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Survival studies of dental implants currently reach high figures. However,

considering that the recipients are middle-aged individuals with associated

pathologies, research is focused on achieving bioactive surfaces that ensure

osseointegration. Chitosan is a biocompatible, degradable polysaccharide with

antimicrobial and anti-inflammatory properties, capable of inducing increased

growth and fixation of osteoblasts around chitosan-coated titanium. Certain

chemical modifications to its structure have been shown to enhance its

antibacterial activity and osteoinductive properties and it is generally

believed that chitosan-coated dental implants may have enhanced

osseointegration capabilities and are likely to become a commercial option

in the future. Our review provided an overview of the current concepts and

theories of osseointegration and current titanium dental implant surfaces and

coatings, with a special focus on the in vivo investigation of chitosan-coated

implants and a current perspective on the future of titanium dental implant

coatings.
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Introduction

In the last 50 years, dental implants have become a predictable treatment option for

the replacement of missing teeth, improving the quality of life and masticatory function of

patients rehabilitated using them (Jofre et al., 2013; Hartlev et al., 2014; Tarnow, 2014;

Buser et al., 2017).

There are currently about 1,500 different implant systems in terms of topography,

wettability, chemistry, and surface modification (Le Guéhennec et al., 2007; Junker et al.,

20092009). These characteristics contribute to the biological processes occurring during

osseointegration by direct interaction with host osteoblasts in bone formation (Le
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Guéhennec et al., 2007; Dohan Ehrenfest et al., 2010; Pattanaik

et al., 2012; Ogle, 2015; Hotchkiss et al., 2016; Wennerberg et al.,

2018).

In general, long-term studies report excellent results in terms

of the survival rate of dental implants. After 20 years in

operation, the overall cumulative survival rate ranges from

89.5 to 99%, according to different studies (Horikawa et al.,

2017; Chrcanovic et al., 2018). However, considering that most

patients who undergo dental implant treatment are of a certain

age (50–60 years) (Guillaume, 2016) in which coexisting

pathologies (diabetes mellitus, osteoporosis, bisphosphonate

treatments) can affect bone quality and quantity, making it

necessary to modify the bioactive surface to accelerate and

ensure osseointegration after implant insertion (Gil et al.,

2021). On the other hand, surface modification becomes

necessary to accelerate osseointegration and to achieve more

comfortable and faster prosthetic loading protocols. For all these

reasons, biomedical research on surface modifications of dental

implants is focused on achieving bioactive surfaces that

guarantee long-term bone-implant contact (Bosshardt et al.,

2017).

Today’s rigorous manufacturing processes in modern dental

implantology have brought about a true technological revolution.

The breakthrough in the treatment of edentulism, although it has

not been given the deserved relevance as other novel surgical

procedures, greatly influences the physiological and

psychological state of patients and improves their quality of

life (Guillaume, 2016; Fonteyne et al., 2021).

Chitosan (Cht) is an FDA-approved copolymer that has

demonstrated properties such as bioactivity, biocompatibility,

biodegradability, non-toxicity and broad-spectrum antimicrobial

activity against both gram-positive and gram-negative bacteria.

On the other hand, it is important to highlight the prominent role

of chitosan-based scaffolds in combination with natural

biomolecules and drugs in bone regeneration (Fakhri et al.,

2020).

Our review provided an overview of the current concepts and

theories of osseointegration and current titanium dental implant

surfaces and coatings, with a special focus on the in vivo

investigation of chitosan coatings and a future perspective on

coatings.

Titanium

The history of titanium (Ti) as a biomedical material began in

the 1940s. Bothe et al. implanted titanium together with other

metallic materials in laboratory animals, re-porting its good

tolerance due to its excellent resistance to corrosion in

biological fluids; Beder et al. proposed the use of Ti for

intraoral implants, using a canine model (Clarke and

Hickman, 1953; Beder and Ploger, 1959; Nakajima and

Okabe, 1996).

Currently for the manufacture of orthopedic and dental

implants, four grades of pure Ti are used depending on their

oxygen and iron content. Apart from pure Ti, Titanium-

Aluminum-Vanadium alloy (Ti-6Al-4V, Ti6-4) and Ti-grade

5 are the most commonly used for biomedical applications.

Ti6Al4V ELI (Grade 23) is an alloy of titanium with

aluminum and vanadium. It is a purer version of Ti6Al4V

(Grade 5). The content of interstitial elements (iron, oxygen

and carbon) in this alloy are strictly controlled and limited during

the melting process. This purity gives it superior mechanical

properties and increased fatigue strength. It has excellent

biocompatibility with the human body and is one of the most

widely used dental implants to restore function (Jujur et al.,

2020).

The concept of osseointegration

The pioneer of modern implant dentistry, Professor Brånemark

of the University of Gothenburg (Sweden), performed the first

preclinical studies in the 1960s, describing the phenomenon of

osseointegration. The ‘Brånemark team’ (Tomas Albrektsson,

Ragnar Adell, Ulf Lekholm and Torsten Jemt) was the first to

propose the concept of osseointegration of a metallic biomaterial

implanted in bone, demonstrating that biocompatibility and bone-

Ti bonding were the main biological properties of this metal. This

aspect led them to define the concept of osseointegration of titanium

as ‘the direct structural and functional connection between the

ordered living bone and the surface of a load-bearing implant’

(Brånemark et al., 1977; Adell et al., 1981; Albrektsson et al., 1981).

However, the biological bone-Ti interaction can be found in the

scientific literature under different terminologies such as ‘bone

ankylosis’, ‘bone union’, ‘osteotolerance’ etc. that define more

precisely the bone-implant relationship (Lang, 2019).

Cornell & Lane defined osteoconduction a three-dimensional

process of ingrowth of capillaries sprouting from a bone bed,

perivascular tissue and osteoprogenitor cells into the three-

dimensional structure of a porous implant, which is used as a

guide to cover a defect with bone tissue (Cornell and Lane, 1998).

Osteoinduction is defined by Barradas et al. as the induction of

undifferentiated mesenchymal stem cells, which are not yet

committed to the osteogenic lineage, to form osteoprogenitor

cells and produce bone in heterotopic sites (Barradas et al., 2011;

Weber, 2019). However, the actual mechanism of the

osseointegration process remains unknown (López-Valverde

et al., 2020) although, in recent years, different novel theories

have been proposed to explain it:

Osteosufficiency/osteoseparation theory

Kota and Zarb (Koka and Zarb, 2012) have proposed a

rational theory in which host biology and implant
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characteristics are considered two distinct entities that are

expected to interact and coexist for decades and caution that

although short-term studies, animal models and in vitro work

may provide clues, long-term human observation is the definitive

reason. Some factors predisposing to a state of osteoinsufficiency

create little controversy, e.g., uncontrolled diabetic; others, such

as parafunctional habits, occlusal overload, certain drugs, or

bacterial aggression are controversial.

Brain-bone axis theory

The central nervous system, and more specifically the

hypothalamus, has an important regulatory role in the

functions of peripheral tissues and in the processes of bone

healing and remodeling (Ruan et al., 2014; Kim et al., 2015).

Recent studies have also demonstrated important links between

the central nervous system and the immune system, which in

turn plays a key role in peri-implant bone healing (Elefteriou

et al., 2014). Other studies have suggested that impaired

osseointegration and dental implant failures may be associated

with the use of antidepressant drugs (Abu Nada et al., 2018).

Some researchers have even gone so far as to propose the gut-

brain-bone axis, in which the gut would drive bone physiology

through the regulation of key hormones that are originally

synthesized in the brain. And in this aspect, the oral

microbiota would play an important role (Quach and Britton,

2017).

Foreign body reaction theory

Any type of implant is considered a foreign body, to which

the organism reacts by activating the immune and inflammatory

systems, whereby the defense cells (neutrophils, lymphocytes,

proinflammatory reactive macrophages and osteoclasts) react by

engulfing the foreign body. In this situation, reparative cells

(fibroblasts and osteoblasts) are activated and help repair and

remodel tissues and protect them from further destruction,

however, when a foreign body is too bulky to be engulfed by

immune cells, a fibrous or osseous encapsulation process

develops around it (Carcuac et al., 2013; Miron et al., 2016;

Naveau et al., 2019). Trindade et al. and Albrektsson et al. defined

osseointegration as a foreign body reaction, an

immunomodulated, multifactorial and complex healing

process involving various cells and mediators, hypothesizing

that the primary etiology of crestal bone loss around

osseointegrated implants would be a change in the

inflammatory equilibrium (foreign body equilibrium). Such an

inflammatory response would be caused by sudden changes in

the loading situation, or by alterations of the foreign body itself,

in the form of accidental tissue dispersion, and that bacterial

colonization, now classically considered as a triggering factor for

peri-implant bone loss, could be secondary to such alterations

(Trindade et al., 2016; Trindade et al., 2018).

Titanium surface modifications

After implantation, titanium comes into contact with

biological fluids and tissues, and two types of response may

occur: either the formation of a fibrous soft tissue capsule around

the implant that does not guarantee adequate biomechanical

fixation and leads to clinical failure, or direct bone-to-implant

contact without an intermediate connective tissue layer, which is

known as osseointegration (Brånemark et al., 1977) (Figure 1).

Most dental implants are manufactured with grade 4 Ti, as it

is stronger than other grades, however, titanium alloys are mainly

composed of Ti6Al4V (Titanium grade 5-Aluminum-

Vanadium), with higher elastic modulus and better fatigue

properties than pure titanium (Glied and Mundiya, 2021).

The implant surface is now considered to play a key role in

clinical success. The surface roughness of Ti implants affects the

osseointegration rate and biomechanical fixation (Ferraris et al.,

2011). Ti implants with SLA (Sandblasted, Large-grit, Acid-

etched) etched surfaces show superior bone-to-implant

contact (50–60%) compared to other surface modifications,

and the suitability of this type of etching in terms of overall

osteogenic performance has been demonstrated in vivo (Ogle,

2015; Ren et al., 2021) (Figure 2).

The degree of surface wettability (range 0° hydrophilic to 140°

hydrophobic) is a matter of controversy among different

researchers; Buser et al. (Buser et al., 2004) proposed that

hydrophilic SLA surfaces generate greater bone-to-implant

contact than normal SLA. However, earlier in vivo studies by

Carlsson et al. and Wennerberg et al. found no difference

(Carlsson et al., 1989; Wennerberg et al., 1991). Nevertheless,

new findings on wetting and nanoroughness are driving current

research in this exciting field (Rupp et al., 2018).

Currently, surface roughening is the most commonly used

technique in practice, however, titanium implants with

microscale and/or nanoscale surface topographical features

have moved from novelty to commodity and are advancing in

the field of the implant industry. Certain researchers have

reported that the failure resistance of dental implants is

influenced by the acid-etched surface; furthermore, it is

known that Ti etched, SLA-type surfaces have a mean value,

after 6 weeks, of 50–60% bone-to-implant contact, compared to

the Ti plasma sprayed titanium surface, which had only a mean

value of 30–40% (Ong and Chan, 2000; Socorro-Perdomo et al.,

2022).

To ensure a high quality of coatings, the importance of

surface pretreatment prior to the deposition work has to be

taken into account. Despite the high number of studies

performed to date on the plasma spraying method, the

literature results demonstrate the difficulties in deciding the
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optimal value of surface roughness to improve osseointegration

and decrease bacterial adhesion (Jemat et al., 2015).

Implant surface modifications by methods based on the

immobilization of biologically active organic molecules on Ti

and Ti6Al4V surfaces have attracted much interest recently

(Panayotov et al., 2015).

Human defensins are normally produced by neutrophil

granulocytes and epithelial cells. The alpha defensins, were

originally identified as small antibiotic peptides, termed

human neutrophil peptides (HNP-1, HNP-2, HNP-3) (Jarczak

et al., 2013). Notably, HNP-1 has been detected in saliva samples

from patients with oral cancer and patients with other oral

pathologies. Human beta-defensins are synthesized by

epithelial cells lining the oral mucosal surfaces. Beta-defensin

is secreted in saliva and it has been found that certain

inflammatory stimuli could significantly increase beta-defensin

expression in gingival keratinocyte cultures (Cunliffe, 2003).

Pfeufer et al. (Pfeufer et al., 2011) observed that coating Ti

surfaces with human beta-defensin was effective against

Escherichia coli, a gram-negative bacterium associated with

implant failure (Alshammari et al., 2021).

Histatins are antimicrobial peptides secreted in human

parotid saliva, which have been attributed an important role

in wound healing in vitro (Pal et al., 2014). Certain studies have

highlighted the role of these peptides in the osseointegration of Ti

dental implants. Van Dijk et al. immobilized histatin peptide on

the surface of Ti and found that it enhanced osteoblast cell

adhesion (Van Dijk et al., 2017). Makihira et al. tested the

performance of Ti implants coated with a histatin-derived

peptide on edentulous ridges of dogs; histological analysis and

microcomputed tomography showed increased trabecular bone

formation around the coated implants versus untreated implants

(Makihira et al., 2011). Siwakul et al. (Siwakul et al., 2021)

evaluated cell adhesion, proliferation, osteogenesis-related

genes and alkaline phosphatase activity on histatin-coated Ti

surfaces; the results showed that the adhesion of cells to the

histatin-coated group achieved cell proliferation significantly

histatin achieved significantly higher cell proliferation.

Sugawara et al. (Sugawara et al., 2016) described a method

that allowed adhesion of human gingival epithelial cells to a

smooth Ti surface by a protease receptor 4 activating peptide,

based on the idea that peri-implantitis could result from a lack of

epithelial seal at the peri-implant collar; the coating produced a

rapid aggregation of platelets on the Ti surface. Other studies

have demonstrated the induced epithelial barrier function to

prevent bacterial adhesion, penetration, and invasion on Ti

(Maeno et al., 2017). Local production of antimicrobial

FIGURE 1
Osseointegration and failure.

FIGURE 2
Engraved and machined surface of Ti implants.
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peptides may contribute to the barrier function of the epithelial

seal formed around the transmucosal part of dental implants; in

this regard it is noteworthy that certain bacteria such as

Fusobacterium nucleatum, an anaerobic member of the oral

pathogens associated with periodontitis, induced the

production of beta-defensin-2 in human gingival epithelial

cells (Krisanaprakornkit et al., 2000). This type of research on

the immobilization of peptides on Ti surfaces could prevent

bacterial colonization of implants and facilitate the initial phase

of osseointegration (Table 1).

Chitin and chitosan

Chitin is a carbohydrate found mainly in the exoskeleton of

crustaceans and some fungi. Albert Hofmann first described its

structure, although as early as 1859, Rouget treated chitin with a

hot potassium hydroxide solution, leading to the discovery of

chitosan (Cht) and laying the foundations for its production

(Crini, 2019; Mohan et al., 2022). The deacetylation process

increases the interaction between Cht and cells by increasing the

number of positive charges, thus improving its biocompatibility

(Hamed et al., 2016). It does not produce antigenic response and

possesses anti-inflammatory properties. Its hemostatic power is

an important feature, as it can induce platelet adhesion and

aggregation and activate blood coagulation. Thus, Cht can

control bleeding by adsorbing plasma and coagulating red

blood cells (Keast DH Janmohammad, 2021; Ferraris S et al.,

2022).

Chitosan titanium dental implants
coatings

Surface treatments and coatings of dental implants are of

great importance in the osseointegration process. Cht has

excellent ability to bind to metal, which could improve the

mechanical strength and increase the durability of titanium

implants. However, solubility in aqueous solutions depends on

pH. At neutral pH, most chitosan molecules will lose their charge

and precipit from solution. Certain researchers have highlighted

the adhesion strength of Cht coatings to Ti surfaces as unsuitable

for clinical applications. Ferraris et al. (Ferraris S et al., 2022) has

recently proposed a chemical pretreatment of the Ti substrate, by

three methods: in the first one (“direct coating”) he immerses the

Ti6Al4V samples in the solution; in the second one, he activates

the surface by tresyl chloride and in the third one he performs a

treatment with polidopamine, concluding that the best result is

obtained with the direct coating at acid pH on a pretreated Ti

substrate, due to the nanometric porosity of the substrate and to

the strong electrostatic attraction between the chitosan and the

hydroxyl groups. In this way, mechanically and chemically stable

coatings are obtained.

Natural or biopolymer-based composites containing chitin

or chitosan have advantages such as biocompatibility and

biodegradability, which are essential for bone tissue

engineering. Carboxymethylation, quaternization, sulfonation

and phosphorylation are the most common methods to

overcome the insolubility of Cht and to enhance its

antimicrobial effect (Qin and Li, 2020).

Cht is produced by the N-deacetylation of chitin. The

application of high-power ultrasound significantly intensifies

the deacetylation process (removal of an acetyl group) of

chitin, resulting in low molecular weight, high quality Cht by

rapid treatment at low temperature (Figure 3).

It has been shown that, deacetylated Cht chemically binds to

titanium surfaces, although the bond strength is lower than that

of calcium phosphate coating; however, enhanced osteoblast

growth and attachment has been reported on Cht-coated

titanium (Bumgardner et al., 2003a). Despite this, in vitro and

in vivo studies disagree as in vitro studies show that osteoblasts do

not adhere to chitosan in normal cell cultures, requiring some

TABLE 1 Innovative surfaces based on organic components.

Surface
coating

Sustrate Outcome Study

Human beta-
defensin

Ti Effective against Escherichia coli Pfeufer et al. (Pfeufer et al., 2011)

Histatins Ti Enhance osteoblast cell adhesion Van Dijk et al. (Van Dijk et al., 2017)

Ti Increased trabecular bone formation around coated implants Makihira et al. (Makihira et al., 2011)

Ti Promote cellular activities around dental implants Siwakul et al. (Siwakul et al., 2021)

Peptides Ti Adhesion of human gingival epithelial cells to a smooth titanium surface. Epithelial sealing
at the implant neck. Platelet aggregation on the titanium surface

Sugawara et al. (Sugawara et al., 2016)

Ti Induced epithelial barrier to prevent bacterial adhesion, penetration and invasion on
titanium. Prevent adhesion, penetration and invasion of Escherichia coli bacteria

Maeno et al. (Maeno et al., 2017)

Ti Certain oral pathogens associated with periodontitis induce the production of beta-
defensin-2 in human gingival epithelial cells

Krisanaprakornkit et al. (Krisanaprakornkit
et al., 2000)
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pretreatments such as serum soaking or fibronectin coating

(Saccani et al., 2019).

Preparation of the different types of
chitosan coating

The characteristic features of Cht, such as being cationic,

hemostatic and insoluble at high pH, can be completely reversed

by a sulfation process that can make the molecule anionic and

water soluble, and also add anticoagulant properties (Suh and

Matthew, 2000). On the other hand, due to its high molecular

weight and linear structure, it has excellent viscosity. The higher

viscosity of the Cht solution depends on the concentration, the

decrease in temperature and the increase in the degree of

deacetylation; this influences the elongation at fracture and

tensile strength, all of which is of great importance in Cht

coatings of dental implants by immersion, which would be

more resistant to the forces provoked during the insertion

phase in the bone tissue bed (Barton et al., 2014); however,

studies investigating the influence of the degree of deacetylation

on the properties of chitosan are contradictory. Foster et al.

observed that variation in the degree of deacetylation could be

responsible for the contrasting trends in chitosan properties.

(Foster et al., 2015). At the same time, viscosity would enhance

biological and healing properties, as well as biodegradation and

osteogenic capacity (Gérentes et al., 2002). Other modifications

of Cht, with the aim of reducing the drawbacks it presents

(mechanical properties and antibacterial activity for

biomedical applications), have involved chemical modification.

Modifications of Cht, such as the incorporation of

carboxymethyl, imizadolyl or methyl pyrrolidone, have been

shown to improve osteoinductive properties and result in

increased antibacterial activity (Alves and Mano, 2008;

Jayakumar et al., 2010). Other strategies to compensate for its

limitations have consisted of combining it with other natural

polymers such as alginate, silk, or chitin (Mohire and Yadav,

2010; Rahmani et al., 2018; Quesada et al., 2020; Moenne and

González, 2021).

Cht as a titanium coating has been studied in depth by

different researchers (Bumgardner et al., 2003a; Abarrategi et al.,

2008), however, few in vivo studies have been published

(Bumgardner et al., 2007; Kung et al., 2011; Takanche et al.,

2018; Zhang et al., 2020; López-Valverde et al., 2021a; López-

Valverde et al., 2022). On the other hand, when preparing Cht

coatings for silanization and attachment to the Ti substrate, toxic

FIGURE 3
Chitin deacetylation process.
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reagents such as 3 isocyanatopropyltriethoxysilane and

glutaraldehyde are used; moreover, these techniques involve

complex processing that hinders the deposition of the coating

and limits its clinical applicability. Grosso described an

immersion coating method for preparing films on substrates

from liquid solutions. This method facilitates the possibility of

fine-tuning the amount of material that can be deposited, and

thus the thickness of the final film; moreover, dip coating is an

inexpensive way to deposit thin layers from chemical solutions

with relatively fair control of the layer thickness (Grosso, 2011).

The kinetics of dip coating is based on a continuous flow

condition and the coating thickness is determined by the

competition between viscous force, surface tension, gravity

and substrate withdrawal rate (Nguyen du et al., 2014). Zhang

et al. (Zhang et al., 2020) demonstrated that porous Ti with a Cht/

hydroxyapatite coating could promote osteoblast-like cell

proliferation and differentiation and osseointegration in a

rabbit femur model. For the coating process, they resorted to

a dilution of Cht/hydroxyapatite composite by dissolving 1.98 g

of Ca(NO3)2–4H2O and 0.66 g of KH2PO4 in distilled water,

along with 1 g of Cht powder in 100 ml of 2% acetic acid. The

2 solutions were mixed to prepare a composite Cht/

hydroxyapatite coating on the porous titanium surface using

an electrochemical deposition method described by Pang et al.

(Pang and Zhitomirsky, 2007). Takanche et al. (Takanche et al.,

2018) used a rat mandible osteoporotic model, where they

implanted Ti devices coated with Cht-gold nanoparticles,

obtaining an increase in osteogenesis and inhibition of

osteoclastogenesis. Bumgardner et al. (Bumgardner et al.,

2007) on a rabbit tibia model, implanted Ti devices coated

with deacetylated Cht (1wt% deacetylated chitosan 92.3% in

1% acetic acid) melted in solution and adhered to rough Ti

pins by their own method (Bumgardner et al., 2003a;

Bumgardner et al., 2003b), using calcium phosphate-coated Ti

pins and uncoated Ti pins as controls. The coating with Cht was

performed by solution casting and silane reactions under acidic

conditions. They used a 1% Cht solution in 1% acetic acid,

poured over the samples and allowed to air dry for 7 days. The

resulting layers, 10–15 µm thick, were neutralized with a weak

base and rinsed with plenty of deionized water. Histological

evaluations of the tissues in contact with the Cht-coated pins

indicated a minimal inflammatory response and a healing

sequence with bone tissue formation, followed by the

development of laminar bone. Kung et al. (Kung et al., 2011)

resorted to subcutaneous implants in a rat model, using two types

of Cht with a degree of deacetylation >90%. The solution used

consisted of 15 mg of Cht powder in 10 ml of vitamin C solution

to obtain a 0.15% Cht solution with which they soaked type I

collagen membranes that they then wrapped around Ti mini-

implants, obtaining ectopic new bone formation in the area of the

Cht-coated implants. The method, used by us in previous studies

(Pang and Zhitomirsky, 2007; Nguyen du et al., 2014), resorted to

a film-forming solution of Cht dissolved in an acid medium, on a

dog jaw model; they compared implants with surfaces coated

with Cht, by means of a procedure of immersion in acid solution

and film-forming solution, with uncoated implants, type SLA. In

our opinion, this is a suitable procedure for the coating of dental

implants with Cht. The procedure, described by Vakili et al.

(Vakili and Asefnejad, 2020), complemented with the procedure

described by Zhang et al. (Zhang et al., 2019) for the film-forming

solution, is performed by dissolving 0.5% (w/v) Cht in a 0.5% (v/

v) acid solution and stirring the solution for 12 h on a magnetic

stirrer. The film-forming solution is prepared following the

procedure described by Zhang et al.; glycerol (0.4 g) is

dispersed in 80 ml acetic acid (1%, w/v) by stirring for at least

12 h (4°C). The prepared Cht solution is added to the film-

forming solution using a syringe pump (Infusomat® Space,

Braun, Barcelona, Spain), at a rate of 50 ml/h, stirring by

means of a mechanical stirrer at 800 rpm. Functionalization of

the Cht-coated implants was performed by immersion in the

prepared solution. The functionalized implants were then dried

at 25°C with a relative humidity of 50% for the formation of a

uniform film. (Figure 4).

Four of the in vivo studies reviewed (Bumgardner et al., 2007;

Kung et al., 2011; Takanche et al., 2018; Zhang et al., 2020; López-

Valverde et al., 2021a; López-Valverde et al., 2022) used coating

formulations, in our opinion, of a certain complexity in terms of

clinical applicability. The fifth study and sixth studies (López-

Valverde et al., 2021a; López-Valverde et al., 2022) used a coating

process described by Vakili et al. (Vakili and Asefnejad, 2020)

and Zhang et al. (Zhang et al., 2019), with slight modifications, of

easy applicability (Table 2). Grosso (Grosso, 2011) recommends

immersion methods as a simple and inexpensive coating strategy,

easily applicable in preclinical studies applicable in humans. The

CAMARADES Research Group (University of Edinburgh)

reported that simple strategies for preclinical studies in

general, save more than 30% of in-research expenditure

($5.8 billion) (CAMARADES, 2022).

In any case, we have not found defined in the literature the

optimal amount of Cht for coating Ti dental implants, although

some research has hypothesized that it may not be important for

the Cht coating to persist in the long term once a good bone-

implant interface has been established. It also seems to be unclear

whether it would be necessary for the chitosan polymeric

material to possess high bond strength (Bumgardner et al., 2007).

Cht coatings on Ti-6Al-4V substrates in vitro, which showed

improved mechanics, better cell adhesion and viability of human

osteoblastic cells, were obtained by homogeneous coatings of

770–800 nanomicrons es-thickness, crack-free and well adhered

(Gopi et al., 2014; Moskalewicz et al., 2015).

The layer-by-layer technique has many advantages over

other multilayer fabrication methods, as no complicated

instruments are needed for the process, which makes it

affordable in practice; moreover, deposition by layer-by-layer

is independent of the shape and size of the substrate. Song et al.

(Song et al., 2020) used the layer-by-layer approach to modify the
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titanium substrate, obtaining smooth multilayer coatings that

promoted osteogenic differentiation of MG63 osteoblast-like

cells.

Casting is another simple method of depositing Cht on the

surface of a substrate. The technique involves preparing a

polymer solution using a suitable solvent; subsequently, the

solution is poured onto the substrate to create a thin film

deposition. This is followed by heat treatment of the substrate

at a given temperature for an extended period of time to increase

the adhesion strength between the substrate and the coating.

Wang et al. (Wang et al., 2021) demonstrated that, through the

heat-alkali treatment, an ultrathin Ti dioxide layer, upon

contacting the titanium surface with air, could react with

sodium hydroxide to form an amorphous sodium titanate

layer, considered as the stable structure with high corrosion

resistance of Ti upon contact with body fluids, precisely, a

phenomenon closely related to dental implant failures.

Nevertheless, some authors have highlighted the poor

cytocompatibility of Cht, which is a key factor in

osteoconductivity for bone regeneration, possibly due to the

lack of cell binding sites (Albrektsson and Johansson, 2001).

To solve these drawbacks, the incorporation of materials such as

graphene or the enrichment with bioactive materials of the

extracellular matrix has been proposed (Hansson et al., 2012;

Wong et al., 2020; Brun et al., 2021; Schierano et al., 2021).

Saccari et al. and Fernandez et al. proposed the modification of

Cht with a fibronectin-DNA complex to enhance the activity of

osteoblastic cells (Fernández et al., 2012; Saccani et al., 2019).

Other studies have highlighted the degree of deacetylation

and molecular weight of Cht as determinants for osteoblast

adhesion, growth, and differentiation. Sukul et al. (Sukul et al.,

2021), found in vitro that high deacetylation chitosan favored

osteoblast adhesion, secretion of bone markers and extracellular

matrix production, while low deacetylation induced secretion of

osteoclastogenesis-promoting factors. Similarly, high molecular

weight Cht induced the secretion of factors facilitating

angiogenesis and bone remodeling.

These new technologies are in the research phase, and in

general, although it is accepted that Cht-coated dental implants

may have a higher osseointegration capacity, they are not

FIGURE 4
Modified Vakili and Zhang coating scheme for the immersion procedure.
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commercially available, but are likely to become a commercial

option in the future. (Bumgardner et al., 2007; Civantos et al.,

2017; Palla-Rubio et al., 2019; Alnufaiy et al., 2020; López-

Valverde et al., 2021b; Eftekhar Ashtiani et al., 2021; Lin

et al., 2021).

Trends; next generation coatings

Over the past 2 decades, several surface coatings approaches

have been proposed and studied to improve implant

osseointegration. The development of future generations of

dental implants, both under normal and tissue compromised

conditions, will involve “tailored modifications” of substrate

surfaces that enhance their biological performance and locally

release bone regeneration stimulating molecules, especially at the

bone-implant interface.

The most important problems related to insufficient

compatibility of material surfaces could be summarized in

four types:

- Topographical or mechanical incompatibility. The implant

microdesign or surface condition has a great impact on the

dynamics of osseointegration, especially, in low-density

bone (Steigenga et al., 2003). Although surgical

integration depends mainly on the implant macrodesign,

the microdesign or microsurface topography may also play

an important role in this phase. Salabi et al. in an animal

model demonstrated that rough surfaces presented higher

removal torque values than machined surfaces (Shalabi

et al., 2006). A consensus report published in

2009 concluded that “the highest level of bone-to-

implant contact was associated with moderately rough

surfaces” (Lang et al., 2009). Regarding macrodesign,

different implant thread designs have been proposed

with the aim of improving and optimizing the

osseointegration process, and implant geometry has been

reported to affect bone-to-implant ratio and mechanical

pull-out test values (Abuhussein et al., 2010).

- Biofouling. Any artificial material introduced into the body

environment is at risk of biofouling, causing infections and

leading to implant failure. Numerous studies have

investigated non-biofouling with the aim of increasing

the bioactivity of titanium for its broader applications in

biomedical areas; Kang et al. (Kang et al., 2010) used

biologically active molecules on Ti surfaces coated with

polyethylene glycol methacrylate to enhance the non-

biofouling property. Jesmer and Wylie and Manivasagam

et al. (Jesmer andWylie, 2020; Manivasagam et al., 2021) in

recent reviews highlighted that biofouling is crucial for the

optimization of biomaterials and devices interacting with

complex biological environments composed of

macromolecules, fluids and cells.

- The reaction of the immune system to the implant material

may be the cause of a number of problems. Trindade et al.

and Albrektsson et al. (Trindade et al., 2016; Trindade et al.,

2018) interpreted osseointegration as a foreign body

reaction to a biomaterial. Macrophages, which are the

main effector cells in biological reactions to biomaterials,

could contribute to some extent to the success or failure of

TABLE 2 Characteristics of in vivo studies.

In vivo
studies

Aplicability Cost Difficulty of
coating
preparation

Substrate Coating and
method

Outcomes

Zhang et al. (Zhang et al., 2020) + + + + + + + + Porous Ti Cht/HA composite coating Osteoblast-like cell
proliferation and
differentiation

Electrochemical deposition

Takanche et al. (Takanche et al.,
2018)

+ + + + + + + Ti Chitosan-gold nanoparticles Increased osteogenesis and
inhibition of osteoclastogenesisGraft-on technique

Bumgardner et al. (Bumgardner
et al., 2007)

+ + + + + + Ti 1 wt% of 92.3% deacetylated
chitosan in 1% acetic acid

Minimal inflammatory
response and development of
lamellar boneSolution casting

Kung et al. (Kung et al., 2011) + + + + + Ti Two types of chitosan with
molecular weights of 450 and
750 kDa and with deacetylation
degree

New bone formed ectopically

> 90%

Enveloped membranes

López-Valverde et al.
(López-Valverde et al., (2021a);
López-Valverde et al., (2022))

+ + + + + Porous Pure chitosan acid solution Higher bone density compared
to the conventional etched
surface group

Ti6Al4V Immersion

+ low; + + moderate; + + + high; HA, hydroxyapatite.
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implants (Chen et al., 2016). Macrophages have also been

shown to directly contribute to bone formation during the

healing process (Pajarinen et al., 2019). However, some

studies have reported that macrophage infiltration

triggered by implant insertion promotes bone formation

around implants in the first 2 weeks, whereas macrophage

depletion impairs new bone formation (Wang et al., 2020).

After the implantation procedure, it seems that the bone

regeneration capacity is strongly activated, which would

indicate that Ti implants complement the bone healing

process and that innate and acquired immune mechanisms

would be required in these biological events. Inflammation

is the main mechanism of innate immunity; therefore, an

initial and well-controlled inflammatory immune response

is essential for bone formation and osseointegration

(Trindade et al., 2018). Amengual-Peñafiel et al. reported

in a recent review article that immunomodulatory

strategies focused on host osteoimmunology are a

promising approach and that osteoimmunology will

allow a better understanding and integration of the

concept of osseointegration in the future (Amengual-

Peñafiel et al., 2021).

Biodegradable coatings

This type of research is focused on the true biological

character of osseointegration and the innovative approaches

proposed are intended to mimic the biochemical environment

and nanostructural architecture of human bone. Biodegradable

polymers are polymers which are decomposed in a living body

but whose degradation products remain in tissues for long-term.

Coatings by different molecules, such as Cht, collagen,

polysaccharides, peptides and biodegradable polymers, are

being thoroughly investigated for their interesting results on

implant surfaces (Song et al., 2020). Natural polymers possess

highly organized structures and can contain an extracellular

substance, called ligand, which is of great interest for binding

to cell receptors; moreover, these types of structures can guide

cell growth at different stages of development and stimulate an

immune response (Coletta et al., 2018). It has been suggested that

bioactive ions affect small molecules involved in intra- and

intercellular signaling pathways and that these osteoinductive

effects could be induced by bioactive small molecules that

modulate bone morphogenic protein expression

(Aravamudhan et al., 2013; Han et al., 2013; Kalinichenko

et al., 2019).

However, although the underlying mechanism remains

unexplored, the bone healing process at the bone/implant

interface is hampered by oxidative stress induced by the

overproduction of reactive oxygen species. In order to endow

Ti substrates with antioxidant activity to enhance bone

formation, Chen et al. (Chen et al., 2017) in a study on rabbit

femur constructed on Ti substrates a multilayer structure

composed of Cht-catechin, gelatin and HA nanofibers,

obtaining excellent antioxidant and cell healing-promoting

efficacy, osteogenesis differentiation and osteogenesis-related

genes expression of osteoblasts.

Laser surface treatments

Moderately rough surfaces (1–2 µm) have been reported to

have benefits in osteoblast differentiation and migration

(Andrukhov et al., 2016). The application of laser treatment

on Ti surfaces can create identical and constant morphologies,

which provides better cell adhesion and proliferation, therefore,

some researchers have proposed this type of treatment on dental

implants; in addition, has demonstrated its efficacy as a pre-

coating with certain ceramics (Veiko et al., 2021). It has even

been proposed as an alternative technology for transforming

hydrophobic implant surfaces to hydrophilic (Rupp et al., 2018).

When a laser is used to modify the surface properties of titanium,

surface modification occurs through melting and vaporization.

Different surface patterns with enhanced biological responses

can be provided, and the deposition of contaminants on the

surface is minimized compared to traditional modification

methods (Menci et al., 2019). A systematic review by Simões

et al. (Simões et al., 2021) demonstrated the ability of the laser to

modify the surface properties of titanium; however, a large

variation in results was observed depending on the parameters

used, such as number and speed of scans, energy density, power,

TABLE 3 Suitability of models and implantation sites of in vivo studies.

Studies Suitability of experimental
model

Model Implantation sites

Zhang et al. (Zhang et al., 2020) Low suitability Rabbit Femur

Takanche et al. (Takanche et al., 2018) Moderate suitability Rat Jaw

Bumgardner et al. (Bumgardner et al., 2007) Low suitability Rabbit Tibia

Kung et al. (Kung et al., 2011) Low suitability Rat Subcutaneous

López-Valverde et al. (López-Valverde et al., (2021a); López-Valverde et al., (2022)) Suitable Dog Jaw

Likewise, imaging assessment methods will gain more and more importance as diagnostic methods for bone quantification around implant surfaces.
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pulse repetition rate, fluence and focal plane variation, suggesting

the need for specific protocols for the high-power laser to

optimize results.

Some commercial firms have included this type of surface

treatments in dental implants and prosthetic abutments.

Blazquez-Hinarejos et al. (Blázquez-Hinarejos et al., 2017) in a

systematic review carried out in preclinical and clinical studies,

showed that different types of surface modifications of implant

abutments can provide a benefit for the attachment of connective

tissue to the abutment, although they recommended further

human studies to obtain more evidence of the results.

Nanotechnology

It is well established that osteogenic cells respond better to

microrough Ti surfaces compared to machined surfaces,

however, research is needed to find the ideal surface

topography that enhances bioactivity and osteogenesis (Yeo,

2019). Nanoengineering is emerging as a field of engineering

aimed at further improving the bioactivity of dental implants. It

has been demonstrated, in vitro and in vivo, that surface

modification of titanium implants at the nanoscale offers

enhanced bioactivity, surpassing clinical microroughness,

employing various strategies such as plasma treatment,

micromachining, polishing/grinding, particle blasting,

chemical etching, and electrochemical anodization (Chopra

et al., 2021).

The American Academy of Orthopaedic Surgeons (AAOS)

indicates that infection (20.4%) was themost common etiology of

failure in knee arthroplasty in the United States (Veerachamy

et al., 2014), so certain studies focus their research onminimizing

the immediate infection of the implant during surgery,

investigating on coatings and metals with antibacterial

properties, since the release of some of these coatings is

prolonged during the first days after implantation, however,

there is still no conclusive research on these aspects. (Kunrath

et al., 2020; Kunrath and Campos, 2021).

DNA methylation

Epigenetics is the study of molecular processes that affect the

flow of genetic information between DNA sequences and gene

expression patterns, such as DNA methylation (Goldberg et al.,

2007). The combined use of scaffolds with small molecules, such as

novel epigenetic drugs (epi-drugs), can enhance cell differentiation

(Cheng et al., 2016). In this regard, some studies on implant surfaces

and osteoblast differentiation have focused on differences in the

osteogenic potential of surfaces as a function of gene expression

levels, and some have reported that implant surface topography can

alter cellular activity (Zheng et al., 2020; Ichioka et al., 2021). A study

by Cho et al. concluded that the surface topography of Ti implants

affects their osteogenic potential through epigenetic changes, raising

the possibility of using epidrugs to enhance osteogenesis on implant

surfaces (Cho et al., 2021).

Considerations

The current approach to dental implant bioengineering

involves the development of functionalized surfaces and

bioactive coatings, together with strategies for in situ drug

delivery, with the aim of reducing infection rates and

improving clinical outcomes. Methods have to be developed

to improve osseointegration of implants, both in normal and

deficient bone conditions, especially through new macroscopic

designs and surface modification.

In vitro methods are particularly fruitful for studying biological

activity mechanistically, although their clinical application remains

poor, mainly due to the absence of in vivo biokinetics; therefore,

complete replacement of animals, at least in the near future, will not

be possible (Saeidnia et al., 2015).

On the other hand, orthopedic and dental implant research

will require specific animal models (Table 3), which reproduce

the human condition and help to understand the complex

process of osseointegration, and multiple preclinical and

clinical trials will be necessary before new biomedical implant

designs can enter the market, focusing, above all, on long-term

functional studies.

Conclusion

Titanium and its alloys are the materials of choice for the

manufacture of orthopedic and dental implants because of their

excellent corrosion resistance and proven biocompatibility.

However, there are still limitations caused by post-surgical

infections or lack of biointegration.

In this review, different relevant methods of Cht coatings on

Ti substrates for dental implant applications as well as next

generation coatings have been addressed.

As a natural polysaccharide, it has been demonstrated in the

different studies that Cht coatings provide biocompatibility,

excellent adhesion and anti-corrosion properties in different

coatings. In addition, it has been shown that Cht coatings

offer mechanical stability during the first weeks after

implantation, good degradability and optimal osseointegration.

Better mineralization, cell proliferation and bioactivity have also

been demonstrated around these coatings. However, despite the

extensive literature, much research is needed to improve the

performance of Cht-based coatings, especially by improving the

bond strength and the interface between the coating and the

substrate. Likewise, new coating strategies with Cht and other

similar biopolymers should be implemented to improve

bioactivity and adhesion without impairing the properties of
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the substrates, with particular attention to reducing toxicity in

coating preparations.

Nevertheless, Cht-based coatings are promising candidates

for improving orthopedic and dental implants, although more

research is needed to develop coatings customized to each

patient’s bone circumstances by establishing surfaces with a

standardized topography to ensure long-term success.
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