domain.
The integrand and the whole integral would behave like:

Ps(Vy — A/'L'm)2
[Yo=Aln P (Vo) Vg

00 2
f (0f (r)/9A) Jr o 40)
2

St f(f)
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The right side of Eq. (40) has a simple geometri-
cal interpretation. Consider the green curve in Fig. 6b
(D/(tm V92) = 0.2), the denominator of Eq. (40) equals the
hatched area below the curve, while its nominator is simply
the square of the height of that curve, Ps(V). As A/t —
Vo, the height of the curve remains finite (i.e. Ps(0)),
whereas the hatched area decreases to ff oo Ps(V0) dVo.

We compare how the curve changes as noise decreases
from green to red curve (Fig. 6b), D/ (rmVGZ) =02 —
0.04. There is almost a ratio of 2 between the heights of the
curves at V = 0; this means that the nominator decreases
by a factor of 1/22. However, the hatched area is decreasing
by a factor larger than 4. This means that the right side of
Eq. (40) enlarges as noise level decreases. This trend is much
stronger as noise level further decreases to D/(ty Vez) =
0.004; the height is decreased by a factor of 0.63 whereas
the enclosed area reduces to something hardly recognizable.
In fact, we can show that the right side of Eq. (40) diverges
like (T ng /D)/1In (1 V92 /D), as the noise level approaches
to zero. So the integral of the Fisher information on the after
signal arrival domain should diverge if both A/, — Vp
and D/(ty Vez) — 0. This intuitive picture explains why the
second peak arises for large amplitudes in low diffusion regime.

Figure 6a shows for weak amplitudes (0.02 <
A/(tmVy) < 0.1), when the level of noise increases,
the Fisher information decreases monotonically. The same
effect is observed when A/(t,Vp) =~ 1. But for the rest
amount of amplitudes, the Fisher information is a non-
monotonic function of noise level (see the dashed lines in
Fig. 6a which show the maximum of the function); there
is a certain level of the noise that maximizes the Fisher
information (stochastic resonance) (Bulsara et al. 1991).

Finally, we can associate the two scaled diffusion and
amplitude parameters with measurements from neural data.
The diffusion coefficient relates to the variance of the noise
distribution as D = 27, /2. So the scaled diffusion coef-
ficient would read D /(T VGZ) = o2 / (2V92). If the variance
of the noise distribution is known which is different for in
vivo and in vitro neurons, the scaled diffusion parameter
in Fig. 6a can be found. The scaled amplitude (A/(tmVp))
also shows the measure of excitatory postsynaptic potential
(EPSP) which is available in different experimental studies
(Shadlen and Newsome 1994; Song et al. 2005; Lefort et al.
2009; Cossell et al. 2015).

3 Discussion

In this study, we analytically derived the statistical input-
output relation of a LIF neuron receiving transient signaling
input on top of noisy balanced inputs. We developed a first-
passage time density of the neuron when it receives the
signal at the threshold regime. We examined a simple square

input signal, and then extended it to more physiologically
plausible signaling inputs. Our prediction matches well with
simulation study, which shows the applicability of our model
for more realistic signaling input shapes. The first-passage
time density is a function of the scaled diffusion coefficient
and the scaled amplitude of signaling input. It also depends
on the arrival time of the signaling input elapsed from
the last postsynaptic spike. We also extended our analy-
sis and made it independent from the knowledge of the
last postsynaptic spikes by marginalizing over all possible
last postsynaptic spikes with respect to input arrival time.
Based on the analytic expression for the first-spiking den-
sity after input arrival, we examined the Fisher information
with respect to signaling input’s amplitude (efficacy). The
result reveals that for each level of the noise, there are spe-
cific amplitudes of signaling inputs at which the decoding
can be done most accurately.

Here, we investigate the LIF neuron model (Stein 1965).
Although lots of studies have shown that some extended
models such as adaptive exponential integrate-and-fire
model (aEIF) better explains the neural properties (Izhike-
vich 2004; Ostojic and Brunel 2011), the LIF neuron model
can capture the properties of the cortical pyramidal neurons
(Rauch et al. 2003; La Camera et al. 2004; Jolivet et al.
2008); it is still the widely studied neuron model because of
its simplicity to be driven analytically (Burkitt 20064, b).

Previous studies on the LIF neuron model already
attempted to find an analytical solution for the first-passage
time density or firing rate in the presence of signaling input
in the noisy balanced environment. The effect of small oscil-
latory input on the first-passage time problem is studied
by Bulsara et.al. using image method to solve the Fokker-
Planck equation (Bulsara et al. 1996). The linear response
of LIF neuron to oscillatory input and the change of firing
rate starting from stationary distribution is also investigated
analytically in a Fokker-Planck formalism by some studies
(Brunel and Hakim 1999; Brunel et al. 2001; Lindner and
Schimansky-Geier 2001). Richardson and Swarbrick pro-
vided analytical result for firing rate modulation up to linear
order receiving excitatory and inhibitory synaptic jumps
drawn from the exponential distribution (Richardson and
Swarbrick 2010). In addition, there are studies that inves-
tigated the effect of transient input current (Herrmann and
Gerstner 2001; Helias et al. 2010). Hermann and Gerstner
showed how the post-stimulus time histogram is changed by
the transient input signal on top of noise using the escape
rate model and hazard function. They provided a numerical
solution for the full model but the analytical result is achiev-
able up to the first order. Moreover, Helias and coworkers
(Helias et al. 2010) found the effect of the delta input kick in
the Fokker-Planck equation on the firing rate of postsynaptic
neuron up to linear order, assuming steady state distribution
for finite synaptic amplitudes prior to input arrival.
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Here, we analytically solved the first-passage time den-
sity for the LIF neuron receiving transient signaling input
with arbitrary amplitude and shape on top of Gaussian
background. However, it is obtained under the assumption
that the mean input drive equals or at least is near to the
threshold potential (see Appendix I). Further, it was assumed
that the synaptic time constant is considerably smaller than
the membrane time constant. However, within these limi-
tations, we can analytically achieve various features of the
LIF neuron’s spiking density. Our framework and approach
at first is conditioned on the knowledge of last postsynaptic
spike; this framework is useful in some experimental studies
which the last postsynaptic spike is assumed (Froemke and
Dan 2002; Wang et al. 2005; Blot et al. 2016) or the neu-
ron may learn to time sequential responses (Johansson et al.
2016; Jirenhed et al. 2017). Moreover, we show by using
the backward recurrence time distribution, the first-spiking
density after input arrival is achieved, which does not
depend on the last postsynaptic spike (see Eq. (34)); it can
be used for experiments that the knowledge of last post-
synaptic spike is not considered and just the time of input
arrival is assumed as a reference signal for readout by
downstream neurons (Van Rullen et al. 2005; Panzeri et al.
2014). We also show that the result of using backward recur-
rence time for the marginalization of the spiking density, in
Eq. (34), can be achieved by another approach (see Eq. (37))
assuming a stationary distribution at the time of input arrival
and the use of Green’s function from Eq. (6). While Eq. (34)
has just one integral over time and computationally is faster,
Eq. (37) gives us intuition about the spiking density after
input arrival, which was used in the Fisher information part
to describe the second observed maximum in low noise
regime.

In this study, we model the background synaptic activity
as a white Gaussian noise. This would be a too simplified
view on the background activity. For example, background
synaptic inputs to neurons may be described as shot noise
(Richardson and Swarbrick 2010; Helias et al. 2013) and is
synaptically filtered (Brunel and Sergi 1998; Moreno-Bote
and Parga 2010). It can also be modeled as temporally cor-
related noise (colored noise) because of long lasting time
scale of NMDA and GABAp generated currents (Lerchner
et al. 2006; Dummer et al. 2014; Ostojic 2014). However,
the white Gaussian noise still can be a reasonable assump-
tion for short lasting currents generated by AMPA and
GABA 4 receptors (Destexhe et al. 1998). In fact, in the
limit of 7y < 7y, and with small numerous background
synaptic amplitudes, the background activity is approxi-
mated by white Gaussian noise. Moreover, experimental
evidence reported temporally uncorrelated noise for an ani-
mal engaged in a task (Poulet and Petersen 2008; Tan et al.
2014). The Gaussian noise, however, changes to correlated
noise for an anesthetized animal, or when the animal is in its
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quiet wakefulness. Hence it would be important to extend
the current formalism to non-Gaussian situations, as well.
Moreover, our solution works for the neurons at the
threshold regime, at which the membrane potential of the
neurons are very close to the threshold. At this regime, even
small fluctuation brings the membrane potential above the
threshold voltage, which makes the neuron to fire. Recent
experimental study (Tan et al. 2014) shows that this scenario
works when stimulus is presented to the monkey. To check
how the solution changes when the value of the mean input
deviates from the threshold voltage (sub/supra-threshold),
we also use scaling approach and compare it with simulation
study (Appendix I). The result shows, by scaling relation that
we introduced, we can go beyond threshold spiking density
to near sub/supra-threshold densities and extend our solu-
tion to more plausible cases of sub/supra-threshold regimes.
Finally, we calculate the Fisher information based on
spike timing rather than rate or spike count (Rieke et al.
1999; van Vreeswijk 2001; Toyoizumi et al. 2006). Precise
spike timing of postsynaptic neuron relative to signaling
input arrival has information that may be lost or decreased
in spike count methods that, spikes (responses) are summed
over long time windows (Panzeri et al. 2010). The Fisher
information as one application of the first-spiking density
is investigated here; we find the specific amplitude of signaling
inputs that can be distinguished most accurately by down-
stream neurons. To maximize the accuracy of decoding in
low noise level, neurons have two choices for their synaptic
strength, one in weak and the other in strong amplitude. But
for higher levels of the noise, there is one strong amplitude
which maximizes the FI; the achieved maximum is robust to
a mere change of the amplitude (Fig. 6a Bottom, blue color).
This effect may have some advantage in neural decoding
and learning; strong amplitudes which might be the result
of causal Hebbian learning (Dan and Poo 2004) can be dis-
criminated most accurately by downstream neurons, even in
low noise regime. We also revisit the stochastic resonance
(Douglass et al. 1993; McDonnell and Ward 2011; Tera-
mae et al. 2012; Ikegaya et al. 2013; Levakova et al. 2016);
the Fisher information does not behave monotonically with
the noise level, instead, there exists a wide range of signal-
ing input’s amplitude for which the Fisher information is
maximized in a certain and finite value of the noise (Fig. 6a).
The input-output relation of a single neuron embedded
in a network is the building block of the neural activity
underlying learning, cognition and behavior. Since strong
synaptic inputs are pervasive in the neural system (Song
et al. 2005; Lefort et al. 2009; Ikegaya et al. 2013; Buzsédki
and Mizuseki 2014; Cossell et al. 2015), the analytic solu-
tion that can deal with the effect of strong transient signaling
inputs can widely be used in predicting network’s com-
plex activity (Herz et al. 2006). Given that the LIF model
describes spike timing with adequate accuracy, the analytic
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solution presented here is expected to facilitate theoretical
investigation of information processing in the neural systems.
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Appendix I: Spiking density near the threshold
regime

The suggested image method solution is valid exclusively
for the threshold regime, when the drive current equals the

a Near Threshold Densities
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Fig. 7 Rescaling the First-passage time densities of different supra-
threshold and sub-threshold currents near the threshold. a First-
passage time densities for different §/ from simulation study. The
minus sign for §/ shows sub-threshold currents while the plus sign
shows supra-threshold currents. As we go further away from the
threshold regime to supra-threshold currents, the spiking density gets
sharper and more symmetric but in sub-threshold currents, by going
further from threshold current, the density would be more asymmet-
ric with a long tale and the peak shifts to the right side. The black

threshold voltage (i.e. I = Vp). In the ubiquitous near
threshold regime, however, the drive current is close but not
exactly equal to the threshold voltage, I = Vy+81. Thus we
extend our formalism beyond, to address such a situation.
Figure 7a depicts the first-passage time density for various
values of 1. In Fig. 7b, we have rescaled all these curves; all
of them collapse with the analytic solution at I = Vj.

The scaling is simply based on transferring the maximum
point of either of the curves to point M, the maximum of
the threshold curve (red dot in Fig. 7a). We locate tmax(61)
and Jax (81), which are the occurrence time and the value
of spiking density, at the maximum point of the curve with
I = Vp + 81. We find the ratio between Jmax (61) and the
maximum of the threshold curve: r = Jnax(61)/Jmax(0).
Each curve in Fig. 7a transfers to its corresponding curve in
Fig. 7b according to:

( t )_) (lmax(0)+r X (t_tmax(gl))>
Js1 (1/r) x Js1

The second row, states that the height of the curve is
tuned; so the height of its maximum would be equal to the
maximum height of the threshold solution. Similarly, the

(41)

b Rescaled Densities

0.025 T T T

0.0151

Spike density
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curve is the density at the threshold regime (6/ = 0). The red dot
(M) shows the maximum of the density where is the reference point
for the scaling of the densities. b Collapse of all the rescaled supra-
threshold and sub-threshold spiking densities on the analytic spiking
density at the threshold. Each individual density is rescaled by trans-
ferring its fmax and r by Eq. (41). Each curve is achieved by simulation
study for 10'! runs to have a smooth graph. The parameters used
are Ty = 20ms, Vo = 20mV, D = 0.74 mV?ms and 8§/ =
-0.3,-0.2, -0.1, 0, 0.1, 0.2, 0.3. Simulation time step is 0.05ms
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Fig. 8 Comparing simulation with our analytical scaling relations
(Egs. (43) and (44)). a tmax as a function of the deviation of the
drive current from threshold (67) is shown for simulation study (blue
dots and blue dashed line) comparing with analytical scaling relation
(red line, Eq. (44)). It shows good agreement between simulation and
analytical study especially for sub-threshold regimes. b The ratio (r)
between Jnax (67) and the maximum of the threshold curve as a func-
tion of 81 for both simulation and analytical study. The analytical

first row tunes the occurrence time of the maximum. More-
over, it shows that the width of the curve is scaled reversely,
compared to its height. This guarantees that the surface
below the curve does not change, but remains normalized to
one. After scaling, the curves collapse to the analytic solu-
tion. Therefore we can reversely use the analytic solution to
find the spiking density for the near threshold curves:

Jsi (@) =71 x Janalytic([max(o) +r x (t —tmax(81))), (42)

So this scaling shows that if we know the analytic expres-
sion of r and 4 (61), we can easily find the spiking density
for the near threshold curves from analytic threshold den-
sity. If T V02 > D and 61 <K Vjp, We can find the analytic
expressions for r and #n.x (67) up to first order with respect
todl:

1 |V} 81
r=1+; D9 A (43)
and
o (51) = ~ 7y In (TmV*)z) — T Vg 81 (44)
2 D D v,

Figure 8 shows the linear analytic expressions (Egs. (43)
and (44)) have good match with simulation data especially
at the sub-threshold regimes.

The idea behind these analytic relations (Egs. (43) and
(44)) is as follows. We put the threshold aside for a moment.
When we have no noise, the voltage trajectory in Eq. (1)
is easily driven by Vg = I_(l — exp[—t/tm]). In the
presence of just white noise, the voltage of LIF is given
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result for r (Eq. (43), red line) also agrees well with simulation study
(blue dots and blue dashed line), especially for sub-threshold currents.
The black dot in each graph shows the result of the threshold regime
(81 = 0). The parameters used are T, = 20 ms, Vp = 20mV, D =
0.74 mV?ms and 81 = —0.3, —0.2, —0.1,0, 0.1, 0.2, 0.3. Simulation
time step is 0.05ms and each point is achieved by 10! runs

by 8Vnoise = /D (1 —exp[—1/Tm])/Tm. We imitate some
ideas come from the Brownian motion problems, and put
forward an open conjecture. Fortunately, the conjecture hap-
pens to work finely. To address when the trajectories, on
average, reach the threshold, we consider the time when
Vdet + 8 Voise = Vo

I(1 — exp [~tmax/Tm])
+y/D(1 = exp [~fmax/Tm]) /Tm = Vo (45)
where I = Vy 4 81. Expanding Eq. (45) up to the first

2

order with respect to §/ and assuming tmDV £ > 1, we reach
to Eq. (44). For finding analytical expression for r, we put
the free Green function (see Eq. (5)) in first-passage time

density J (see Eq. (8)) while I = V, + 81. If we expand the

. . . m V2
expression up to first order with respect to § 7, for T"T" > 1,

the result leads to Eq. (43).

Appendix II: Exponential decaying function
as signaling input

Here, we extend our method to more physiologically plausi-
ble signaling input case, exponential decaying function. We
assume that the signaling input has the form of:

0 t < t*,

AI(t,t*):Ax{ 1 (_ﬁ)

(46)
E exp =

t* <t.

where 7 is the synaptic time constant and t; < t,. Based
on the defined signaling input current, to get the result of
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the first order, one should solve Eq. (14). To take the time
integral of Eq. (15), we use the same reasoning with the
assumption 7y << T Which simplifies the result to Eq. (16)
where f) (¢, t*) fort > t* is:

Fie, 1) = — <1 - e’r§*> (47)

and fi(¢,t*) = 0 for t < r*. for second and higher order
terms of perturbations, n > 2, we have the same result
as before (see Eq. (18)) but with different f,(z, t*) (see
Appendix II-a):

1 e T 6_2[;;

A Na—D 2 =2

fu, ) =(=1D"

(48)

To find the final result, we should add all » terms as in
Eq. (12) and obtain AP(V,t). Fort > t*, it reads:

Vo

APV, 1) :/ GV, t: Vo, tO Vo, t, t*) dVy, (49)

Vo=—00

where Q(Vp, t, t*) is:

*y\ __ \xN=00 * i " 9" *
OWVo,t,1")=%,_1" fu(t, 17) — Po(Vo, t7). (50)
Tm vy

If we put f,, (¢, 1*) from Eq. (48) in Eq. (50), the first term
(—1)" L in Eq. (50), simplifies to:

n=0oo (_%)n an

> —Py(Vo, t") = Py V()—i t*
=L v ’ Tm
—Py(Vo, 17). (51
The second term of f;, (¢, t*), —(—1)"%, in Eq. (50)
leads to:
A \n—1
A _i=r __ (=F) 9n! 9
e Yt (—Po<vo,r*>>
T (= D! vy \avo
A _i=* 9 A
= —¢ T P V — —,t* . 52
rme A% 0<0 Tm ) (52)

Simply we can calculate all the other terms in Eq. (50)
and add them together. Then, Q (Vp, t, t*) would be:

A =t «
+P{Vo——(1—€e = ), t7). (53)
Tm

Finally the result of P(V,¢t) = Po(V,t) + AP(V,t), by
inserting Eq. (53) into Eq. (49), simplifies as:

Vo
P(V,t) = /
Vo=—o0

A _i=t* %
xPyl|Vo——|1—e =& ,t7) dVy. (54)
Tm

The whole signature of the input current is gathered in
*

G(V,t; Vo, t%)

_ =t . .
a single term, %(1 — et ); this term, however, is

(1/tm) x fot Al (s, t*)ds. Consequently, the result could also
be written as:

\Z
P(V,1) = / G(V,1; Vo, t")
Vo=—00

0

EAI(s, t*
% Py <v0 —/ Lds,t*> dvo.  (55)
0

Tm
The first-passage time density is also simply attainable
by inserting Eq. (55) into Eq. (25):

\Z

D -
J(VQ»I) =~ G(V99I»V07t*)

2
Th JVy=—00

EAI(s, t*
% Py (vo—/ Lds,z*> dvo,  (56)
0

Tm
where G(Vy, t; Vo, %) = (dG(V, t; Vo, 1*)/dV) lv=y,.
Appendix II-a

For an exponential decaying signaling input, Eq. (46), the

first order term (see Eq. (15)) can be simplified by taking
the integral of A(z, t*) over ¢:

EAI(t, t%) A ¥
— | ———dt=——(1—¢ = 57)
0 Tm Tm

which leads to Eq. (16) where fi(z, t*) is:

=t

filt, 1) = — (1 —e ’-Y*> (58)

The integral of current Al (¢, t*) for the second term of
perturbation is:

tOAL(E )2 AN? (1 e 1 e
= ) di=(=) (2= m 42w ) (59)
0 Tm Tm 2 2

which leads to Eq. (18) when n = 2 with:

1 _t=t* 1 _zr—t*
¥ Ts [— Ts
o, 1) = 51 € + ¢ (60)

We can also go further and find the integral of current for
third and fourth order of perturbation. The integral of third
order is:

[ a2y
0 Tm - Tm
1

(61)
where f3(¢, t*) is:
1 1 _e=r 1 _pe=t 1 _ze=t*
Ol WY Ts — Ty — — )
f3(t, %)= (3! e © +2!e 3¢ )(62)
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For the fourth order we have:
tOALGE )\ AN
0 Tm Tm

1 1 = 1 _pe=* 1 _ge=r* 1 e
— — —e —e Tt — —e T —e ).
<4' 3! + 4 3! + 4!

This also leads to Eq. (18) for n = 4 with:

*_1 I
) =g=g¢ © Tge T Ty

+—e ' w (64)

Comparing Egs.
(8, t%) simply is:
J ply

(58), (60), (62) and (64) together,

feny = cap (LT
S L (=1 2(n—2)!
_gt=t* _pt=t*
e T pe
—m-l-...-l-(—l) (65)

Appendix III: Extending first-passage time density
to multiple presynaptic spike times

If more than one presynaptic spike occurs after reset time,
as far as the input’s spikes and shapes don’t interfere with
each other, the first-passage time density is simply a super-
position of the results. To make it clear, we assume a case
that first presynaptic spike arrives at ¢} and the second pre
spike arrives at ' (t; > t{). The first-passage time den-
sity of postsynaptic neuron after ¢{* is derived by Eqgs. (24)
and (25) but after £ is:

D Vo Vo 5
J(Ve,t)=——2/ dVl/ dV,G(Vp, t; V2, 15)
Tm J—o0 -0

A A,
xGlVy — —, tz,V],l‘l Po|Vi——,1 ), (66)
Tm Tm

~ AG(V,1; Va1 .
where G(Vy, t; Va, 1) = %W:Vw The integra-

tion can be taken numerically by software.

Appendix IV: Analytic expression for first-passage
time density

Here we calculate the analytic expression for First-passage
time density. By putting Eq. (29) and Py from Eq. (7) in

@ Springer

Eq. (28) and changing the variable (Vy — Vy = y), the first-
passage time density is:

e *Y 1,2
J(Vg, t) = y(t, z*)/ ydy e~ @U=Y/2
0

% [e—ﬂ(t*)(y—S+<t,t*))2/2_ e_,s(z*)@_s,(,,f*))z/z] (67)

where y (¢, t*), a(t — t*), B(t*) and S £ (¢, t*) are:
r(t —1t*)

Yy, %) =

7D (= 2N — 2~ )
oo Tm rie—1%)
Ry T}
oy m 1
pUT) = D 1—r2(t%)

1 t
S(t, %) = ——/ dgAl(q,t*) £r(t*)Ve
Tm JO

r(t) = em. (68)

The exponential term in Eq. (67) for the first(or the
second) term, S+ can be written in quadratic form:

atB (., BS 2 2 g
o~ 2o=BO=5)?/2 _ e*%@*m) e—%ﬁ, (69)

where each of the two terms of integral in Eq. (67) is
simplified to:

2 ap [ _atp(, B
Tty / o~ H0-E) 4y, (70)
0
by changing the variable y — (% = u, the integral over y
in Eq. (70) can be taken:
o0 atp ©BS _axp
fw ue*%uzdu+ﬁﬁs BS =ty 71
s £ a + B

each of the integrals in Eq. (71) can be written as two terms;

one integral from _ﬂTﬂ to 0 and the other term from O to

a+ﬂ 2 atp 2

o
”du+/ ue” 2 “du
0

0
+ / s A3 e gy
~ 55 a A B
o
S
+[F
o a+p
The first, second and fourth integral in Eq. (72) can be
taken analytically. So the final result of Eq. (70) is:

_S2 ap p2s2
e 2 atp e 2(06+13)
(Ol + ﬂ)3/2

o+ /3
&5 pS
+ / Y wrpng, (73)
o a+p

oHrﬂ w2

“du. (72)
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The analytic expression for first-passage time density,
Eq. (67), for arbitrary shape of input (t; < tp,) is achieved:

o y [0 TE e R T BS,
= — 2 —|— R o+, + P
(Ve. ) a+p ¢ 2(05—}—,3)'8 +¢ < . [ 2(0[—}—,3)i|>

BsZ e _ aps?
—e 2 — | ——BS_e 2@thH <1 + erf|:
V 2(x + B)
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BS_
=] @

where y = y(t,t*), 0 = a(t — t*), B = B(t*) and Sy =
S4 (¢, t*) are given by Eq. (68).

To obtain a clearer picture, we combine above definitions
and suggest new variables as:

o 1=r@?
= e

o P21 —r ()
OO =T o

o ™V} o ['ds AI(s, %)
o) =\ s (=00~ | v | 09

and the first-passage time reads:

J(V"v”:% {eXP (—?) |:1+\/:(p+exp (?)
2 <1+erf< ))}
BT
()] o

(2/7) [y exp(—t?)dt .

S|

where erf(x) =

Appendix V: Probability of spiking after input
arrival starting from the stationary distribution

Prior to input arrival at + = 0, membrane potential of the
neuron has the stationary distribution (Brunel and Hakim
1999; Brunel 2000):

)J
Py(V) = D / O -V

N
B (ys—
X exp[ D (
Where ®(V) is the Heaviside step function (©(V) =
when V > 0 and otherwise ®(V) = 0), A is the mean
firing rate (A = (fOOOsJO(Vg, s) ds)™1), V. is the resting
voltage which is zero here and [ is the mean current which

VZ—2[(V - VS))] vy, (17)

is equal to Vp. The stationary distribution is also represented
by Eq. (36) at the threshold regime which is the case of our
study here. When the square signaling input (see Eq. (3))
arrives at time origin, the probability density of trajectories
evolves as:
T GV, Vo, O0F, (Vo= & x & ) dVa. 0=7=Ar,
PV, 1)= (78)
GV VO,O)PS(V07—>dV0 At<t.
The first passage time, Eq. (25), at time t starting from
the stationary distribution represents the trajectories that
reach the threshold at that time and it reads:

By GOV T Vo, 0P (Vo= 2 x 5 ) dVo. 0=t <A,
fo= (79)
~B GV T Vo O (Vo- &) ave.  Ar<r,
where G(V, 1, Vo, fy) is given by Eq. (29). In the limit of
At — 0, the square input looks like delta function (§(7)). At
the arrival time of delta function with amplitude i all the

trajectories that have the potential V. > Vy — = in the sta-
tionary state reach the threshold and spike. So the Eq. (79)
simply is:

Ve
f(@)=4() Ps(Vp)d Vo
Vo= V@—a
D % A
——zf G(V T; Vo, 0) Ps < 0——) dVy. (80)
T JVo=—00 Tm

The form of Eq. (79) lets us use our suggestion used
before in Eq. (30) once more and extend the result in
Eq. (79) for an arbitrary shape of signaling input as:

Vo

D .
fo) = ——= G(V,1; W, 0)
T Vo=—00

Al(s,t*
P, (vo - f A1) 4
0 Tm

Figure 6b(inset) shows Eq. (81) matches well with
Eq. (34).

)dVo. 81)
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tmax/ Tm

Al(t,V,)

6

4

t*/ Ty,

Fig. 9 Fisher information with respect to the amplitude of signaling
input when the decoder has access to the last postsynaptic spike. Left:
Fisher information in logarithm scale as a function of the scaled ampli-
tude, A/(tm Vi), and the scaled presynaptic time, 1*/tp,. The signaling
input is the exponential decaying function (Eq. (46), 7; = 1 ms) while
the diffusion coefficient is fixed here, D /(1 VGZ) = 0.004. The Fisher
information is maximized when the signaling input arrives immedi-
ately with strong amplitude A/(tmVp) = 0.92 which generates the
postsynaptic neuron to fire immediately with minimum contribution
from the noise. Dashed black line shows the time when 1* = fiax. In
the t* < fmax region, the Fisher information decreases monotonically.

Appendix VI: Fisher information when the last
postsynaptic spike-time is known

Here, we suppose that the decoder has access to the last
spike of postsynaptic neuron, and find the Fisher informa-
tion by inserting Eq. (28) instead of f(7) in Eq. (38). This
function helps us to investigate more about the sensitiv-
ity of the first passage time to the amplitude of signaling
input when the precise time of signaling input is known with
respect to last postsynaptic spike. Figure 9 shows the Fisher
information as a function of signaling input’s amplitude (A)
and presynaptic spike time (#*). When ¢* occurs immedi-
ately after the last spike of postsynaptic neuron, a strong
amplitude of the input needs to be added for the voltage
to reach the threshold and generates a postsynaptic neu-
ron’s spike. Since the noise has a small effect on voltage
trajectory, the Fisher information is maximized. Neverthe-
less, when #* occurs with delay, noise and mean driving
current are added to voltage trajectory and a smaller amount
of signaling input is sufficient to reach the threshold; it
leads to a local maximum of Fisher information. To find
out about the efficient amount of amplitude in each ¢* that
maximizes the Fisher information, we present a simple pic-
ture. Roughly, the maximum of Fisher information occurs

@ Springer

Fisher Information

Al(z,V,)

6
t*/ T,

The later the signaling input arrives, we would need higher ampli-
tude to maximize information; this maximum monotonically decreases
with the arrival time. For * > fpy,x, the maximizing amplitude and
Fisher information are constants and independent of #*. Right: the
maximizing scaled amplitude, A/(tm V) as a function of normalized
arrival time (1*/ty) for different diffusion coefficients(D/(tm V92) =
0.004, 0.04, 0.08 corresponding to black, red and blue). The circles
show the maximum of Fisher information from Eq. (38). The dashed
lines show Eq. (83) which has a good match for t* < #p,x, but deviates
for * > tmax. The Solid lines show 82 Py(V, 1)/8V? = 0 (see Eq. (7))
which has excellent compatibility with the circles

when 0J (Vy, t)/d A is maximum; this corresponds to an A
which is strong enough to make the postsynaptic neuron
to fire, immediately upon presynaptic neuron’s spike. How-
ever, If we increase A more than this, J(Vp, ) does not
significantly increase; this means that 9.J(Vy, t)/9d A would
decrease or even vanish, for a larger A. We locate such an
A, it corresponds to an amplitude which makes most of the
trajectories to reach the threshold. The trajectories, corre-
sponding to various possible states of the neuron, are all
around a mean trajectory, V (t) = Vg(1—e™! /T The back-

ground noise widens this area, ./ %(1 — e~!/mm); thus the

amplitude which can make most of the trajectories to spike,
should satisfy:

« D A
Vo(l —e "y — [ —(1 —e~t"/m) 4 —=Vi, (82

Tm m

which shows a relation between A and ¢*:

A ‘ D
=1/ 4 (1 —e=t*/m). (83)
™mVo va@

The dashed line in Fig. 9, show Eq. (83) that has
good agreement with circles (amplitude maximizing Fisher
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information as a function of t*) as far as t* < fyax. The
threshold nonlinearity and image method disturb this sim-
ple picture for t* > tp,«. The deviation between the dashed
line and circles shows how threshold makes the picture com-
plicated. The solid line arises from calculating a voltage V
which satisfies 32 Po(V, 1)/dV? = 0 (see Eq. (7)); it shows
a very good agreement with the place of maximized Fisher
information.

Figure 9 gives us a hint why we observe two maximums
in the Fisher information for the low level of the noise in
Fig. 6. The left panel of Fig. 9 shows the Fisher infor-
mation for low scaled diffusion (D/(ty Vez) = 0.004). In
this figure, the Fisher information is maximized at stronger
amplitude for earlier t* (t* < f,,4y), but at weaker ampli-
tude for later r* (t* > f,4y). It is likely that we observed
these two peaks in Fig. 6a for small diffusions because this
result (see Eq. (38)) is obtained roughly by averaging over
t* for each amount of signaling input’s amplitude in Fig. 9.
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